Fuel Features of Straw Biomass Valorized with Aluminosilicates
Abstract
1. Introduction
2. Experimental
2.1. Materials and Sample Preparation
2.2. Methodology
3. Results and Discussion
4. Conclusions
- −
- The DSC and TG profiles indicate that both additives—halloysite and kaolinite—exhibit comparable thermal behavior in atmospheric air.
- −
- The desorption of physically bound water from the outer surfaces of the additives occurs up to approximately 400 °C.
- −
- The phase transition of halloysite and kaolinite into metakaolinite takes place at 517.1 °C and 535.2 °C, respectively.
- −
- In the temperature range of 950–1000 °C, metakaolinite further transforms into a spinel phase or silicon-containing gamma-alumina (γ-Al2O3) along with amorphous silica.
- −
- The use of 4 wt.% halloysite causes a shift in characteristic temperatures and a change in TG, DTG, and DSC profiles, which suggests its influence on the oxidation mechanism of the material (shifts in the ignition (Ti), maximum decomposition peak (Tp), and burnout (Tf) temperatures are slightly visible).
- −
- In the case of straw biomass with 4 wt.% halloysite, slight increases in the Di, Df, and S indexes are observed. The Hf index remains at the same level.
- −
- The activation energies determined for both samples for a given method (Kissinger or Ozawa) are at a similar level, with a slight decrease for the sample with halloysite addition. For the Ozawa method, the obtained values are noted to be about 10% higher than those for the Kissinger method.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaniowski, W.; Taler, J.; Wang, X.; Kalemba-Rec, I.; Gajek, M.; Mlonka-Mędrala, A.; Nowak-Woźny, D.; Magdziarz, A. Investigation of biomass, RDF and coal ash-related problems: Impact on metallic heat exchanger surfaces of boilers. Fuel 2022, 326, 125122. [Google Scholar] [CrossRef]
- Míguez, J.L.; Porteiro, J.; Behrendt, F.; Blanco, D.; Patiño, D.; Dieguez-Alonso, A. Review of the use of additives to mitigate operational problems associated with the combustion of biomass with high content in ash-forming species. Renew. Sustain. Energy Rev. 2021, 141, 110502. [Google Scholar] [CrossRef]
- Wang, L.; Hustad, J.E.; Skreiberg, Ø.; Skjevrak, G.; Grønli, M. A critical review on additives to reduce ash related operation problems in biomass combustion applications. Energy Procedia 2012, 20, 20–29. [Google Scholar] [CrossRef]
- Dragutinovic, N.; Höfer, I.; Kaltschmitt, M. Effect of additives on thermochemical conversion of solid biofuel blends from wheat straw, corn stover, and corn cob. Biomass Convers. Biorefin. 2019, 9, 35–54. [Google Scholar] [CrossRef]
- Gollmer, C.; Höfer, I.; Kaltschmitt, M. Laboratory-scale additive content assessment for aluminum-silicate-based wood chip additivation. Renew. Energy 2021, 164, 1471–1484. [Google Scholar] [CrossRef]
- Iturria-Quintero, P.J.; Piloto-Rodríguez, R.; Rubio-González, A.; Lariot-Sánchez, C.A.; Carrazana-Díaz, O.; Rodríguez-Machín, L. Additives for the reduction of alkali chlorides during biomass combustion: A review. Rev. Cent. Azúcar 2024, 51, e1076. [Google Scholar]
- Mroczek, K.; Kalisz, S.; Pronobis, M.; Sołtys, J. The effect of halloysite additive on operation of boilers firing agricultural biomass. Fuel Process. Technol. 2011, 92, 845–855. [Google Scholar] [CrossRef]
- Niu, Y.; Tan, H.; Hui, S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog. Energy Combust. Sci. 2016, 52, 1–61. [Google Scholar] [CrossRef]
- Glass, H.D. High-temperature phases from kaolinite and halloysite. Am. Mineral. J. Earth Planet. Mater. 1954, 39, 193–207. [Google Scholar]
- Muljadi, D.; Posner, A.M.; Quirk, J.P. The mechanism of phosphate adsorption by kaolinite, gibbsite, and Pseudoboehmite: Part I. The isotherms and the effect of pH on adsorption. J. Soil Sci. 1966, 17, 212–228. [Google Scholar] [CrossRef]
- Gądek, W. Badania nad Zastosowaniem Haloizytu Jako Dodatku Paliwowego do Biomasy. Doctoral Dissertation, Silesian University of Technology, Gliwice, Poland, 2019. [Google Scholar]
- Szydełko, A.; Ferens, W.; Rybak, W. The effect of mineral additives on the process of chlorine bonding during combustion and co-combustion of Solid Recovered Fuels. Waste Manag. 2020, 102, 624–634. [Google Scholar] [CrossRef]
- Plaza, P. The Development of a Slagging and Fouling Predictive Methodology for Large Scale Pulverised Boilers Fired with Coal/Biomass Blends. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2013. [Google Scholar]
- Sobieraj, J.; Gądek, W.; Jagodzińska, K.; Kalisz, S. Investigations of optimal additive dose for Cl-rich biomasses. Renew. Energy 2021, 163, 2008–2017. [Google Scholar] [CrossRef]
- Johnson, S.L.; Guggenheim, S.; Van Groos, A.K. Thermal stability of halloysite by high-pressure differential thermal analysis. Clays Clay Miner. 1990, 38, 477–484. [Google Scholar] [CrossRef]
- Tran, Q.K.; Steenari, B.-M.; Iisa, K.; Lindqvist, O. Capture of potassium and cadmium by kaolin in oxidizing and reducing atmospheres. Energy Fuels 2004, 18, 1870–1876. [Google Scholar] [CrossRef]
- Wang, G.; Jensen, P.A.; Wu, H.; Frandsen, F.J.; Sander, B.; Glarborg, P. Potassium capture by kaolin, part 2: K2CO3, KCl, and K2SO4. Energy Fuels 2018, 32, 3566–3578. [Google Scholar] [CrossRef]
- Heller-Kallai, L.; Lapides, I. Thermal reactions of kaolinite with potassium carbonate. J. Therm. Anal. Calorim. 2003, 71, 689–698. [Google Scholar] [CrossRef]
- Lutyński, M.; Sakiewicz, P.; Lutyńska, S. Characterization of diatomaceous earth and halloysite resources of Poland. Minerals 2019, 9, 670. [Google Scholar] [CrossRef]
- Dewi, R.; Agusnar, H.; Alfian, Z.; Tamrin. Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. J. Phys. Conf. Ser. 2018, 1116, 042010. [Google Scholar] [CrossRef]
- Du Plessis, P.I.; Gazley, M.F.; Tay, S.L.; Trunfull, E.F.; Knorsch, M.; Branch, T.; Fourie, L.F. Quantification of kaolinite and halloysite using machine learning from FTIR, XRF, and brightness data. Minerals 2021, 11, 1350. [Google Scholar] [CrossRef]
- Joussein, E.; Petit, S.; Churchman, J.; Theng, B.; Righi, D.; Delvaux, B. Halloysite clay minerals—A review. Appl. Clay Sci. 2005, 29, 1–23. [Google Scholar] [CrossRef]
- Yuan, P.; Southon, P.D.; Liu, Z.; Green, M.E.R.; Hook, J.M.; Antill, S.J.; Kepert, C.J. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. Appl. Clay Sci. 2013, 74, 47–53. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Cheng, H.; Frost, R.L.; Yang, J.; Liu, Q.; He, J. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 77, 1014–1020. [Google Scholar] [CrossRef]
- Hardy, T.; Kordylewski, W.; Mościcki, K. Chlorine corrosion hazard due to firing and co-firing of biomass in boilers. Arch. Spalania 2009, 9, 181–195. [Google Scholar]
- Wang, G.; Jensen, P.A.; Wu, H.; Frandsen, F.J.; Sander, B.; Glarborg, P. K-capture by al-si based Additives in an Entrained Flow Reactor. In Proceedings of the 26th International Conference on Impacts of Fuel Quality on Power Production, Prague, Czech Republic, 19–23 September 2016. [Google Scholar]
- PN-EN ISO 18134-2:2017-03; Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 2: Total Moisture—Simplified Method. Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 18122:2016-01; Solid Biofuels—Determination of Ash Content. Polish Committee for Standardization: Warsaw, Poland, 2016.
- PN-EN ISO 18123:2016-01; Solid Biofuels—Determination of Volatile Matter Content. Polish Committee for Standardization: Warsaw, Poland, 2016.
- PN-EN ISO 18125:2017-07; Solid Biofuels—Determination of Calorific Value. Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 16948:2015-07; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. Polish Committee for Standardization: Warsaw, Poland, 2015.
- CEN/TS 15370-1:2007; Solid Biofuels—Method for the Determination of Ash Melting Behaviour—Part 1: Characteristic Temperatures Method. European Committee for Standardization: Brussels, Belgium, 2007.
- Brown, M.E. (Ed.) Introduction to Thermal Analysis: Techniques and Applications; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Wnorowska, J. Badania Wybranych Właściwości Paliw w celu Wypełnienia Założeń Gospodarki Obiegu Zamkniętego. Doctoral Dissertation, Silesian University of Technology, Gliwice, Poland, 2022. [Google Scholar]
- Wnorowska, J.; Ciukaj, S.; Kalisz, S. Thermogravimetric analysis of solid biofuels with additive under air atmosphere. Energies 2021, 14, 2257. [Google Scholar] [CrossRef]
- Mureddu, M.; Dessì, F.; Orsini, A.; Ferrara, F.; Pettinau, A. Air-and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel 2018, 212, 626–637. [Google Scholar] [CrossRef]
- Bermejo, S.P.; Prado-Guerra, A.; Pérez, A.I.G.; Prieto, L.F.C. Study of quinoa plant residues as a way to produce energy through thermogravimetric analysis and indexes estimation. Renew. Energy 2020, 146, 2224–2233. [Google Scholar] [CrossRef]
- Yan, Y.F.; Zhang, Z.E. Influence of coal properties on the co-combustion characteristics of low-grade coal and city mud. Glob. NEST J. 2014, 16, 330–339. [Google Scholar]
Oxide | Unit | H | K | S |
---|---|---|---|---|
SiO2 | wt.% | 36.90 | 47.30 | 73.60 |
Fe2O3 | 17.30 | 0.910 | 0.730 | |
Al2O3 | 28.70 | 36.70 | 1.30 | |
Mn3O4 | 0.40 | <0.01 | 0.05 | |
TiO2 | 2.39 | 0.68 | 0.10 | |
CaO | 0.82 | 0.36 | 8.54 | |
MgO | 0.43 | 0.26 | 0.99 | |
SO3 | 0.13 | 0.12 | 1.17 | |
P2O5 | 0.69 | 0.09 | 1.46 | |
Na2O | 0.21 | 0.05 | 0.21 | |
K2O | 0.13 | 0.93 | 8.53 | |
BaO | 0.08 | 0.03 | 0.03 | |
SrO | 0.02 | 0.01 | 0.04 |
Parameter | Symbol | Unit | S0 |
---|---|---|---|
Moisture | M ar | wt.% | 7.4 |
Ash | A d | wt.% | 9.41 |
Volatiles | V d | wt.% | 77.15 |
Gross calorific value | GCV | MJ/kg | 18.06 |
Net calorific value | NCV | MJ/kg | 16.79 |
Carbon | C | wt.% | 45.60 |
Hydrogen | H | wt.% | 5.81 |
Nitrogen | N | wt.% | 0.43 |
Sulfur | S | wt.% | 0.07 |
Chlorine | Cl | wt.% | 0.086 |
Shrinkage starting temperature | SST | °C | 830 |
Deformation temperature | DT | °C | 1010 |
Hemisphere temperature | HT | °C | 1260 |
Flow temperature | FH | °C | 1330 |
Fuel | β | Ti | Tp | Tf | Di × 104 | Df × 105 | S × 108 | Hf × 10−3 | Ea Kissinger | Ea Ozawa |
---|---|---|---|---|---|---|---|---|---|---|
°C/min | °C | °C | °C | °C | kJ/mol | kJ/mol | ||||
S0 | 5 | 243.0 | 283.5 | 431.8 | 1.1 | 0.8 | 7.9 | 1.4 | 198.5 | 218.2 |
10 | 257.5 | 292.6 | 475.1 | 2.9 | 3.1 | 18.3 | 1.2 | |||
15 | 264.8 | 297.8 | 500.7 | 4.6 | 6.5 | 31.4 | 1.1 | |||
20 | 269.9 | 299.8 | 547.3 | 5.9 | 9.9 | 41.2 | 1.1 | |||
S + 4H | 5 | 254.2 | 283.6 | 450.1 | 1.0 | 0.7 | 6.6 | 1.4 | 191.6 | 211.0 |
10 | 261.3 | 293.9 | 478.1 | 2.6 | 3.0 | 15.6 | 1.2 | |||
15 | 270.0 | 298.6 | 502.4 | 4.3 | 6.0 | 27.0 | 1.1 | |||
20 | 273.4 | 300.2 | 550.1 | 5.8 | 9.4 | 38.1 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wnorowska, J.; Tymoszuk, M.; Kalisz, S. Fuel Features of Straw Biomass Valorized with Aluminosilicates. Energies 2025, 18, 3302. https://doi.org/10.3390/en18133302
Wnorowska J, Tymoszuk M, Kalisz S. Fuel Features of Straw Biomass Valorized with Aluminosilicates. Energies. 2025; 18(13):3302. https://doi.org/10.3390/en18133302
Chicago/Turabian StyleWnorowska, Joanna, Mateusz Tymoszuk, and Sylwester Kalisz. 2025. "Fuel Features of Straw Biomass Valorized with Aluminosilicates" Energies 18, no. 13: 3302. https://doi.org/10.3390/en18133302
APA StyleWnorowska, J., Tymoszuk, M., & Kalisz, S. (2025). Fuel Features of Straw Biomass Valorized with Aluminosilicates. Energies, 18(13), 3302. https://doi.org/10.3390/en18133302