Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = TOUGH+HYDRATE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8789 KB  
Article
Study on Preparation and Properties of Phosphogypsum-Based Lightweight Thermal Insulation Materials
by Yunpeng Chu, Tianyong Jiang, Han Huang, Gangxin Yi and Binyang Huang
Materials 2025, 18(24), 5476; https://doi.org/10.3390/ma18245476 - 5 Dec 2025
Viewed by 444
Abstract
At present, phosphogypsum, as an industrial by-product, is a solid waste in phosphoric acid production, and its accumulation has caused serious environmental pollution. Furthermore, due to the insufficient insulation properties of traditional wall materials, the issue of a rising proportion of building energy [...] Read more.
At present, phosphogypsum, as an industrial by-product, is a solid waste in phosphoric acid production, and its accumulation has caused serious environmental pollution. Furthermore, due to the insufficient insulation properties of traditional wall materials, the issue of a rising proportion of building energy consumption in total social energy consumption has become increasingly pressing. The study investigated vitrified beads as a light aggregate and phosphogypsum, mineral powder, and quicklime as an inorganic composite cementitious system to prepare the phosphogypsum-based lightweight thermal insulation material. The effect mechanism of the initial material ratio on the mechanical properties and micro-morphology of insulation materials was studied by macroscale mechanical property testing, X-ray diffraction, and scanning electron microscopy. Meanwhile, in order to meet the performance indexes specified in relevant standards, insulation materials were modified by adding sulfate aluminate cement, basalt fibers, and a waterproof agent to improve the strength, toughness, and water resistance. Based on the single-factor experimental design, the optimal dosage of various admixtures was obtained. The results indicated that the optimal properties of the sample were achieved when the binder–bead ratio was 1:4, the water–binder ratio was 1.6, the dosage of hydroxypropyl methylcellulose was 0.1%, and the solid content of waterborne acrylic emulsion was 24%. The optimal dosages of cement and fibers were 8% and 0.9%, respectively. The cement hydration products and gypsum crystals lapped through each other, filling the pores in the matrix and increasing the strength of the sample. In addition, the fibers could form a disordered network structure inside the matrix, disperse external force, weaken the stress concentration at the tip of internal cracks, and significantly improve the toughness of the modified sample. By incorporating 2.0% paraffin emulsion in the mortar and spraying 5 dilutions of sodium methyl silicate on the external surface, dense protective layers were formed both inside and outside the modified sample. The water absorption rate reduced from 30.27% to 23.30%, and the water resistance was increased to satisfy the specified requirement for the insulation material. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 5563 KB  
Article
Multiscale Investigation on the Mechanical Enhancement Mechanisms of In Situ Polymerization Modified Cementitious Materials
by Lei Chen, Yihang Hu, Yujie Mao, Min Qiao, Changcheng Li, Jian Zhang, Yang Chu and Xin Shu
Buildings 2025, 15(23), 4246; https://doi.org/10.3390/buildings15234246 - 25 Nov 2025
Viewed by 530
Abstract
The low flexural strength and high brittleness of cement-based materials greatly compromise their safety, durability, and service life. In situ polymerization is a promising strategy for enhancing the toughness of cement-based materials. However, the underlying mechanisms responsible for this mechanical improvement remain insufficiently [...] Read more.
The low flexural strength and high brittleness of cement-based materials greatly compromise their safety, durability, and service life. In situ polymerization is a promising strategy for enhancing the toughness of cement-based materials. However, the underlying mechanisms responsible for this mechanical improvement remain insufficiently understood. This study introduces acrylamide (AM) monomer into a cement matrix, where in situ polymerization forms a strong polymer–cement network, demonstrably enhancing mechanical performance. The factors influencing this mechanical enhancement were investigated across multiple scales using techniques including nanoindentation, crack width measurement, solid-state silicon nuclear magnetic resonance (29Si NMR), thermogravimetric analysis (TGA), and so on. This research confirms that in situ polymerization influences silicate chain length (from 3.405 to 3.714) and pore structure at the nanoscale, modifies the morphology of hydration products, enhances the hardness of the interfacial transition zone (0.025 ± 0.002 to 0.055 ± 0.004 GPa) at the microscale, and reveals that at monomer concentrations below 1 wt%, both the compressive and flexural strengths of the cement-based material are improved, with 28d compressive and flexural strength increasing by 23.86% and 26.58%, respectively. Conversely, higher monomer dosages lead to a simultaneous reduction in both compressive and flexural strengths. Consequently, through tracking the hydration process on the mechanical properties of cement-based materials across multiple scales, this study provides deeper insights into the in situ polymerization system and offers an effective strategy for the design and preparation of high-performance concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 3002 KB  
Article
Chloride Resistance of High-Strength Concrete Subjected to Different Curing Conditions and Chloride Concentrations
by Zhengyu Wu, Dayou Luo, Shuai Li and Zhiguo Li
Infrastructures 2025, 10(11), 300; https://doi.org/10.3390/infrastructures10110300 - 8 Nov 2025
Viewed by 856
Abstract
High-strength concrete (HSC) is widely used in coastal regions, but its durability and structural safety is threatened by chloride ingress in marine environments. This study investigates the effects of different curing methods, normal, steam, and high-temperature autoclave on the chloride resistance of HSC [...] Read more.
High-strength concrete (HSC) is widely used in coastal regions, but its durability and structural safety is threatened by chloride ingress in marine environments. This study investigates the effects of different curing methods, normal, steam, and high-temperature autoclave on the chloride resistance of HSC using the electric flux test. A critical chloride concentration of 4.5% was identified, and accelerated deterioration tests were conducted to evaluate mechanical properties development (compressive strength, elastic modulus, toughness, specific toughness) under the various curing conditions. Additionally, the development of hydration products and microstructural characteristics were analyzed to elucidate the mechanisms underlying the observed differences. The results indicate that steam and autoclave curing enhance cement hydration and the initial mechanical properties of HSC but also increase permeability and susceptibility to chloride ion penetration compared to normal curing. Chloride penetration was found to be most severe at moderate chloride concentrations (~4.5%), while higher concentrations resulted in reduced ion migration. Although intensive curing under elevated temperature and pressure improves early strength and stiffness, it accelerates mechanical degradation under chloride exposure, highlighting a trade-off between short-term performance and long-term durability. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

16 pages, 4743 KB  
Article
Coarse Aggregate Induced Fiber Dispersion and Its Role in UHPC Mechanics Across Flexural and Compressive Loading
by Chen Shen, Yue Zhang, Jianlin Li, Haonan Zeng, Changhui Yang and Linwen Yu
Materials 2025, 18(20), 4796; https://doi.org/10.3390/ma18204796 - 21 Oct 2025
Viewed by 568
Abstract
Ultra-high-performance concrete (UHPC) exhibits exceptional mechanical properties and durability but faces challenges such as high heat of hydration and limited stiffness. Incorporation of coarse aggregates offers a potential solution; however, it alters the dispersion of steel fibers, thereby affecting the mechanical performance of [...] Read more.
Ultra-high-performance concrete (UHPC) exhibits exceptional mechanical properties and durability but faces challenges such as high heat of hydration and limited stiffness. Incorporation of coarse aggregates offers a potential solution; however, it alters the dispersion of steel fibers, thereby affecting the mechanical performance of UHPC under different loading conditions. This study systematically investigates the influence of coarse aggregates on UHPC performance under different loading conditions, including four-point bending, uniaxial compression, and triaxial compression tests. The spatial distribution of steel fibers was quantitatively analyzed via image analysis to elucidate changes induced by CA incorporation. Results reveal that with 20 vol% coarse aggregate (10 mm), UHPC’s flexural strength is essentially unchanged (≈23 MPa), whereas flexural toughness decreases by about one-third. This toughness loss is linked to a slight increase in the fiber orientation angle (from 48.77° to 48.90°) and reduced continuity, which together weaken crack-bridging. Moreover, both flexural strength and toughness are governed primarily by the local steel-fiber content within the tensile zone. Under triaxial compression, confinement dominates: as confining pressure rises from 0 to 30 MPa, compressive strength increases by approximately 32.6%, 52.6%, and 71.3%. Due to crack-suppression by confinement overlapping with fiber bridging, the contribution of fibers to strength gains decreases with increasing confinement, and the competing and complementary interaction between coarse aggregate and steel fibers correspondingly weakens. These findings clarify the coupled effects of coarse aggregate and fibers in UHPC-CA, guide mix-design optimization for improved mechanical performance, and support broader practical adoption. Full article
(This article belongs to the Special Issue Performance and Durability of Reinforced Concrete Structures)
Show Figures

Figure 1

25 pages, 8960 KB  
Article
Analysis on Durability of Bentonite Slurry–Steel Slag Foam Concrete Under Wet–Dry Cycles
by Guosheng Xiang, Feiyang Shao, Hongri Zhang, Yunze Bai, Yuan Fang, Youjun Li, Ling Li and Yang Ming
Buildings 2025, 15(19), 3550; https://doi.org/10.3390/buildings15193550 - 2 Oct 2025
Viewed by 807
Abstract
Wet–dry cycles are a key factor aggravating the durability degradation of foam concrete. To address this issue, this study prepared bentonite slurry–steel slag foam concrete (with steel slag and cement as main raw materials, and bentonite slurry as admixture) using the physical foaming [...] Read more.
Wet–dry cycles are a key factor aggravating the durability degradation of foam concrete. To address this issue, this study prepared bentonite slurry–steel slag foam concrete (with steel slag and cement as main raw materials, and bentonite slurry as admixture) using the physical foaming method. Based on 7-day unconfined compressive strength tests with different mix proportions, the optimal mix proportion was determined as follows: mass ratio of bentonite to water 1:15, steel slag content 10%, and mass fraction of bentonite slurry 5%. Based on this optimal mix proportion, dry–wet cycle tests were carried out in both water and salt solution environments to systematically analyze the improvement effect of steel slag and bentonite slurry on the durability of foam concrete. The results show the following: steel slag can act as fine aggregate to play a skeleton role; after fully mixing with cement paste, it wraps the outer wall of foam, which not only reduces foam breakage but also inhibits the formation of large pores inside the specimen; bentonite slurry can densify the interface transition zone, improve the toughness of foam concrete, and inhibit the initiation and propagation of matrix cracks during the dry–wet cycle process; the composite addition of the two can significantly enhance the water erosion resistance and salt solution erosion resistance of foam concrete. The dry–wet cycle in the salt solution environment causes more severe erosion damage to foam concrete. The main reason is that, after chloride ions invade the cement matrix, they erode hydration products and generate expansive substances, thereby aggravating the matrix damage. Scanning Electron Microscopy (SEM) analysis shows that, whether in water environment or salt solution environment, the fractal dimension of foam concrete decreased slightly with an increasing number of wet–dry cycle times. Based on fractal theory, this study established a compressive strength–porosity prediction model and a dense concrete compressive strength–dry–wet cycle times prediction model, and both models were validated against experimental data from other researchers. The research results can provide technical support for the development of durable foam concrete in harsh environments and the high-value utilization of steel slag solid waste, and are applicable to civil engineering lightweight porous material application scenarios requiring resistance to dry–wet cycle erosion, such as wall bodies and subgrade filling. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

33 pages, 12503 KB  
Article
Molecular Adhesion Between Asphalt and Glass Fiber-Reinforced Composites from Recycled Wind Turbine Blades in Dry and Hydrated Conditions
by Jiehao Feng, Shuliang Wang, Fan He, Chuanhai Wu, Zhixiang Wang, Fen Du, Dryver Huston, Mandar Dewoolkar and Ting Tan
Materials 2025, 18(17), 3936; https://doi.org/10.3390/ma18173936 - 22 Aug 2025
Viewed by 1301
Abstract
A large number of wind turbine blades will be retired in the near future. Glass fiber-reinforced composites from retired blades, due to their extraordinary strength, toughness, and durability, are promising aggregate candidates in asphalt mixtures. This work studied the interfacial behavior between asphalt [...] Read more.
A large number of wind turbine blades will be retired in the near future. Glass fiber-reinforced composites from retired blades, due to their extraordinary strength, toughness, and durability, are promising aggregate candidates in asphalt mixtures. This work studied the interfacial behavior between asphalt and glass fiber-reinforced composites through combined molecular modeling and experimental approaches. Predictions from molecular modeling were first verified through experimental findings using particle probe scanning force microscopy. Then, molecular simulations were conducted to examine the chemical adhesion between binders and aggregates made from minerals and wind turbine blades. The results showed that epoxy–binder adhesion was higher than calcite–binder and silica–binder adhesion but lower than alumina–binder adhesion, denoting that the glass fiber composite aggregates were comparable in chemical adhesion to mineral aggregates. The adhesion was primarily due to van der Waals forces (>80%). Furthermore, the dependence of epoxy–asphalt adhesion on loading rates was examined, during which the high-speed, transitions, and low-speed regions were identified. The impact of water on interfacial behavior was illustrated by examining how water molecules infiltrated interfaces between aggregates and binders at different speeds. The results showed that interfacial adhesion in a hydrated state at low speeds was 20–40% lower than that in a dry state, whereas at high speeds, interfacial adhesion in a hydrated state was 5–15% higher than that in dry conditions. These results could provide essential guidance for the application of retired wind turbine blades as asphalt aggregates. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

23 pages, 11077 KB  
Article
Synergistic Effects of Lignin Fiber and Sodium Sulfate on Mechanical Properties and Micro-Structure of Cement-Stabilized Soil
by Liang Wang, Binbin Na and Wenhua Chen
Materials 2025, 18(17), 3929; https://doi.org/10.3390/ma18173929 - 22 Aug 2025
Viewed by 864
Abstract
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted [...] Read more.
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted through unconfined compressive strength (UCS), splitting tensile strength, and capillary water absorption tests, supplemented by microscopic analyses including XRD and SEM. The results indicate that the optimal synergistic effect occurs at 1.0% LF and 0.10% Na2SO4, which increases UCS and splitting tensile strength by 9.23% and 18.37%, respectively, compared to cement-stabilized soil. Meanwhile, early strength development is accelerated. Microscopically, LF physically bridges soil particles, forming aggregates, reducing porosity, and enhancing cohesion. Chemically, Na2SO4 acts as an activator, accelerating cement hydration and stimulating pozzolanic reactions to form calcium aluminosilicate hydrate and gypsum, which fill pores and densify the matrix. The synergistic mechanism lies in Na2SO4 enhancing the interaction between the LFs and clay minerals through ion exchange, facilitating the formation of a stable spatial network structure that inhibits particle sliding and crack propagation. This technology offers substantial sustainability benefits by utilizing paper-making waste LF and low-cost Na2SO4 to improve soil strength, toughness, and impermeability. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 4980 KB  
Article
Strength Development of Bottom Ash-Based Geopolymer-Stabilized Recycled Concrete Aggregate as a Pavement Base Material
by Menglim Hoy, Chokchai Traiyasut, Suksun Horpibulsuk, Avirut Chinkulkijniwat, Apichat Suddeepong, Apinun Buritatum, Teerasak Yaowarat, Mantana Julvorawong and Thanaset Savetviwat
Coatings 2025, 15(8), 935; https://doi.org/10.3390/coatings15080935 - 11 Aug 2025
Viewed by 1203
Abstract
This study investigated a 100% waste-derived material system, using bottom ash (BA) and recycled concrete aggregate (RCA) for sustainable pavement base applications. This innovative approach diverts both construction and power plant waste from landfills while replacing conventional natural aggregates and cement-based binders. Five [...] Read more.
This study investigated a 100% waste-derived material system, using bottom ash (BA) and recycled concrete aggregate (RCA) for sustainable pavement base applications. This innovative approach diverts both construction and power plant waste from landfills while replacing conventional natural aggregates and cement-based binders. Five RCA:BA replacement ratios (90:10 to 50:50) were evaluated with three Na2SiO3:NaOH alkaline activator ratios (1:1, 1:1.5, and 1:2) through unconfined compressive strength (UCS) testing, scanning electron microscopy, energy dispersive X-ray spectroscopy (SEM-EDX), and X-ray diffraction (XRD) analysis. The RCA90BA10 composition with a G/N ratio of 1:2 achieved exceptional performance, reaching 9.14 MPa UCS at 7 days while exceeding the Department of Highways, Thailand, requirement of 2.413 MPa. All geopolymer-stabilized mixtures substantially surpassed minimum specifications, validating the technology for high-traffic pavement applications. Toughness evaluation confirmed superior energy absorption capacity of 107.89 N·m for the optimal formulation. Microstructural characterization revealed that higher G/N ratios promoted extensive sodium aluminosilicate hydrate and calcium silicate hydrate gel formation, creating dense, well-integrated matrices. XRD patterns confirmed successful geopolymerization through pronounced amorphous gel development between 20° and 35° 2θ, correlating directly with mechanical performance improvements. The RCA90BA10 formulation demonstrated optimal balance between reactive aluminosilicate content and structural aggregate framework. This technology offers significant environmental benefits by diverting construction and power plant waste from landfills while achieving mechanical properties superior to conventional materials, providing a scalable solution for sustainable infrastructure development. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

15 pages, 2594 KB  
Article
Novel Zwitterionic Hydrogels with High and Tunable Toughness for Anti-Fouling Application
by Kefan Wu, Xiaoyu Guo, Jingyao Feng, Xiaoxue Yang, Feiyang Li, Xiaolin Wang and Hui Guo
Gels 2025, 11(8), 587; https://doi.org/10.3390/gels11080587 - 30 Jul 2025
Cited by 1 | Viewed by 1889
Abstract
Zwitterionic hydrogels have emerged as eco-friendly anti-fouling materials owing to their superior hydration-mediated resistance to biofouling. Nevertheless, their practical utility remains constrained by intrinsically poor mechanical robustness. Herein, this study proposes a novel strategy to develop novel tough zwitterionic hydrogels by freezing the [...] Read more.
Zwitterionic hydrogels have emerged as eco-friendly anti-fouling materials owing to their superior hydration-mediated resistance to biofouling. Nevertheless, their practical utility remains constrained by intrinsically poor mechanical robustness. Herein, this study proposes a novel strategy to develop novel tough zwitterionic hydrogels by freezing the gels’ polymer network. As a proof of concept, a zwitterionic hydrogel was synthesized via copolymerization of hydrophobic monomer phenyl methacrylate (PMA) and hydrophilic cationic monomer N-(3-dimethylaminopropyl) methacrylamide (DMAPMA), followed by post-oxidation to yield a zwitterionic structure. At service temperature, the rigid and hydrophobic PMA segments remain frozen, while the hydrophilic zwitterionic units maintain substantial water content by osmotic pressure. Synergistically, the zwitterionic hydrogel achieves robust toughness and adhesiveness, with high rigidity (66 MPa), strength (4.78 MPa), and toughness (2.53 MJ/m3). Moreover, the hydrogel exhibits a distinct temperature-dependent behavior by manifesting softer and more stretchable behavior after heating, since the thawing of the gel network at high temperatures increases segmental mobility. Therefore, it achieved satisfactory adhesiveness to substrates (80 kPa). Additionally, the hydrogel demonstrated remarkable anti-fouling performance, effectively suppressing biofilm formation and larval attachment. In summary, this work opens up promising prospects for the development of zwitterionic hydrogels with high application potential. Full article
Show Figures

Graphical abstract

33 pages, 11892 KB  
Article
Experimental Study on Mechanical Properties of Waste Steel Fiber Polypropylene (EPP) Concrete
by Yanyan Zhao, Xiaopeng Ren, Yongtao Gao, Youzhi Li and Mingshuai Li
Buildings 2025, 15(15), 2680; https://doi.org/10.3390/buildings15152680 - 29 Jul 2025
Viewed by 830
Abstract
Polypropylene (EPP) concrete offers advantages such as low density and good thermal insulation properties, but its relatively low strength limits its engineering applications. Waste steel fibers (WSFs) obtained during the sorting and processing of machining residues can be incorporated into EPP concrete (EC) [...] Read more.
Polypropylene (EPP) concrete offers advantages such as low density and good thermal insulation properties, but its relatively low strength limits its engineering applications. Waste steel fibers (WSFs) obtained during the sorting and processing of machining residues can be incorporated into EPP concrete (EC) to enhance its strength and toughness. Using the volume fractions of EPP and WSF as variables, specimens of EPP concrete (EC) and waste steel fiber-reinforced EPP concrete (WSFREC) were prepared and subjected to cube compressive strength tests, splitting tensile strength tests, and four-point flexural strength tests. The results indicate that EPP particles significantly improve the toughness of concrete but inevitably lead to a considerable reduction in strength. The incorporation of WSF substantially enhanced the splitting tensile strength and flexural strength of EC, with increases of at least 37.7% and 34.5%, respectively, while the improvement in cube compressive strength was relatively lower at only 23.6%. Scanning electron microscopy (SEM) observations of the interfacial transition zone (ITZ) and WSF surface morphology in WSFREC revealed that the addition of EPP particles introduces more defects in the concrete matrix. However, the inclusion of WSF promotes the formation of abundant hydration products on the fiber surface, mitigating matrix defects, improving the bond between WSF and the concrete matrix, effectively inhibiting crack propagation, and enhancing both the strength and toughness of the concrete. Full article
Show Figures

Figure 1

27 pages, 7191 KB  
Review
Advances in Nano-Reinforced Polymer-Modified Cement Composites: Synergy, Mechanisms, and Properties
by Yibo Gao, Jianlin Luo, Jie Zhang, Muhammad Asad Ejaz and Liguang Liu
Buildings 2025, 15(15), 2598; https://doi.org/10.3390/buildings15152598 - 23 Jul 2025
Cited by 4 | Viewed by 2227
Abstract
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead [...] Read more.
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead to degradation in mechanical performances of polymer-modified cement-based composite (PMC). Nanomaterials provide unique advantages in enhancing the properties of PMC due to their characteristic ultrahigh specific surface area, quantum effects, and interface modulation capabilities. This review systematically examines recent advances in nano-reinforced PMC (NPMC), elucidating their synergistic optimization mechanisms. The synergistic effects of nanomaterials—nano-nucleation, pore-filling, and templating mechanisms—refine the microstructure, significantly enhancing the mechanical strength, impermeability, and erosion resistance of NPMC. Furthermore, nanomaterials establish interpenetrating network structures (A composite structure composed of polymer networks and other materials interwoven with each other) with polymer cured film (The film formed after the polymer loses water), enhancing load-transfer efficiency through physical and chemical action while optimizing dispersion and compatibility of nanomaterials and polymers. By systematically analyzing the synergy among nanomaterials, polymer, and cement matrix, this work provides valuable insights for advancing high-performance repair materials. Full article
Show Figures

Figure 1

17 pages, 3437 KB  
Article
Effects of Heavy-Metal-Sludge Sintered Aggregates on the Mechanical Properties of Ultra-High-Strength Concrete
by Weijun Zhong, Sheng Wang, Yue Chen, Nan Ye, Kai Shu, Rongnan Dai and Mingfang Ba
Materials 2025, 18(14), 3422; https://doi.org/10.3390/ma18143422 - 21 Jul 2025
Cited by 1 | Viewed by 544
Abstract
To investigate the effects of heavy-metal-sludge sintered aggregates on the workability, mechanical properties, and fracture toughness of ultra-high-strength concrete (UHSC), this study systematically evaluated the influence of different aggregate replacement ratios and particle gradations on the fluidity, flexural strength, compressive strength, and fracture [...] Read more.
To investigate the effects of heavy-metal-sludge sintered aggregates on the workability, mechanical properties, and fracture toughness of ultra-high-strength concrete (UHSC), this study systematically evaluated the influence of different aggregate replacement ratios and particle gradations on the fluidity, flexural strength, compressive strength, and fracture energy of UHSC. Microstructural characterization techniques including SEM, XRD, TG, and FTIR were employed to analyze the hydration mechanism and interfacial transition zone evolution. The results demonstrated the following: Fluidity continuously improved with the increase in the sintered aggregate replacement ratio, with coarse aggregates exhibiting the most significant enhancement due to the “ball-bearing effect” and paste enrichment. The mechanical properties followed a trend of an initial increase followed by a decrease, peaking at 15–20% replacement ratio, at which flexural strength, compressive strength, and fracture energy were optimally enhanced; excessive replacement led to strength reduction owing to skeletal structure weakening, with coarse aggregates providing superior improvement. Microstructural analysis revealed that the sintered aggregates accelerated hydration reactions, promoting the formation of C-S-H gel and Ca(OH)2, thereby densifying the ITZ. This study identified 15–20% of coarse sintered aggregates as the optimal replacement ratio, which synergistically improved the workability, mechanical properties, and fracture toughness of UHSC. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 11832 KB  
Article
Investigation of Flexibility Enhancement Mechanisms and Microstructural Characteristics in Emulsified Asphalt and Latex-Modified Cement
by Wen Liu, Yong Huang, Yulin He, Hanyu Wei, Ruyun Bai, Huan Li, Qiushuang Cui and Sining Li
Sustainability 2025, 17(14), 6317; https://doi.org/10.3390/su17146317 - 9 Jul 2025
Viewed by 966
Abstract
The inherent limitations of ordinary cement mortar—characterized by its high brittleness and low flexibility—result in a diminished load-bearing capacity, predisposing concrete pavements to cracking. A novel approach has been proposed to enhance material performance by incorporating emulsified asphalt and latex into ordinary cement [...] Read more.
The inherent limitations of ordinary cement mortar—characterized by its high brittleness and low flexibility—result in a diminished load-bearing capacity, predisposing concrete pavements to cracking. A novel approach has been proposed to enhance material performance by incorporating emulsified asphalt and latex into ordinary cement mortar, aiming to improve the flexibility and durability of concrete pavements effectively. To further validate the feasibility of this proposed approach, a series of comprehensive experimental investigations were conducted, with corresponding conclusions detailed herein. As outlined below, the flexibility properties of the modified cement mortar were systematically evaluated at curing durations of 3, 7, and 28 days. The ratio of flexural to compressive strength can be increased by up to 38.9% at 8% emulsified asphalt content at the age of 28 days, and by up to 50% at 8% latex content. The mechanism of emulsified asphalt and latex-modified cement mortar was systematically investigated using a suite of analytical techniques: X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG-DTG), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Through comprehensive analyses of microscopic morphology, hydration products, and elemental distribution, the enhancement in cement mortar toughness can be attributed to two primary mechanisms. First, Ca2+ ions combine with the carbonyl groups of emulsified asphalt to form a flexible film structure during cement hydration, thereby reducing the formation of brittle hydrates. Second, active functional groups in latex form a three-dimensional network, regulating internal expansion-contraction tension in the modified mortar and extending its service life. Full article
Show Figures

Figure 1

22 pages, 6793 KB  
Article
Effect of Nano-Modified Recycled Wood Fibers on the Micro/Macro Properties of Rapid-Hardening Sulfoaluminate Cement-Based Composites
by Chunyu Ma, Liang Wang, Yujiao Li, Qiuyi Li, Gongbing Yue, Yuanxin Guo, Meinan Wang and Xiaolong Zhou
Nanomaterials 2025, 15(13), 993; https://doi.org/10.3390/nano15130993 - 26 Jun 2025
Viewed by 777
Abstract
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. [...] Read more.
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. In this study, high-performance sulfoaluminate cement (SAC)-RWF composites prepared by modifying RWFs with nano-silica (NS) and a silane coupling agent (KH560) were developed and their effects on mechanical properties, shrinkage behavior, hydration characteristics, and microstructure of SAC-RWF composites were systematically investigated. Optimal performance was achieved at water–cement ratio of 0.5 with 20% RWF content, where the KH560-modified samples showed superior improvement, with 8.5% and 14.3% increases in 28 d flexural and compressive strength, respectively, compared to the control groups, outperforming the NS-modified samples (3.6% and 8.6% enhancements). Both modifiers improved durability, reducing water absorption by 6.72% (NS) and 7.1% (KH560) while decreasing drying shrinkage by 4.3% and 27.2%, respectively. The modified SAC composites maintained favorable thermal properties, with NS reducing thermal conductivity by 6.8% through density optimization, whereas the KH560-treated specimens retained low conductivity despite slight density increases. Micro-structural tests revealed accelerated hydration without new hydration product formation, with both modifiers enhancing cementitious matrix hydration product generation by distinct mechanisms—with NS acting through physical pore-filling, while KH560 established Si-O-C chemical bonds at paste interfaces. Although both modifications improved mechanical properties and durability, the KH560-modified SAC composite group demonstrated superior overall performance than the NS-modified group, providing a technical pathway for developing sustainable, high-performance recycled wood fiber cement-based materials with balanced functional properties for low-carbon construction applications. Full article
(This article belongs to the Special Issue Nanocomposite Modified Cement and Concrete)
Show Figures

Graphical abstract

22 pages, 20518 KB  
Article
Effects of Thermal Cycles on Mechanical Properties of RPECC: Static and Dynamic Compressive Performance
by Shaohua He, Zhiliang Chen, Changxi Liu, Jincai Chen, Huanwei Chen and Zhitao Yu
Materials 2025, 18(12), 2846; https://doi.org/10.3390/ma18122846 - 17 Jun 2025
Viewed by 628
Abstract
This study explores the impact of thermal cycling and rubber particle content on the static and dynamic compressive properties of rubber–polyethylene fiber-reinforced engineered cementitious composites (RPECC). Through static and dynamic compression tests, supplemented by scanning electron microscopy and energy-dispersive X-ray spectroscopy, the mechanical [...] Read more.
This study explores the impact of thermal cycling and rubber particle content on the static and dynamic compressive properties of rubber–polyethylene fiber-reinforced engineered cementitious composites (RPECC). Through static and dynamic compression tests, supplemented by scanning electron microscopy and energy-dispersive X-ray spectroscopy, the mechanical behavior and microstructural evolution of RPECC under thermal cycling were analyzed. Results indicate that increasing rubber content from 10% to 30% enhances toughness and strain capacity but reduces the static compressive strength of ECC by up to 17.9% at 30%. Thermal cycling reduced strength: static and dynamic compressive strengths decreased by 18.0% and 41.2%, respectively, after 270 cycles. Dynamic tests demonstrated that RPECC is sensitive to strain rate. For example, C-20 specimens exhibited increases in dynamic strength of 6.9% and 9.9% as strain rate rose from 60.2 s−1 to 77.4 s−1 and 110.8 s−1, respectively, and the dynamic increase factor correlated linearly with strain rate. By contrast, excessive rubber content (30%) diminishes dynamic strengthening, indicating that 20% rubber is optimal for enhancing strain rate sensitivity. Thermal cycling facilitates the formation of hydration products, such as calcium hydroxide, and creates interfacial defects, further deteriorating mechanical performance. These findings provide a reliable foundation for optimizing RPECC mix design and ductility in environments subject to temperature fluctuations and dynamic loading. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

Back to TopTop