Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,023)

Search Parameters:
Keywords = TG-DSC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1172 KB  
Article
Study on the Influence of Composition Differences in Heavy Oil Components on In-Situ Combustion Coking Performance
by Qingchun Meng, Qingqiao Zeng, Yuying Li, Xi Huang, Yong Guo and Xusheng Wang
Processes 2026, 14(1), 123; https://doi.org/10.3390/pr14010123 (registering DOI) - 29 Dec 2025
Abstract
This study investigates coke formation, structure, and combustion behaviors in paraffin-based Menggulin and naphthenic-based Xinjiang heavy oils under simulated in-situ combustion (ISC) conditions (350 °C, 450 °C), utilizing GC-MS, SEM, 13C ss-NMR, and TG-DSC. The results indicate that the crude oil composition [...] Read more.
This study investigates coke formation, structure, and combustion behaviors in paraffin-based Menggulin and naphthenic-based Xinjiang heavy oils under simulated in-situ combustion (ISC) conditions (350 °C, 450 °C), utilizing GC-MS, SEM, 13C ss-NMR, and TG-DSC. The results indicate that the crude oil composition determines the coking mechanisms: Xinjiang oil, rich in cyclic hydrocarbons and O/N/S heteroatoms, forms high-yield, compact, sheet- or block-like coke at 350 °C via π–π stacking. In contrast, Menggulin oil, composed primarily of long-chain alkanes, yields loose coke at 350 °C but produces dense, highly aromatized coke at 450 °C, which corresponds to the critical alkane cracking temperature, through intense cracking–polymerization. Temperature differentially regulates oxidative processes, thereby shaping the divergent functional group distributions. Correlations between coke structure and combustion properties reveal that oxygenated/aliphatic-rich cokes exhibit high reactivity, whereas aromatized cokes release more heat. These findings provide guidance for ISC optimization, suggesting that sufficient high-temperature energy is required for paraffinic oils while medium-temperature oxidation regulation is suitable for naphthenic oils. This work advances the theory of ISC coke formation and supports enhanced recovery of heavy oils. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

19 pages, 3662 KB  
Article
Poly(Vinyl Alcohol)/Hyaluronic Acid Nanofibers for Biomedical Use Under Physiological Conditions: Electrospinning Fabrication and Stabilization via Solvent-Free Citric Acid Crosslinking
by Gianluca Ciarleglio, Nicholas Capuccilli, Elisa Toto and Maria Gabriella Santonicola
Polymers 2026, 18(1), 79; https://doi.org/10.3390/polym18010079 - 27 Dec 2025
Viewed by 176
Abstract
Electrospun polymeric nanofibers have emerged as promising materials for wound management owing to their high surface area, efficient exudate absorption and gas exchange, and extracellular-matrix-like architecture. This study investigates the fabrication of nanofiber dressings from poly(vinyl alcohol) (PVA) and hyaluronic acid (HA), prepared [...] Read more.
Electrospun polymeric nanofibers have emerged as promising materials for wound management owing to their high surface area, efficient exudate absorption and gas exchange, and extracellular-matrix-like architecture. This study investigates the fabrication of nanofiber dressings from poly(vinyl alcohol) (PVA) and hyaluronic acid (HA), prepared by fully aqueous electrospinning (without organic solvents) for potential wound-care applications. HA incorporation is expected to influence hydration and matrix interactions, properties that have been associated with modulation of wound healing in previous studies. However, the high solubility of PVA-based NFs in aqueous environments limits their use in biological applications. To address this issue, PVA/HA nanofibers were chemically crosslinked through a solid-state esterification process at 150 °C using biocompatible citric acid (CA). The electrospinning parameters were optimized to obtain PVA/HA fibers with diameters ranging from 130 to 200 nm, which were assembled to form mats with different porosity and intersection density. FTIR confirmed the formation of ester bonds, while DSC analysis showed an increase in Tg from 41 °C to about 55 °C and a slight decrease in Tm after crosslinking. Swelling and degradation analyses demonstrated a significant enhancement in hydrolytic stability, as the weight loss of the nanofiber mats decreased from ~90% in the non-crosslinked samples to less than 10% after 2 h of crosslinking. Dynamic mechanical analysis (DMA) showed an increase in Young’s modulus from ~70 MPa to 230 MPa after crosslinking. Overall, the results demonstrate the stabilizing effect of citric-acid crosslinking on PVA/HA nanofibers and support their potential use in wound dressings under physiological conditions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

18 pages, 3275 KB  
Article
Salts of Antifolate Pyrimethamine with Isomeric Aminobenzoic Acids: Exploring Packing Interactions and Pre-Crystallization Aggregation
by Karolina Cichocka, Magdalena Zimnicka, Karolina Kędra, Arkadiusz Gajek and Magdalena Ceborska
Int. J. Mol. Sci. 2026, 27(1), 180; https://doi.org/10.3390/ijms27010180 - 23 Dec 2025
Viewed by 123
Abstract
Pyrimethamine (PYR), a drug approved for the treatment of infections caused by protozoan parasites, is a multifunctional API based on 2,4-diaminopyrimidine scaffold. The present study aims toward the development of novel solid forms of PYR, by combining it with three isomeric aminobenzoic acids—2-aminobenzoic [...] Read more.
Pyrimethamine (PYR), a drug approved for the treatment of infections caused by protozoan parasites, is a multifunctional API based on 2,4-diaminopyrimidine scaffold. The present study aims toward the development of novel solid forms of PYR, by combining it with three isomeric aminobenzoic acids—2-aminobenzoic acid (2NH2-BA), 3-aminobenzoic acid (3NH2-BA), and 4-aminobenzoic acid (4NH2-BA). Solution crystallization led to the formation of three new solvated salts of PYR (PYR/2NH2-BA/EtOH/H2O, PYR/3NH2-BA/EtOH, and PYR/4NH2-BA/EtOH/H2O). The detailed physicochemical properties of the formed compounds were characterized by single-crystal X-ray diffraction (SC-XRD), FTIR, PXRD, thermogravimetry (TG), and differential scanning calorimetry (DSC). Additionally, the pre-crystallization solutions of PYR with 2NH2-BA, 3NH2-BA, and 4NH2-BA were studied by electrospray ionization mass spectrometry technique (ESI-MS), which enabled the observation of peaks corresponding to noncovalently bonded molecules, providing insight into their specific aggregation in a solution/gas phase environment. We identified different non-covalent aggregates, including self-aggregates of aminobenzoic acids and PYR/aminobenzoic acid associates of different stoichiometries. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

17 pages, 4444 KB  
Article
Study on the Interface Regulation Mechanism of Rejuvenators on Virgin and Aged Asphalt Based on Molecular Diffusion Theory
by Yanhai Yang, Zhili Chen, Xin Jin, Ye Yang and Chonghua Wang
Coatings 2026, 16(1), 17; https://doi.org/10.3390/coatings16010017 - 23 Dec 2025
Viewed by 178
Abstract
To address the issue of inefficient interfacial diffusion between virgin asphalt and the aged asphalt in Reclaimed Asphalt Pavement (RAP), this study investigates how a rejuvenator improves the interfacial blending behavior and restores the functional properties of aged asphalt. Molecular dynamics (MD) simulations [...] Read more.
To address the issue of inefficient interfacial diffusion between virgin asphalt and the aged asphalt in Reclaimed Asphalt Pavement (RAP), this study investigates how a rejuvenator improves the interfacial blending behavior and restores the functional properties of aged asphalt. Molecular dynamics (MD) simulations were employed to construct aged asphalt–rejuvenator models with varying rejuvenator contents and to establish a bilayer dynamic model of the virgin-aged asphalt–rejuvenator diffusion system. The kinetic characteristics of the diffusion process were analyzed based on system density and relative concentration profiles, while the mean square displacement (MSD) and diffusion coefficients were calculated to elucidate the diffusion mechanism. The accuracy of the MD simulation results was validated using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC), and the regulatory mechanism of the rejuvenator on the interfacial diffusion between virgin and aged asphalt was revealed at the microscopic scale. The results demonstrated that the addition of the rejuvenator effectively promotes the blending and diffusion at the virgin-aged asphalt interface. Specifically, a 6% rejuvenator significantly improved the diffusion efficiency at elevated temperatures, optimized system density toward virgin asphalt properties, and achieved the most uniform molecular distribution, thereby facilitating balanced intermolecular interactions. Meanwhile, the regenerant effectively restored the aromatic fraction content, reduced polar functional groups such as sulfoxide, and significantly lowered the glass transition temperature (Tg), thereby enhancing the low-temperature crack resistance and overall mechanical performance of RAP. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

14 pages, 3829 KB  
Article
Supplementary Cementitious Material from Epsom Salt Production Waste
by Rimvydas Kaminskas, Arijus Zuzevicius and Irmantas Barauskas
J. Compos. Sci. 2025, 9(12), 708; https://doi.org/10.3390/jcs9120708 - 18 Dec 2025
Viewed by 229
Abstract
In this study, the potential use of Epsom salt production waste as a supplementary cementitious material was investigated. This acidic waste was neutralized with lime milk and used to replace up to 25 wt.% of Portland cement. The following research methods were employed: [...] Read more.
In this study, the potential use of Epsom salt production waste as a supplementary cementitious material was investigated. This acidic waste was neutralized with lime milk and used to replace up to 25 wt.% of Portland cement. The following research methods were employed: XRD, XRF, SEM, DSC-TG, and isothermal calorimetry. The waste neutralization process was found to proceed consistently, producing a neutral material (pH = 7.5) composed of amorphous silicon compounds with a negligible impurity of crystalline antigorite. Consequently, this material exhibits very high pozzolanic activity. The neutralized Epsom salt production waste accelerates the early hydration of Portland cement and promotes an intense pozzolanic reaction. This new material is a highly effective supplementary cementitious material, capable of replacing up to 25 wt.% of Portland cement without reducing its strength class. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

19 pages, 3353 KB  
Article
Comparative Multi-Stage TG-DSC Study of K+, Na+, Ca2+ and Mg2+-Exchanged Clinoptilolite Forms
by Tsveta Stanimirova, Nadia Petrova and Georgi Kirov
Molecules 2025, 30(24), 4770; https://doi.org/10.3390/molecules30244770 - 13 Dec 2025
Viewed by 308
Abstract
A multi-stage TG-DSC approach consisting of five heating/holding and five cooling/holding stages within one experiment in the temperature range 20–320 °C was applied to investigate the dehydration/hydration processes in K+, Na+, Ca2+, and Mg2+ clinoptilolite forms. [...] Read more.
A multi-stage TG-DSC approach consisting of five heating/holding and five cooling/holding stages within one experiment in the temperature range 20–320 °C was applied to investigate the dehydration/hydration processes in K+, Na+, Ca2+, and Mg2+ clinoptilolite forms. The influence of extra-framework cations on the parameters characterizing these processes (such as mass changes, dehydration and hydration heats calculated per gram zeolite, amounts of water molecules leaving and entering the structure, and enthalpy values calculated per mol water) was established. The values of molar enthalpy of dehydration for different cationic clinoptilolite forms increase in different ways with temperature increasing (within the framework of 50–120 kJ mol−1). The data on the molar enthalpy are in good agreement with the distributions of the two types of water molecules—weakly bound to cations and water molecules coordinating cations in the applied crystal chemical models of the cationic exchange samples. The data obtained for water molecules and their molar enthalpies of dehydration for the various cationic forms are useful in studying the sorption of water vapor and other sorbates, in choosing a desiccant and an object to dry at room conditions, etc. The first data on the hydration energy of sequentially added water molecules in a dynamic cooling mode in the temperature range 320–20 °C were obtained. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Figure 1

14 pages, 2697 KB  
Article
Comparative Analysis of Physicochemical Properties for Three Crystal Forms of Cordycepin and Their Interconversion Relationship
by Wenbo Li, Shushu Li, Qingshi Wen, Xiaohan Zhang, Ke Zhang, Chenglun Tang, Fengxia Zou, Keke Zhang, Pengfei Jiao and Pengpeng Yang
Crystals 2025, 15(12), 1043; https://doi.org/10.3390/cryst15121043 - 6 Dec 2025
Viewed by 272
Abstract
Cordycepin (3′-deoxyadenosine, 3′-dA), the flagship nucleoside antibiotic from Cordyceps militaris, exerts potent anti-inflammatory, antimicrobial, and antitumor activity but is rapidly inactivated by human adenosine deaminase (ADA). While prodrugs, ADA inhibitors, and nanocarriers have been pursued to prolong its half-life, the influence of solid [...] Read more.
Cordycepin (3′-deoxyadenosine, 3′-dA), the flagship nucleoside antibiotic from Cordyceps militaris, exerts potent anti-inflammatory, antimicrobial, and antitumor activity but is rapidly inactivated by human adenosine deaminase (ADA). While prodrugs, ADA inhibitors, and nanocarriers have been pursued to prolong its half-life, the influence of solid form on delivery performance remains unexplored. Here, three polymorphs—anhydrate-I (flake-like), anhydrate-II (rod-like), and a previously unreported monohydrate (fibrillar)—were prepared, characterized (PXRD, TG-DSC, FTIR), and subjected to equilibrium solubility, slurry-conversion, and humidity-sorption mapping. The monohydrate dehydrates at 144 °C and sequentially transforms to anhydrate-I → anhydrate-II (ΔH = −127.5 J g−1), establishing a monotropic relationship between the two anhydrous forms. Solubility displays a bell-shaped profile versus water activity: the monohydrate is stable above aw 0.8, whereas anhydrate-II predominates below aw 0.2. In model immediate-release tablets, anhydrate-II achieves complete dissolution within 10 min, whereas the monohydrate sustains release for 30 min. Hygroscopicity tests show the monohydrate absorbs <6% water up to 75% RH without structural change, whereas anhydrate-I converts to the monohydrate above 63% RH. The quantitative humidity–crystal form–performance correlations provide a rational platform for crystal form selection and the design of stable, efficacious cordycepin solid dosage forms. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

16 pages, 1758 KB  
Article
Preparation and Performance Testing of EC-PEG/EC-MA for Asphalt Mixtures
by Zhuqiang Huang, Jianguo Wei, Qilin Fu, Yuming Zhou, Zhitao Feng and Xiangchao Zhang
Processes 2025, 13(12), 3916; https://doi.org/10.3390/pr13123916 - 4 Dec 2025
Viewed by 254
Abstract
Asphalt pavements are significantly affected by high temperatures. Incorporating phase-change materials into asphalt can effectively absorb heat and reduce pavement temperatures. In this study, we prepared two PCMs—ethyl cellulose–polyethylene glycol (EC-PEG) and ethyl cellulose–myristic acid (EC-MA)—using ethyl cellulose (EC) as the shell material [...] Read more.
Asphalt pavements are significantly affected by high temperatures. Incorporating phase-change materials into asphalt can effectively absorb heat and reduce pavement temperatures. In this study, we prepared two PCMs—ethyl cellulose–polyethylene glycol (EC-PEG) and ethyl cellulose–myristic acid (EC-MA)—using ethyl cellulose (EC) as the shell material and polyethylene glycol 2000 (PEG) and myristic acid (MA) as the core materials via the counter-solvent method. The particle size, morphology, functional groups, and thermal properties of EC-PEG and EC-MA were characterized using a laser particle size analyzer, SEM, FTIR, and TG-DSC. By incorporating 5–30% EC-PEG and EC-MA into asphalt mixtures, mechanical properties were analyzed to determine the optimal phase-change particle content. Through temperature cycling tests on asphalt mixtures, the reduction in the cooling rate at the optimal dosage was determined. The test results have indicated the following: EC-MA exhibited a larger particle size than EC-PEG; EC-PEG forms loosely packed particles, while EC-MA adopted a blocky structure; EC-PEG and EC-MA formed a physical mixture without creating new chemical bonds; the PCMs phase-change enthalpies were 57.05 J/g and 89.15 J/g, respectively, with EC-MA exhibiting a higher encapsulation efficiency than EC-PEG. The optimal dosage of EC-PEG in asphalt mixtures was 15%, while that of EC-MA was 20%. At their respective optimal dosages, EC-MA demonstrated superior temperature control performance compared to EC-PEG, achieving a reduction in maximum temperature of 7.23 °C. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

36 pages, 18724 KB  
Article
Statistical Optimization of Graphene Nanoplatelet-Reinforced Epoxy Nanocomposites via Box–Behnken Design for Superior Flexural and Dynamic Mechanical Performance
by Júlia Mendes, Camila Prudente Magalhães, Letícia Vitorazi, Noemi Raquel Checca Huaman, Sergio Neves Monteiro, Teresa Gómez-del Río and Ulisses Oliveira Costa
Polymers 2025, 17(23), 3218; https://doi.org/10.3390/polym17233218 - 3 Dec 2025
Viewed by 436
Abstract
Graphene nanoplatelets (GNPs) are efficient nanofillers for improving the mechanical and thermal properties of epoxy resins due to their high stiffness, aspect ratio, and interfacial reinforcement ability. This study employs a three-factor, three-level Box–Behnken Design (BBD) to investigate the combined effect of GNP [...] Read more.
Graphene nanoplatelets (GNPs) are efficient nanofillers for improving the mechanical and thermal properties of epoxy resins due to their high stiffness, aspect ratio, and interfacial reinforcement ability. This study employs a three-factor, three-level Box–Behnken Design (BBD) to investigate the combined effect of GNP content (0.5–3.5 wt.%), hardener concentration (9–17 phr), and post-curing temperature (30–120 °C) on DGEBA/TETA epoxy nanocomposites. Mechanical, thermal, dynamic mechanical, and morphological characterizations (flexural testing, DMA, TGA, DSC, FTIR, SEM, TEM, and AFM) established structure–property correlations. The optimized formulation (2.0 wt.% GNP, 9 phr hardener, and 120 °C post-curing) exhibited superior reinforcement, with flexural strength of 322.0 ± 12.8 MPa, flexural modulus of 9.7 ± 0.5 GPa, and strain at break of 4.4 ± 0.2%, corresponding to increases of 197%, 155%, and 91% compared with neat epoxy. DMA confirmed a rise in storage modulus from 2.9 to 7.5 GPa and a Tg of 143 °C, while TGA showed a 15 °C improvement in thermal stability. Statistical analysis identified post-curing temperature as the dominant factor governing Tg, stiffness, and thermal stability, with synergistic contributions from GNP content and hardener concentration to the overall network performance. These results surpass those of GO- and CNT-based systems, demonstrating the superior efficiency of GNPs under optimized conditions. The proposed approach provides a robust pathway for developing epoxy nanocomposites with low filler content and enhanced multifunctional performance. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

15 pages, 4190 KB  
Article
The Effect of Preliminary Mixing Methods on the Properties of PA6 Composites with Molybdenum Disulphide
by Dmitry Zavrazhin, Tatiana Dyachkova, Artem Obukhov, Mikhail Krasnyanskiy, Elena Burakova, Denis Dedov and Anastasia Chuprikova
Sci 2025, 7(4), 178; https://doi.org/10.3390/sci7040178 - 3 Dec 2025
Viewed by 266
Abstract
This study is motivated by the severe tribological regime of PA6 composites in VR platforms operating under dry or boundary lubrication, where alternating shear during foot rotation, localised contact pressures, and third-body abrasion concurrently challenge wear resistance and retention of strength. This paper [...] Read more.
This study is motivated by the severe tribological regime of PA6 composites in VR platforms operating under dry or boundary lubrication, where alternating shear during foot rotation, localised contact pressures, and third-body abrasion concurrently challenge wear resistance and retention of strength. This paper presents the results of research into the properties of composites based on polyamide PA6 and molybdenum disulphide, obtained by combining the components through high-intensity mechanochemical activation in a planetary mill and classical mixing in a turbulence mixer. We demonstrate that varying the energy of the premixing stage (mechanochemical activation versus low-energy premixing) serves as an effective means of interfacial engineering in PA6/MoS2 composites, enabling simultaneous enhancement of mechanical and tribological properties at low filler contents. Analysis of experimental composite samples using Fourier-transform infrared spectroscopy (FTIR) indicates the interaction between MoS2 and oxygen-containing groups of polyamide while maintaining its overall chemical composition. According to the TG-DSC curves, modification of polyamide leads to an increase in the melting temperature by 2 °C, while mechanical activation ensures stronger interaction between the matrix and the filler. Compared to pure PA6, the tensile strength of composites increases by 10–20% for mechanoactivated materials and by 5–10% for materials obtained by conventional methods. The mechanical activation effect is observed even at minimal amounts (0.25 and 0.5%) of MoS2 in composites. The toughness of all composites, regardless of the mixing method, increases by 5–7% compared to pure polyamide. All composites show a 10–20% reduction in the coefficient of friction on steel. Simultaneously, the water absorption of composites becomes 5–20% higher than that of the original material, which indicates a change in structure and an increase in porosity. The obtained composite materials are planned to be used for manufacturing platforms for the movement of virtual reality (VR) operators. Full article
Show Figures

Figure 1

28 pages, 768 KB  
Review
Combustion and Thermal Behavior of Selected Metallic Fuels Used in Pyrotechnic Compositions
by Davney Ondzié Pandzou, Nabil Mokrani, Stéphane Bernard and Léo Courty
Energies 2025, 18(23), 6290; https://doi.org/10.3390/en18236290 - 29 Nov 2025
Viewed by 407
Abstract
Metal powders have both a high specific energy and a high energy density, which explains their widespread use in energetic materials (propellants, explosives and pyrotechnics). Pyrotechnic compositions are used extensively for both civilian and military applications. However, the combustion of pyrotechnics remains challenging [...] Read more.
Metal powders have both a high specific energy and a high energy density, which explains their widespread use in energetic materials (propellants, explosives and pyrotechnics). Pyrotechnic compositions are used extensively for both civilian and military applications. However, the combustion of pyrotechnics remains challenging to understand or predict due to the diversity of the components and the wide range of parameters that affect their results. Therefore, ongoing research efforts worldwide aim to investigate the combustion mechanisms of pyrotechnic compositions to improve their performance. In this review, studies on the ignition and combustion mechanisms of four metal powders (Al, Mg, Fe and B) are discussed. Moreover, their use as fuel in pyrotechnic systems is reported, as well as the combustion performance and energy release of the pyrotechnic mixtures. Additionally, some mixtures composed of fluorinated oxidizers and Al, Mg and B are also presented. Thermal analysis methods such as DSC and TG are used to obtain the thermal behavior of the pyrotechnic compositions. Furthermore, parameters such as particle size and the equivalence ratio that affect the performance of pyrotechnic mixtures and those that remain little studied are reported in this review. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

24 pages, 5309 KB  
Article
Nanocellulose Filled Bio-Based PVA/Chitosan Nanocomposites: Structure–Property Relationships Toward Advanced Food Packaging Films
by Konstantinos Papapetros, Georgios N. Mathioudakis, Dionysios Vroulias, Nikolaos Koutroumanis, Amaia Soto Beobide, Olympia Kotrotsiou, Giannis Penloglou, Konstantinos S. Andrikopoulos and George A. Voyiatzis
Polymers 2025, 17(23), 3122; https://doi.org/10.3390/polym17233122 - 24 Nov 2025
Viewed by 548
Abstract
Biodegradable chitosan/poly(vinyl alcohol) (PVA) composite films were reinforced either with nanocrystalline cellulose (CNC) or nano-lignocellulose (NLC) and evaluated across a polyparametric design of five matrix ratios and three filler levels for active food packaging applications. ATR-FTIR, DSC, XRD, and SEM demonstrated that 1–5% [...] Read more.
Biodegradable chitosan/poly(vinyl alcohol) (PVA) composite films were reinforced either with nanocrystalline cellulose (CNC) or nano-lignocellulose (NLC) and evaluated across a polyparametric design of five matrix ratios and three filler levels for active food packaging applications. ATR-FTIR, DSC, XRD, and SEM demonstrated that 1–5% nanocellulose loading induced a single relaxation temperature (Tg), homogenized the morphology, and enhanced the crystallinity of blend material, evidencing improved thermodynamic compatibility. SEM confirmed uniform filler dispersion up to 5% loading in PVA-rich matrices, whereas limited aggregation appeared in chitosan-dominant systems. CO2 barrier property (CO2 permeability coefficients) was diminished by more than two orders of magnitude and fell below 0.01 Barrer in CNC-filled 25-75 and NLC-filled 75-25 blends, while permeability to O2 and N2 remained undetectable under identical conditions. Meanwhile, Young’s modulus increased to 3.9 GPa, and tensile strengths of up to 109 MPa were achieved, without affecting the ductility in specific loading values. These data confirm that tailored selection of the filler/matrix combination, rather than elevated nanocellulose content, can simultaneously optimize barrier performance and mechanical integrity. The study therefore offers a scalable, water-based route for producing optically transparent nanocomposite membranes that satisfy either strict modified atmosphere or/and rigid packaging applications and advance the transition toward compostable/or even edible high-performance food contact materials. Full article
Show Figures

Figure 1

18 pages, 4198 KB  
Article
X-Ray Structures, Intermolecular Interactions, and Structural Transformations of Dihydroquercetin Solvates and Polymorphs
by Xin Meng, Yao Zou, Shiying Yang, Cheng Xing, Ningbo Gong, Guanhua Du and Yang Lu
Pharmaceutics 2025, 17(12), 1512; https://doi.org/10.3390/pharmaceutics17121512 - 23 Nov 2025
Viewed by 510
Abstract
Background/Objectives: Dihydroquercetin, known for its broad biological activities, is a key component in dietary supplements and functional foods. This study aims to identify its novel pure solid forms, advancing understanding of its physicochemical properties and polymorphism. Methods: Systematic screening, preparation, and [...] Read more.
Background/Objectives: Dihydroquercetin, known for its broad biological activities, is a key component in dietary supplements and functional foods. This study aims to identify its novel pure solid forms, advancing understanding of its physicochemical properties and polymorphism. Methods: Systematic screening, preparation, and characterization efforts identified five solvates: dihydroquercetin monohydrate (1:1, S1 and S2), sesquihydrate (1:1.5, S3), dihydrate (1:2, S4), and ACN solvate (1:1, S5), along with one solvent-free phase (S6). Results: The crystal structures of the five solvates were successfully elucidated for the first time. A comprehensive suite of techniques, including single-crystal and powder X-ray diffraction, DSC, TG, and FT-IR, were employed to characterize the solvates and polymorphs. Hirshfeld surface analysis, void map analysis, intermolecular energy calculations, and energy framework methods were utilized to investigate the characteristics of the solvates. The crystal transformation relationships among these forms were also explored. Conclusions: Results demonstrate that O···H interactions dominate the intermolecular forces, accounting for over 35% of the total interactions. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

23 pages, 6036 KB  
Article
The Impact of Composite Alkali Activator on the Mechanical Properties and Enhancement Mechanisms in Aeolian Sand Powder–Aeolian Sand Concrete
by Haijun Liu and Yaohong Wang
Buildings 2025, 15(23), 4213; https://doi.org/10.3390/buildings15234213 - 21 Nov 2025
Viewed by 317
Abstract
Against the backdrop of China’s Western Development Strategy, numerous infrastructure projects are being constructed in desert regions. Utilizing local aeolian sand (AS) as a raw material for concrete production offers significant cost-saving potential but is hindered by challenges such as limited applicability and [...] Read more.
Against the backdrop of China’s Western Development Strategy, numerous infrastructure projects are being constructed in desert regions. Utilizing local aeolian sand (AS) as a raw material for concrete production offers significant cost-saving potential but is hindered by challenges such as limited applicability and inadequate mechanical strength of the resulting concrete. To address these limitations, aeolian sand was ground into aeolian sand powder (ASP) and subjected to treatment with single alkali activators (NaOH, Na2SiO3) and a composite alkali activator (NaOH + Na2SiO3). The treated and untreated ASP was then used to replace 50% of cement by mass for the preparation of aeolian sand powder–aeolian sand concrete (ASPC). Mechanical performance tests and advanced characterization techniques (SEM, TG-DSC, XRD, FTIR, nanoindentation, and NMR) were employed to investigate the effects of different activators on the mechanical properties of ASPC and elucidate the underlying enhancement mechanisms. The results demonstrated that the composite activator outperformed its single-activator counterparts: ASPC-4-6 (incorporating 4% NaOH and 6% Na2SiO3) exhibited 16.3–23.1% higher compressive strength and 12.1–17.6% higher splitting tensile strength across all curing ages compared to plain ASPC. Under the influence of OH from the composite activator, ASP showed more pronounced reductions in potassium feldspar, montmorillonite, and SiO2 content, accompanied by the formation of C-S-H gel—replacing the amorphous, water-absorbent N-A-S-H generated by single activators. The presence of highly polymerized hydration products and more stable potassium A-type zeolites in ASPC-4-6 led to a reduction in macropore volume, optimization of pore structure, and refinement of the aggregate–mortar inter-facial transition zone. These micro-structural improvements collectively contributed to the significant enhancement of mechanical properties. This study provides novel insights into the large-scale and multi-dimensional utilization of aeolian sand in concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 1595 KB  
Article
Effect of Nanosilica Fillers on Photopolymerisation Behaviour and Mechanical Performance of Dental Resin Composites
by Mariola Robakowska and Łukasz Gierz
Coatings 2025, 15(11), 1316; https://doi.org/10.3390/coatings15111316 - 11 Nov 2025
Viewed by 426
Abstract
The performance of dental composites is strongly dependent on the type and content of ceramic fillers incorporated into the resin matrix. In this study, the effect of nanosilica (NS) fillers on the curing kinetics, physicochemical, thermal, and mechanical properties of Bis-GMA/TEGDMA-based dental composites [...] Read more.
The performance of dental composites is strongly dependent on the type and content of ceramic fillers incorporated into the resin matrix. In this study, the effect of nanosilica (NS) fillers on the curing kinetics, physicochemical, thermal, and mechanical properties of Bis-GMA/TEGDMA-based dental composites was systematically investigated. A series of nanocomposites containing various weight fractions of NS was prepared and evaluated. The photocuring behaviour was analysed using differential scanning calorimetry (DSC), enabling the determination of polymerisation rate coefficients (propagation kp and bimolecular termination ktb) and double bond conversion. The presence of nanosilica was found to influence chain mobility, as evidenced by changes in glass transition temperature (Tg). Rheological measurements provided insight into viscosity changes induced by NS incorporation, while mechanical tests confirmed reinforcement effects. A moderate but statistically significant correlation was observed between the NS content and mechanical performance. The results obtained correlate the rheological, kinetic, thermal, and mechanical properties of multiple types of silica in a single resin system using a consistent methodology. In addition, the results highlight the role of nanosilica in the regulation of the curing dynamics and the increase in the mechanical integrity of methacrylate-based dental composites, representing a promising strategy for the development of next-generation restorative materials. Full article
Show Figures

Figure 1

Back to TopTop