Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (962)

Search Parameters:
Keywords = TG-DSC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3068 KiB  
Article
Hydrothermally Treated Cement Bypass Dust as a Supplementary Cementitious Material
by Rimvydas Kaminskas, Brigita Savickaite and Anatolijus Eisinas
Sustainability 2025, 17(15), 6757; https://doi.org/10.3390/su17156757 - 24 Jul 2025
Viewed by 194
Abstract
In this study, the possibility of using cement bypass dust as a cement additive was investigated. The utilization of cement bypass dust remains a major problem in cement production, as huge amounts of it are stored in landfills. In this study, a hydrothermal [...] Read more.
In this study, the possibility of using cement bypass dust as a cement additive was investigated. The utilization of cement bypass dust remains a major problem in cement production, as huge amounts of it are stored in landfills. In this study, a hydrothermal treatment is proposed to modify the properties of this dust and to expand its use. Hydrothermal treatment with pure bypass dust and quartz was carried out to achieve a CaO/SiO2 ratio of 1 to 2. Samples were synthesized at 200 °C for 2, 4, 8, and 24 h. To examine the influence of the hydrothermal treatment on cement properties, a sample with a CaO/SiO2 ratio of 1, hydrothermally treated for 8 h, was selected. This study employed XRD, XRF, DSC-TG, and isothermal calorimetry. Most of the target synthesis products, e.g., tobermorite and calcium silicate hydrates, formed after 8 h of sample synthesis, during which quartz was added to bypass dust and a CaO/SiO2 ratio of 1 was achieved. An examination of the composition of the liquid medium following hydrothermal processing showed that almost all chlorine passed into the liquid medium, while some K2O remained in the solid synthesis product. The synthesized additive is an effective catalyst for the hydration of Portland cement. After a 28-day curing period, specimens incorporating modified bypass dust replacing up to 10% of the Portland cement by weight demonstrated compressive strengths comparable to, or surpassing, those of specimens composed exclusively of Portland cement. Full article
Show Figures

Figure 1

14 pages, 2090 KiB  
Article
Strong Nucleating Effect of Si-Containing Tri-Block Oligomers on Poly(Ethylene Terephthalate)
by Quankai Sun, Yao Wang, Miaorong Zhang, Linjun Huang, Pengwei Zhang, Kang Li, Wei Wang and Jianguo Tang
Molecules 2025, 30(15), 3077; https://doi.org/10.3390/molecules30153077 - 23 Jul 2025
Viewed by 169
Abstract
The development of a silane coupling agent with an aminopropyl structure as a nucleating agent for poly(ethylene terephthalate) (PET) is reported in this study. The tri–block oligomers nucleating agent was formed by 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane/oxalic acid/low molecular weight PET (LPOBD). It was subsequently cross-linked with [...] Read more.
The development of a silane coupling agent with an aminopropyl structure as a nucleating agent for poly(ethylene terephthalate) (PET) is reported in this study. The tri–block oligomers nucleating agent was formed by 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane/oxalic acid/low molecular weight PET (LPOBD). It was subsequently cross-linked with tetraethyl orthosilicate to form LPOBD-T. Composites of LPOBD/PET and LPOBD-T/PET were prepared by melt blending, and their thermal and crystallization behaviors were analyzed using XRD, DSC, TG, and POM. The results indicated that not only did the triblock polymer nucleating agent LPOBD exhibit a strong nucleation effect, but the crosslinked LPOBD-T also demonstrated superior crystallization performance. Specifically, the crystallinity of the 1 wt% LPOBD-T/PET composite increased by 3.3%, the crystallization temperature rose by 21.1 °C, and the t1/2 was reduced by 53 s. Moreover, the crystalline morphology was more uniform. These findings indicate that the tri-block oligomers synthesized from a silane coupling agent serve as effective nucleating agents for PET. Full article
(This article belongs to the Special Issue Recent Advances in Functional Composite Materials)
Show Figures

Graphical abstract

17 pages, 2649 KiB  
Article
Effect of Low-Temperature Preheating on the Physicochemical Properties and Energy Quality of Pine Sawdust
by Tingzhou Lei, Yang Mei, Yuanna Li, Yunbo Wang, Suyang Liu and Yantao Yang
Energies 2025, 18(14), 3875; https://doi.org/10.3390/en18143875 - 21 Jul 2025
Cited by 1 | Viewed by 251
Abstract
The advantages of torrefaction preheating, including the production of a hydrophobic solid product, improved particle size distribution, enhanced fuel properties with fewer environmental issues, decreased moisture content, and reduced volatile content. In order to meet the technical requirements of biomass oriented value-added and [...] Read more.
The advantages of torrefaction preheating, including the production of a hydrophobic solid product, improved particle size distribution, enhanced fuel properties with fewer environmental issues, decreased moisture content, and reduced volatile content. In order to meet the technical requirements of biomass oriented value-added and energy saving and emission reduction, pine sawdust (PS) was taken as the research object, and the physicochemical properties of the PS samples preheated at a low temperature were analyzed by synchronous thermal analysis (TG-DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and organic element analyzer (EA). The effect of preheating at a lower temperature on the physicochemical properties of PS was discussed. The results showed that, under the preheating condition of 200 °C, compared with PS, the water content of PS-200 decreased by 3.23%, the volatile content decreased by 3.69%, the fixed carbon increased by 6.81%, the calorific value increased by 6.90%, the equilibrium water content decreases from 7.06% to 4.46%, and the hydrophobicity increases. This research, based on the improvement of the quality of agricultural and forestry waste and the promotion of the strategy of converting waste into energy, has contributed to the advancement of sustainable energy production. Full article
Show Figures

Figure 1

15 pages, 7412 KiB  
Article
Effect of Sequence-Based Incorporation of Fillers, Kenaf Fiber and Graphene Nanoplate, on Polypropylene Composites via a Physicochemical Compounding Method
by Soohyung Lee, Kihyeon Ahn, Su Jung Hong and Young-Teck Kim
Polymers 2025, 17(14), 1955; https://doi.org/10.3390/polym17141955 - 17 Jul 2025
Viewed by 307
Abstract
Natural-fiber-reinforced polypropylene (PP) composites are gaining increasing interest as lightweight, sustainable alternatives for various packaging and applications. This study investigates the effect of filler addition sequence on the mechanical, morphological, thermal, and dynamic mechanical properties of PP-based composites reinforced with graphite nanoplatelets (GnP) [...] Read more.
Natural-fiber-reinforced polypropylene (PP) composites are gaining increasing interest as lightweight, sustainable alternatives for various packaging and applications. This study investigates the effect of filler addition sequence on the mechanical, morphological, thermal, and dynamic mechanical properties of PP-based composites reinforced with graphite nanoplatelets (GnP) and kenaf fiber (KF). Two filler incorporation sequences were evaluated: GnP/KF/PP (GnP initially mixed with KF before PP addition) and GnP/PP/KF (KF added after mixing GnP with PP). The GnP/KF/PP composite exhibited superior mechanical properties, with tensile strength and flexural strength increasing by up to 25% compared to the control, while GnP/PP/KF showed a 13% improvement. SEM analyses revealed that initial mixing of GnP with KF significantly improved filler dispersion and interfacial bonding, enhancing stress transfer within the composite. XRD and DSC analyses showed reduced crystallinity and lower crystallization temperatures in the addition of KF due to restricted polymer chain mobility. Thermal stability assessed by TGA indicated minimal differences between the composites regardless of filler sequence. DMA results demonstrated a significantly higher storage modulus and enhanced elastic response in the addition of KF, alongside a slight decrease in glass transition temperature (Tg). The results emphasize the importance of optimizing filler addition sequences to enhance mechanical performance, confirming the potential of these composites in sustainable packaging and structural automotive applications. Full article
(This article belongs to the Special Issue Natural Fiber-Based Green Materials, Second Edition)
Show Figures

Figure 1

15 pages, 2054 KiB  
Data Descriptor
Data on Brazilian Powdered Milk Formulations for Infants of Various Age Groups: 0–6 Months, 6–12 Months, and 12–36 Months
by Francisco José Mendes dos Reis, Antonio Marcos Jacques Barbosa, Elaine Silva de Pádua Melo, Marta Aratuza Pereira Ancel, Rita de Cássia Avellaneda Guimarães, Priscila Aiko Hiane, Flavio Santana Michels, Daniele Bogo, Karine de Cássia Freitas Gielow, Diego Azevedo Zoccal Garcia, Geovanna Vilalva Freire, João Batista Gomes de Souza and Valter Aragão do Nascimento
Data 2025, 10(7), 114; https://doi.org/10.3390/data10070114 - 9 Jul 2025
Viewed by 327
Abstract
Milk powder is a key nutritional alternative to breastfeeding, but its thermal properties, which vary with temperature, can affect its quality and shelf life. However, there is little information about the physical and chemical properties of powdered milk in several countries. This dataset [...] Read more.
Milk powder is a key nutritional alternative to breastfeeding, but its thermal properties, which vary with temperature, can affect its quality and shelf life. However, there is little information about the physical and chemical properties of powdered milk in several countries. This dataset contains the result of an analysis of the aflatoxins, macroelement and microelement concentrations, oxidative stability, and fatty acid profile of infant formula milk powder. The concentrations of Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Se, V, and Zn in digested powdered milk samples were quantified through inductively coupled plasma optical emission spectrometry (ICP OES). Thermogravimetry (TG) and differential scanning calorimetry (DSC) were used to estimate the oxidative stability of infant formula milk powder, while the methyl esters of the fatty acids were analyzed by gas chromatography. Most milk samples showed significant concentrations of As (0.5583–1.3101 mg/kg) and Pb (0.2588–0.0847 mg/kg). The concentrations of aflatoxins G2 and B2 are below the limits established by Brazilian regulatory agencies. The thermal degradation behavior of the samples is not the same due to their fatty acid compositions. The data presented may be useful in identifying compounds present in infant milk powder used as a substitute for breast milk and understanding the mechanism of thermal stability and degradation, ensuring food safety for those who consume them. Full article
Show Figures

Figure 1

19 pages, 2841 KiB  
Article
Next-Generation Sustainable Composites with Flax Fibre and Biobased Vitrimer Epoxy Polymer Matrix
by Hoang Thanh Tuyen Tran, Johannes Baur, Racim Radjef, Mostafa Nikzad, Robert Bjekovic, Stefan Carosella, Peter Middendorf and Bronwyn Fox
Polymers 2025, 17(14), 1891; https://doi.org/10.3390/polym17141891 - 8 Jul 2025
Viewed by 486
Abstract
This work presents the development of two vanillin-based vitrimer epoxy flax fibre-reinforced composites, with both the VER1-1-FFRC (a vitrimer-to-epoxy ratio of 1:1) and VER1-2-FFRC (a vitrimer-to-epoxy ratio of 1:2), via a vacuum-assisted resin infusion. The thermal and mechanical properties of the resulting vitrimer [...] Read more.
This work presents the development of two vanillin-based vitrimer epoxy flax fibre-reinforced composites, with both the VER1-1-FFRC (a vitrimer-to-epoxy ratio of 1:1) and VER1-2-FFRC (a vitrimer-to-epoxy ratio of 1:2), via a vacuum-assisted resin infusion. The thermal and mechanical properties of the resulting vitrimer epoxy flax composites were characterised using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and mechanical four-point bending tests, alongside studies of solvent resistance and chemical recyclability. Both the VER1-1-FFRC (degradation temperature Tdeg of 377.0 °C) and VER1-2-FFRC (Tdeg of 395.9 °C) exhibited relatively high thermal stability, which is comparable to the reference ER-FFRC (Tdeg of 396.7 °C). The VER1-1-FFRC, VER1-2-FFRC, and ER-FFRC demonstrated glass transition temperatures Tg of 54.1 °C, 68.8 °C, and 83.4 °C, respectively. The low Tg of the vitrimer composite is due to the low crosslink density in the vitrimer epoxy resin. Particularly, the crosslinked density of the VER1-1-FFRC was measured to be 319.5 mol·m−3, which is lower than that obtained from the VER1-2-FFRC (434.7 mol·m−3) and ER-FFRC (442.9 mol·m−3). Furthermore, the mechanical properties of these composites are also affected by the low crosslink density. Indeed, the flexural strength of the VER1-1-FFRC was found to be 76.7 MPa, which was significantly lower than the VER1-2-FFRC (116.2 MPa) and the ER-FFRC (138.3 MPa). Despite their lower thermal and mechanical performance, these vitrimer composites offer promising recyclability and contribute to advancing sustainable composite materials. Full article
Show Figures

Graphical abstract

12 pages, 3285 KiB  
Article
Ceria Promoted Ni/SiO2 as an Efficient Catalyst for Carbon Dioxide Reforming of Methane
by Hua-Ping Ren, Lin-Feng Zhang, Yu-Xuan Hui, Xin-Ze Wu, Shao-Peng Tian, Si-Yi Ding, Qiang Ma and Yu-Zhen Zhao
Catalysts 2025, 15(7), 649; https://doi.org/10.3390/catal15070649 - 2 Jul 2025
Viewed by 418
Abstract
The Ni/SiO2 and the ceria-promoted Ni-CeO2/SiO2 were prepared by the impregnation method and co-impregnation method, respectively. The performance of the carbon dioxide reforming of methane (CDR) over Ni/SiO2 and Ni-CeO2/SiO2 was investigated under the conditions [...] Read more.
The Ni/SiO2 and the ceria-promoted Ni-CeO2/SiO2 were prepared by the impregnation method and co-impregnation method, respectively. The performance of the carbon dioxide reforming of methane (CDR) over Ni/SiO2 and Ni-CeO2/SiO2 was investigated under the conditions of CH4/CO2 = 1.0, T = 800 °C, and GHSV = 60,000 mL·g−1·h−1. As a result, a high CDR performance, especially stability, was obtained over Ni-CeO2/SiO2, in which the conversion of CH4 was very similar to that of the thermodynamic equilibrium (88%), and a negligible decrease in CH4 conversion was observed after 50 h of the CDR reaction. Ni/SiO2 and Ni-CeO2/SiO2 before and after the CDR reaction were subjected to structural characterization by XRD, TEM, TG–DSC, and physical adsorption. It was found that the addition of CeO2 into Ni/SiO2 significantly affected its surface area, the size and dispersion of Ni, the reduction behavior, and the coking properties. Moreover, the redox property of Ce3+-Ce4+, which accelerates the gasification of the coke, made Ni-CeO2/SiO2 successfully operate for 50 h without observable deactivation. Thus, the developed catalyst is very promising for the CDR. Full article
(This article belongs to the Special Issue Trends and Prospects in Catalysis for Sustainable CO2 Conversion)
Show Figures

Figure 1

22 pages, 3243 KiB  
Article
Development of a Continuous Extrusion Process for Alginate Biopolymer Films for Sustainable Applications
by Zahra Eslami, Saïd Elkoun, Miraidin Mirzapour and Mathieu Robert
Polymers 2025, 17(13), 1818; https://doi.org/10.3390/polym17131818 - 29 Jun 2025
Viewed by 671
Abstract
This study presents a novel method for producing extrudable alginate-based films using continuous thermo-mechanical mixing, providing a scalable alternative to conventional solvent-casting techniques. The effects of glycerol concentration (30–50 wt%) and processing temperature (110–120 °C) on the films’ thermal, mechanical, and structural properties [...] Read more.
This study presents a novel method for producing extrudable alginate-based films using continuous thermo-mechanical mixing, providing a scalable alternative to conventional solvent-casting techniques. The effects of glycerol concentration (30–50 wt%) and processing temperature (110–120 °C) on the films’ thermal, mechanical, and structural properties were systematically investigated. Structural characterization was performed using 1H NMR and FT-IR, and thermal transitions were analyzed via DSC (Differential Scanning Calorimetry) and DMA (Dynamic Mechanical Analysis). The glass transition temperature (Tg) of the alginate/glycerol/water system was modeled using the Gordon–Taylor equation. Glycerol incorporation significantly reduced Tg—by up to 76 °C with 40 wt% glycerol—and enhanced ductility and toughness, reaching 3.26 MJ/m3 at the optimal level. The influence of processing temperature was found to depend on plasticizer content: at lower glycerol levels, elevated temperatures decreased Tg and elongation at break, likely due to thermal degradation. However, films with higher glycerol content retained stable mechanical and thermal behavior across both temperature profiles. This work is among the first to explore how processing temperature affects extruded, plasticized pure alginate films. The findings provide key insights into the formulation and scalable production of bio-based packaging materials, highlighting the importance of optimizing both plasticizer concentration and processing parameters. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Graphical abstract

15 pages, 3405 KiB  
Article
Influence of Al2O3 Additive on the Synthesis Kinetics of 1.13 nm Tobermorite, and Its Crystallinity and Morphology
by Raimundas Siauciunas, Liveta Steponaityte, Marius Dzvinka and Aivaras Kareiva
Materials 2025, 18(13), 3086; https://doi.org/10.3390/ma18133086 - 29 Jun 2025
Viewed by 361
Abstract
One of the effective types of heat-resistant insulating products with an operating temperature of 1050 °C is made from calcium silicates or their hydrates. These materials are made from synthetic xonotlite and 1.13 nm tobermorite. Various wastes and by-products from other industries can [...] Read more.
One of the effective types of heat-resistant insulating products with an operating temperature of 1050 °C is made from calcium silicates or their hydrates. These materials are made from synthetic xonotlite and 1.13 nm tobermorite. Various wastes and by-products from other industries can be used for the synthesis of the latter compound. However, such raw materials often contain various impurities, especially Al-containing compounds, which strongly influence the kinetics of 1.13 nm tobermorite formation and its properties. Using XRD, DSC, TG, and SEM/EDX methods, it was found that at the beginning of the hydrothermal synthesis, the Al2O3 additive promotes the formation of 1.13 nm tobermorite; however, it later begins to inhibit the recrystallization of semi-crystalline C-S-H(I)-type calcium silicate hydrate and pure, high-crystallinity 1.13 nm tobermorite is more easily formed in mixtures without the aluminum additive. Aluminum oxide also influence the morphology of 1.13 nm tobermorite. When hydrothermally curing the CaO–SiO2 mixture, long, thin fibers (needles) are formed within 24 h. Later, they thicken and form rectangular parallelepiped crystals. After adding alumina, the product produced by 24 h synthesis is dominated by agglomerates, the surface of which is partially covered with crystal plates. By extending the synthesis duration, amorphous aggregates are absent and the crystal shape becomes increasingly square. Full article
Show Figures

Figure 1

25 pages, 7095 KiB  
Article
Kinetics of Phase Transitions in Amorphous Carbamazepine: From Sub-Tg Structural Relaxation to High-Temperature Decomposition
by Roman Svoboda and Adéla Pospíšilová
Int. J. Mol. Sci. 2025, 26(13), 6136; https://doi.org/10.3390/ijms26136136 - 26 Jun 2025
Viewed by 313
Abstract
Thermokinetic characterization of amorphous carbamazepine was performed utilizing non-isothermal differential scanning calorimetry (DSC) and thermogravimetry (TGA). Structural relaxation of the amorphous matrix was described in terms of the Tool–Narayanaswamy–Moynihan model with the following parameters: Δh* ≈ 200–300 kJ·mol−1, β = [...] Read more.
Thermokinetic characterization of amorphous carbamazepine was performed utilizing non-isothermal differential scanning calorimetry (DSC) and thermogravimetry (TGA). Structural relaxation of the amorphous matrix was described in terms of the Tool–Narayanaswamy–Moynihan model with the following parameters: Δh* ≈ 200–300 kJ·mol−1, β = 0.57, x = 0.44. The crystallization of the amorphous phase was modeled using complex Šesták–Berggren kinetics, which incorporates temperature-dependent activation energy and degree of autocatalysis. The activation energy of the crystal growth was determined to be >320 kJ·mol−1 at the glass transition temperature (Tg). Owing to such a high value, the amorphous carbamazepine is stable at Tg, allowing for extensive processing of the amorphous phase (e.g., self-healing of the quench-induced mechanical defects or internal stress). A discussion was conducted regarding the converse relation between the activation energies of relaxation and crystal growth, which is possibly responsible for the absence of sub-Tg crystal growth modes. The high-temperature thermal decomposition of carbamazepine proceeds via multistep kinetics, identically in both an inert and an oxidizing atmosphere. A complex reaction mechanism, consisting of a series of consecutive and competing reactions, was proposed to explain the second decomposition step, which exhibited a temporary mass increase. Whereas a negligible degree of carbamazepine degradation was predicted for the temperature characteristic of the pharmaceutical hot-melt extrusion (~150 °C), the degradation risk during the pharmaceutical 3D printing was calculated to be considerably higher (1–2% mass loss at temperatures 190–200 °C). Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

13 pages, 1841 KiB  
Article
Fuel Features of Straw Biomass Valorized with Aluminosilicates
by Joanna Wnorowska, Mateusz Tymoszuk and Sylwester Kalisz
Energies 2025, 18(13), 3302; https://doi.org/10.3390/en18133302 - 24 Jun 2025
Viewed by 213
Abstract
Straw biomass is a renewable but problematic fuel due to its high alkali and chlorine content, which can cause slagging and corrosion during combustion. To mitigate these issues, this study investigates the influence of aluminosilicate additives on the thermal behavior and combustion characteristics [...] Read more.
Straw biomass is a renewable but problematic fuel due to its high alkali and chlorine content, which can cause slagging and corrosion during combustion. To mitigate these issues, this study investigates the influence of aluminosilicate additives on the thermal behavior and combustion characteristics of straw biomass. Laboratory-scale testing is carried out using thermogravimetric analysis under atmospheric air, showing the TG, DTG, and DSC profiles of samples (kaolinite, halloysite, straw biomass, and straw biomass with 4 wt.% of halloysite). Additionally, the main combustion parameters, like the ignition temperature, the maximum peak temperature, the burnout temperature, and some combustion indexes, are presented. The results show the effect of a heating rate in the range of 5–20 °C/min. Moreover, in this study, two non-isothermal model methods (Kissinger and Ozawa) are used to estimate energy activation. While halloysite slightly affects the combustion indexes and marginally reduces energy activation, its overall influence does not significantly alter combustion efficiency. These findings support the potential and safe use of halloysite for the biomass combustion process. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

32 pages, 5542 KiB  
Article
Biodegradable Meets Functional: Dual-Nozzle Printing of Eco-Conscious Parklets with Wood-Filled PLA
by Tomasz Jaróg, Mateusz Góra, Michał Góra, Marcin Maroszek, Krzysztof Hodor, Katarzyna Hodor, Marek Hebda and Magdalena Szechyńska-Hebda
Materials 2025, 18(13), 2951; https://doi.org/10.3390/ma18132951 - 22 Jun 2025
Viewed by 568
Abstract
In the face of accelerating urbanization and the growing demand for environmentally responsible materials and designs, this study presents the development and implementation of a modular parklet demonstrator fabricated using dual-material 3D printing. The structure integrates polylactic acid (PLA) and wood-filled PLA (wood/PLA), [...] Read more.
In the face of accelerating urbanization and the growing demand for environmentally responsible materials and designs, this study presents the development and implementation of a modular parklet demonstrator fabricated using dual-material 3D printing. The structure integrates polylactic acid (PLA) and wood-filled PLA (wood/PLA), combining the mechanical robustness of pure PLA in the core with the tactile and aesthetic appeal of wood-based biocomposite on the surface. The newly developed dual-nozzle 3D printing approach enabled precise spatial control over material distribution, optimizing both structural integrity and sustainability. A comprehensive evaluation was conducted for developed filaments and printed materials, including optical microscopy, coupled thermogravimetry analysis and Fourier Transform Infrared Spectroscopy (TG/FTIR), differential scanning calorimetry (DSC), and chemical and mechanical resistance testing. Results revealed distinct thermal behaviors and degradation pathways between filaments and printed parts composed of PLA and PLA/wood. The biocomposite exhibited slightly increased sensitivity to aggressive chemical environments and mechanical wear, dual-material prints maintained high thermal stability and interlayer adhesion. The 3D-printed demonstrator bench and stools were successfully deployed in public spaces as a functional urban intervention. This work demonstrates the feasibility and advantages of using biocomposite materials and dual-head 3D printing for the rapid, local, and sustainable fabrication of small-scale urban infrastructure. Full article
Show Figures

Figure 1

25 pages, 8234 KiB  
Article
Preparation of Cu-Containing Substances via an Ultrasonic-Assisted Solvothermal Approach and Their Catalytic Effects on the Thermal Decomposition of Ammonium Perchlorate
by Cheng-Hsiung Peng, Pin-Hsien Su, Jin-Shuh Li and Yan-Jun Ke
Materials 2025, 18(13), 2928; https://doi.org/10.3390/ma18132928 - 20 Jun 2025
Viewed by 313
Abstract
In this study, a one-pot, ultrasonic-assisted solvothermal method was successfully employed to prepare three copper-containing compounds: copper benzene-1,3,5-tricarboxylate (Cu3(BTC)2), copper powder, and copper-metalized activated carbon (Cu@AC). This method is efficient and safe and has potential for use in scalable [...] Read more.
In this study, a one-pot, ultrasonic-assisted solvothermal method was successfully employed to prepare three copper-containing compounds: copper benzene-1,3,5-tricarboxylate (Cu3(BTC)2), copper powder, and copper-metalized activated carbon (Cu@AC). This method is efficient and safe and has potential for use in scalable production. The characteristics of the resulting products were analyzed using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area measurement along with pore size distribution, and thermogravimetric analysis–differential scanning calorimetry (TG-DSC). Additionally, the catalytic effects of these products on the thermal decomposition of ammonium perchlorate (AP) were evaluated. All three substances were found to lower the thermal decomposition temperature of AP and enhance heat release. Cu3(BTC)2 demonstrated exceptional catalytic performance and compatibility with AP, as shown using the vacuum stability test (VST). The thermal analysis results indicated that the thermal decomposition temperature and apparent activation energy of AP decreased from ~442 °C to around 340 °C and from ~207 kJ mol−1 to approximately 128 kJ mol−1, respectively, when 3 wt% Cu3(BTC)2 was contained in AP. Moreover, the heat released via the exothermic decomposition of AP increased from 740 J g−1 to1716 J g−1. A possible reaction mechanism is proposed based on the evolved gas analysis (EGA) findings to explain the observed catalytic effects. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

14 pages, 4572 KiB  
Article
Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly
by Yueyang Wu, Honglong Ning, Ruiqi Luo, Muyun Li, Zijian Zhang, Rouqian Huang, Junjie Wang, Mingyue Peng, Runjie Zhuo, Rihui Yao and Junbiao Peng
Inorganics 2025, 13(6), 200; https://doi.org/10.3390/inorganics13060200 - 14 Jun 2025
Viewed by 867
Abstract
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based [...] Read more.
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based electrochromic systems. Cu-doped W18O49 nanowires with varying Cu concentrations (0–12 mol%) were synthesized hydrothermally and assembled into thin films via the LB technique, with LB precursors characterized by contact angle, surface tension, viscosity, and thermogravimetric-differential scanning calorimetry (TG-DSC) analyses. The films were systematically evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry, and transmittance spectroscopy. Experimental results reveal an optimal Cu-doping concentration of 8 mol%, achieving a near-infrared optical modulation amplitude of 76.24% at 1066 nm, rapid switching kinetics (coloring/bleaching: 5.0/3.0 s), and a coloration efficiency of 133.00 cm2/C. This performance is speculated to be a balance between Cu-induced improvements in ion intercalation kinetics and LB-ordering degradation caused by lattice strain and interfacial charge redistribution, while mitigating excessive doping effects such as structural deterioration and thermodynamic instability. The work establishes a dual-modification framework for designing high-performance electrochromic interfaces, emphasizing the critical role of surface chemistry and nanoscale assembly in advancing adaptive optoelectronic devices like smart windows. Full article
(This article belongs to the Special Issue Optical and Quantum Electronics: Physics and Materials)
Show Figures

Figure 1

23 pages, 10568 KiB  
Article
Bio-Based Flame-Retardant Systems for Polymers Obtained via Michael 1,4-Addition
by Kamila Salasinska, Mateusz Barczewski, Mikelis Kirpluks, Ralfs Pomilovskis, Paweł Sulima, Sławomir Michałowski, Patryk Mietliński, Jerzy Andrzej Przyborowski and Anna Boczkowska
Molecules 2025, 30(12), 2556; https://doi.org/10.3390/molecules30122556 - 11 Jun 2025
Viewed by 666
Abstract
Phosphorus flame retardants react with cellulose hydroxyl groups via esterification, enhancing the effectiveness of char formation, which is beneficial in terms of the search for bio-sourced flame retardants. The current work assessed the flammability of a new polymer synthesized by Michael 1,4-addition (rP) [...] Read more.
Phosphorus flame retardants react with cellulose hydroxyl groups via esterification, enhancing the effectiveness of char formation, which is beneficial in terms of the search for bio-sourced flame retardants. The current work assessed the flammability of a new polymer synthesized by Michael 1,4-addition (rP) and modified with developed intumescent flame retardant systems (FRs), in which lignocellulose components, such as sunflower husk (SH) and peanut shells (PS), replaced a part of the synthetic ones. The thermal and thermomechanical properties of the rP, with 20 wt.% each from six FRs, were determined by thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Moreover, the flammability and evolved gas were studied with pyrolysis combustion flow calorimetry (PCFC) and thermogravimetric analysis connected with Fourier transform infrared spectroscopy tests (TGA/FT-IR). The effects were compared to those achieved for unmodified rP and a polymer with a commercially available intumescent flame retardant (IFR). The notable improvement, especially in terms of the heat release rate and heat release capacity, indicates that the system with melamine phosphate (MP) and peanut shells (PS) can be used to decrease the flammability of new polymers. An extensive analysis of the composition and geometry of the ground shells and husk particles preceded the research. Full article
Show Figures

Graphical abstract

Back to TopTop