Biodegradable Meets Functional: Dual-Nozzle Printing of Eco-Conscious Parklets with Wood-Filled PLA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Filament Production
- Shear and distributive mixing (homogenization) achieved using a laboratory-scale internal mixer (Haake PolyLab QC, Thermo Fisher Scientific Inc., Karlsruhe, Germany) at a rotor speed of 50 rpm and a temperature of 180 °C for 5 min. Torque feedback was integrated into the control loop to enable continuous process monitoring (a torque threshold of 35 Nm was maintained).
- Granulate formation (pelletization) using a thermal die-face pelletizing unit (EUP 50, ECON GmbH, Weisskirchen/Traun, Austria). Specific granulation parameters are detailed in Table 3.
- Continuous filament production using a co-rotating twin-screw extruder (TSK 30, Theysohn Extrusionstechnik GmbH, Stockerau, Austria) with a 20 mm screw diameter and a precision nozzle with a diameter of 2.8 mm. Specific extruder parameters are detailed in Table 3.
2.3. Optimization of Large-Scale 3D Printing Parameters
2.3.1. Printing Temperature and Speed
2.3.2. Dual-Printhead Deposition Strategy
2.3.3. Urban Furniture Demonstrator ‘Parklet’
2.4. Sample Properties
3. Results and Discussion
3.1. Filament Properties
3.2. Printing Optimization
3.3. Print Properties
3.4. Chemical and Mechanical Properties of Filaments and Prints
3.5. Thermal Properties of Filaments and Prints
3.6. Development of the Parklet Demonstrator Using Dual-Material 3D Printing
4. Conclusions
- -
- PPW composites undergo the multistage controlled degradation of lignin and cellulose, which supports stable rheological behavior during extrusion. It confirmed the stability of the materials but also highlighted their potential for post-use processing and degradation. These materials could be effectively recycled or repurposed at the end of their life cycle, contributing to a more sustainable approach and waste management.
- -
- Enhanced compatibility and thermal interaction between PLA and wood fibers were found in samples with balanced architecture, resulting in smooth extrusion, better interlayer adhesion, and no delamination or layer separation under aggressive chemical and mechanical treatments. Suboptimal material ratios resulted in excess moisture retention, poorer fiber–polymer compatibility, and printing artifacts such as surface bubbling or interfacial defects.
- -
- Three-dimensionally printed wood/PLA materials are biodegradable and derived from renewable sources (e.g., corn starch and wood fibers), reducing the reliance on fossil fuels and lowering carbon footprints compared to traditional petroleum-based plastics; the integration of wood-based biocomposites adds value to lignocellulosic waste or sustainably harvested fibers, encouraging circular material flows;
- -
- Three-dimensional printing minimizes material waste due to additive manufacturing’s precision, while localized fabrication (e.g., printing parklets on-site or near-site) reduces transportation emissions and packaging waste, supporting decentralized and eco-friendly production models;
- -
- Modular, low-cost infrastructure like parklets can be deployed quickly in underserved communities, enhancing public space equity and offering inclusive, shared environments, promoting walkability, social interaction, and access to micro-rest spaces—important in densely populated urban areas;
- -
- Demonstrating sustainable 3D printing in public spaces acts as a visible example of eco-innovation, can serve as a living lab for further research and citizen science, potentially influencing public behavior and educational curricula, and creating a blueprint for how emerging fabrication technologies can directly benefit both people and the planet.
- -
- Three-dimensional printing, especially with dual nozzles, is time-intensive; it may not be viable for large-scale deployment unless batch processes or modular assembly are optimized.
- -
- While marketed as biodegradable, PLA and its wood-filled variant biodegradation typically require industrial composting facilities with sustained temperatures above 60 °C, specific microbial activity, and controlled humidity; in practice, they may remain intact for years, contributing to long-term microplastic pollution if not properly managed.
- -
- Wood/PLA exhibits hygroscopic tendencies, and this can result in dimensional instability (warping or swelling), surface degradation such as cracking or splintering, and the potential for microbial growth (e.g., mold and mildew), particularly in humid or shaded environments or in colder climates, where absorbed moisture can freeze and expand.
- -
- Both neat PLA and wood-filled PLA are highly susceptible to UV-induced degradation. Extended sunlight exposure leads to discoloration and yellowing, loss of tensile strength and brittleness, and microcrack formation at the surface level.
- -
- Monitoring the impact of UV exposure, rainfall, humidity, temperature fluctuations, and freeze–thaw cycles on the structural integrity, surface quality, and development of mold or algae, especially on wood-filled elements;
- -
- Evaluating wear patterns from human contact, friction, and airborne particles (dust and pollutants), particularly in high-use public areas;
- -
- Developing the recycling or reprocessing of dual-material components, including mechanical grinding, filament re-extrusion, or chemical recycling methods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, J.; Chen, A.; Zheng, W.; Zhou, X.; Bai, B.; Wu, J.; Ling, W.; Ma, H.; Wang, W. Effectiveness analysis of resources consumption, environmental impact and production efficiency in traditional manufacturing using new technologies: Case from sand casting. Energy Convers. Manag. 2020, 209, 112671. [Google Scholar] [CrossRef]
- Gao, X.; Qi, S.; Kuang, X.; Su, Y.; Li, J.; Wang, D. Fused filament fabrication of polymer materials: A review of interlayer bond. Addit. Manuf. 2021, 37, 101658. [Google Scholar] [CrossRef]
- Marczyk, J.; Ziejewska, C.; Korniejenko, K.; Łach, M.; Marzec, W.; Góra, M.; Dziura, P.; Sprince, A.; Szechyńska-Hebda, M.; Hebda, M. Properties of 3D printed concrete–geopolymer hybrids reinforced with aramid roving. Materials 2022, 15, 6132. [Google Scholar] [CrossRef]
- Leschok, M.; Piccioni, V.; Lydon, G.; Seshadri, B.; Schlueter, A.; Gramazio, F.; Kohler, M.; Dillenburger, B. Thermal and manufacturing properties of hollow-core 3D-printed elements for lightweight facades. Dev. Built Environ. 2024, 19, 100485. [Google Scholar] [CrossRef]
- Li, A.; Challapalli, A.; Li, G. 4D printing of recyclable lightweight architectures using high recovery stress shape memory polymer. Sci. Rep. 2019, 9, 7621. [Google Scholar] [CrossRef]
- Szechyńska-Hebda, M.; Hebda, M.; Doğan-Sağlamtimur, N.; Lin, W.-T. Let’s print an ecology in 3D (and 4D). Materials 2024, 17, 2194. [Google Scholar] [CrossRef]
- Eco-Efficiency Assessment of Bioplastics Production Systems and End-of-Life Options. Available online: https://www.mdpi.com/2071-1050/10/4/952 (accessed on 3 May 2025).
- Valino, A.D.; Dizon, J.R.C.; Espera, A.H.; Chen, Q.; Messman, J.; Advincula, R.C. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 2019, 98, 101162. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Chen, X.; Yu, X.; Li, W.; Zhang, S.; Meng, X.; Zhao, Z.-M.; Dong, T.; Anderson, A.; et al. Sustainable bioplastics derived from renewable natural resources for food packaging. Matter 2023, 6, 97–127. [Google Scholar] [CrossRef]
- Coppola, G.; Gaudio, M.T.; Lopresto, C.G.; Calabro, V.; Curcio, S.; Chakraborty, S. Bioplastic from renewable biomass: A facile solution for a greener environment. Earth Syst. Environ. 2021, 5, 231–251. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, Y.; Li, J.; Su, H.; Zhu, Z.; Yan, B.; Cheng, Z.; Chen, G. Pyrolysis of 3D printed polylactic acid waste: A kinetic study via TG-FTIR/GC-MS analysis. J. Anal. Appl. Pyrolysis 2022, 166, 105631. [Google Scholar] [CrossRef]
- Sabalina, A.; Platnieks, O.; Gaidukova, G.; Aunins, A.; Eiduks, T.V.; Gaidukovs, S. Thermomechanical and mechanical analysis of polylactic acid/polyhydroxyalkanoate/poly(butylene succinate-co-adipate) binary and ternary blends. RSC Adv. 2025, 15, 501–512. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Filho, E.A.; Luna, C.B.B.; da Silva Barbosa Ferreira, E.; Pinto, G.M.; Andrade, R.J.E.; Fechine, G.J.M.; Araújo, E.M. Enhancing PLA/ABS blends compatibility: A comparative study with SAN-Epoxy and SAN-MA. Polym. Adv. Technol. 2025, 36, e70078. [Google Scholar] [CrossRef]
- Travieso-Rodriguez, J.A.; Jerez-Mesa, R.; Llumà, J.; Gomez-Gras, G.; Casadesus, O. Comparative study of the flexural properties of ABS, PLA and a PLA-wood composite manufactured through fused filament fabrication. Rapid Prototyp. J. 2020, 27, 81–92. [Google Scholar] [CrossRef]
- Bermudez, D.; Quiñonez, P.A.; Vasquez, E.J.; Carrete, I.A.; Word, T.J.; Roberson, D.A. A Comparison of the physical properties of two commercial 3D printing PLA grades. Virtual Phys. Prototyp. 2021, 16, 178–195. [Google Scholar] [CrossRef]
- Le Duigou, A.; Correa, D.; Ueda, M.; Matsuzaki, R.; Castro, M. A review of 3D and 4D printing of natural fibre biocomposites. Mater. Des. 2020, 194, 108911. [Google Scholar] [CrossRef]
- Siddiqui, M.A.S.; Rabbi, M.S.; Ahmed, R.U.; Billah, M.M. Biodegradable natural polymers and fibers for 3D printing: A holistic perspective on processing, characterization, and advanced applications. Clean. Mater. 2024, 14, 100275. [Google Scholar] [CrossRef]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Góra, M. Methods of Using Solid Reinforcement Additives in the 3D Printing Process. Ph.D. Thesis, Krakow University of Technology, Kraków, Poland, 2025. [Google Scholar]
- Gauss, C.; Pickering, K.L.; Graupner, N.; Müssig, J. 3D-printed polylactide composites reinforced with short lyocell fibres—Enhanced mechanical properties based on bio-inspired fibre fibrillation and post-print annealing. Addit. Manuf. 2023, 77, 103806. [Google Scholar] [CrossRef]
- Bhandari, S.; Lopez-Anido, R.A.; Gardner, D.J. Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit. Manuf. 2019, 30, 100922. [Google Scholar] [CrossRef]
- Jamadar, I.M.; Kamate, P.; Samal, P.K. Evaluation of fatigue characteristics of 3D printed/composites reinforced with carbon fiber using design of experiments. Polym. Compos. 2024, 45, 17134–17149. [Google Scholar] [CrossRef]
- Charca, S.; Jiao-Wang, L.; Loya, J.A.; Martínez, M.A.; Santiuste, C. High cycle fatigue life analysis of unidirectional flax/PLA composites through infrared thermography. Compos. Struct. 2024, 344, 118370. [Google Scholar] [CrossRef]
- Olcun, S.; Ibrahim, Y.; Isaacs, C.; Karam, M.; Elkholy, A.; Kempers, R. Thermal conductivity of 3D-printed continuous pitch carbon fiber composites. Addit. Manuf. Lett. 2023, 4, 100106. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, L.; Kinloch, A.J.; Zhang, Y.X. 3D printed carbon-fibre reinforced composite lattice structures with good thermal-dimensional stability. Compos. Sci. Technol. 2022, 227, 109599. [Google Scholar] [CrossRef]
- Okubo, K.; Fujii, T.; Thostenson, E.T. Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos. Part Appl. Sci. Manuf. 2009, 40, 469–475. [Google Scholar] [CrossRef]
- Raj, G.; Balnois, E.; Helias, M.-A.; Baley, C.; Grohens, Y. Measuring adhesion forces between model polysaccharide films and PLA bead to mimic molecular interactions in flax/PLA biocomposite. J. Mater. Sci. 2012, 47, 2175–2181. [Google Scholar] [CrossRef]
- Bhagia, S.; Bornani, K.; Agrawal, R.; Satlewal, A.; Ďurkovič, J.; Lagaňa, R.; Bhagia, M.; Yoo, C.G.; Zhao, X.; Kunc, V.; et al. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl. Mater. Today 2021, 24, 101078. [Google Scholar] [CrossRef]
- Park, Y.-E.; Lee, S. Characterization of PLA/LW-PLA composite materials manufactured by Dual-Nozzle FDM 3D-printing processes. Polymers 2024, 16, 2852. [Google Scholar] [CrossRef]
- Vinod, A.; Tengsuthiwat, J.; Vijay, R.; Sanjay, M.R.; Siengchin, S. Advancing additive manufacturing: 3D-printing of hybrid natural fiber sandwich (Nona/Soy-PLA) composites through filament extrusion and its effect on thermomechanical properties. Polym. Compos. 2024, 45, 7767–7789. [Google Scholar] [CrossRef]
- Li, M.; Lei, W.; Yu, W. FDM 3D Printing and properties of WF/PBAT/PLA composites. Molecules 2024, 29, 5087. [Google Scholar] [CrossRef]
- Cao, A.; Wan, D.; Gao, C.; Elverum, C.W. A novel method of fabricating designable polylactic acid (PLA)/thermoplastic polyurethane (TPU) composite filaments and structures by material extrusion additive manufacturing. J. Manuf. Process. 2024, 118, 432–447. [Google Scholar] [CrossRef]
- Tadi, S.P.; Mamilla, R.S. Fabrication of SS 316L particle-infilled PLA composite filaments from cast-off bi-material extrudates for 3D printing applications. Waste Manag. 2025, 193, 386–397. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, A.L.; de Souza, F.C.R.; Martins da Costa, J.C.; Gonçalves, D.A.; Passos, R.R.; Pocrifka, L.A. Development and characterization of 3D-Printed PLA/Exfoliated graphite composites for enhanced electrochemical performance in energy storage applications. Polymers 2024, 16, 3131. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Oh, Y.-C.; Shin, S.-C.; Lee, S.-K.; Seo, H.-S.; Lee, S.-E. Fusedly Deposited frequency-selective composites fabricated by a dual-nozzle 3D printing as microwave filter. Polymers 2024, 16, 786. [Google Scholar] [CrossRef]
- Tirado-Garcia, I.; Garcia-Gonzalez, D.; Garzon-Hernandez, S.; Rusinek, A.; Robles, G.; Martinez-Tarifa, J.M.; Arias, A. Conductive 3D printed PLA composites: On the interplay of mechanical, electrical and thermal behaviours. Compos. Struct. 2021, 265, 113744. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Singh, M. Multi-material 3D printed PLA/PA6-TiO2 composite matrix: Rheological, thermal, tensile, morphological and 4D capabilities. Adv. Mater. Process. Technol. 2022, 8, 2329–2348. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Bax, B.; Müssig, J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos. Sci. Technol. 2008, 68, 1601–1607. [Google Scholar] [CrossRef]
- Effect of Process Parameters on Void Distribution, Volume Fraction, and Sphericity Within the Bead Microstructure of Large-Area Additive Manufacturing Polymer Composites. Available online: https://www.mdpi.com/2073-4360/14/23/5107 (accessed on 3 May 2025).
- Schirmeister, C.G.; Hees, T.; Licht, E.H.; Mülhaupt, R. 3D printing of high density polyethylene by fused filament fabrication. Addit. Manuf. 2019, 28, 152–159. [Google Scholar] [CrossRef]
- Jiang, L.; Wolcott, M.P.; Zhang, J. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 2006, 7, 199–207. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Zhang, K.; Ren, J.; Zhan, H. Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends. Carbohydr. Polym. 2008, 74, 79–85. [Google Scholar] [CrossRef]
- Lyu, Y.; Chen, Y.; Lin, Z.; Zhang, J.; Shi, X. Manipulating phase structure of biodegradable PLA/PBAT system: Effects on dynamic rheological responses and 3D printing. Compos. Sci. Technol. 2020, 200, 108399. [Google Scholar] [CrossRef]
- Yu, W.; Li, M.; Lei, W.; Chen, Y. FDM 3D printing and properties of PBAT/PLA blends. Polymers 2024, 16, 1140. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Ren, Z.; Bi, H.; Song, Y.; Xu, M. Effect of toughening agents on the properties of poplar wood flour/poly (lactic acid) composites fabricated with Fused Deposition Modeling. Eur. Polym. J. 2018, 107, 34–45. [Google Scholar] [CrossRef]
- Dalu, M.; Temiz, A.; Altuntaş, E.; Demirel, G.K.; Aslan, M. Characterization of tanalith E treated wood flour filled polylactic acid composites. Polym. Test. 2019, 76, 376–384. [Google Scholar] [CrossRef]
- Yu, W.; Li, M.; Lei, W.; Pu, Y.; Sun, K.; Ma, Y. Effects of Wood Flour (WF) pretreatment and the addition of a toughening agent on the properties of FDM 3D-printed WF/Poly(lactic acid) biocomposites. Molecules 2022, 27, 2985. [Google Scholar] [CrossRef]
- ISO 527-2:2025 Plastics—Determination of Tensile Properties. Available online: https://www.iso.org/standard/85822.html (accessed on 11 June 2025).
- ISO 527-1:2019 Plastics—Determination of Tensile Properties, Part 1: General Principles. Available online: https://www.iso.org/standard/75824.html (accessed on 11 July 2019).
- Szechyńska-Hebda, M.; Hebda, M.; Mirek, M.; Miernik, K. Cold-induced changes in cell wall stability determine the resistance of winter triticale to fungal pathogen Microdochium nivale. J. Therm. Anal. Calorim. 2016, 126, 77–90. [Google Scholar] [CrossRef]
- Szechyńska-Hebda, M.; Hebda, M.; Mierzwiński, D.; Kuczyńska, P.; Mirek, M.; Wędzony, M.; van Lammeren, A.; Karpiński, S. Effect of cold-induced changes in physical and chemical leaf properties on the resistance of winter triticale (×Triticosecale) to the fungal pathogen Microdochium nivale. Plant Pathol. 2013, 62, 867–878. [Google Scholar] [CrossRef]
- Szechyńska-Hebda, M.; Czarnocka, W.; Hebda, M.; Karpiński, S. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties. Plant Cell Rep. 2016, 35, 527–539. [Google Scholar] [CrossRef]
- Sun, C.; Li, C.; Tan, H.; Zhang, Y. Synergistic effects of wood fiber and polylactic acid during co-pyrolysis using TG-FTIR-MS and Py-GC/MS. Energy Convers. Manag. 2019, 202, 112212. [Google Scholar] [CrossRef]
- Sedničková, M.; Pekařová, S.; Kucharczyk, P.; Bočkaj, J.; Janigová, I.; Kleinová, A.; Jochec-Mošková, D.; Omaníková, L.; Perďochová, D.; Koutný, M.; et al. Changes of physical properties of PLA-based blends during early stage of biodegradation in compost. Int. J. Biol. Macromol. 2018, 113, 434–442. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Ragadhita, R.; Fiandini, M. Interpretation of Fourier Transform Infrared Spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. Indones. J. Sci. Technol. 2023, 8, 113–126. [Google Scholar] [CrossRef]
- Müller, G.; Schöpper, C.; Vos, H.; Kharazipour, A.; Polle, A. FTIR-ATR spectroscopic analyses of changes in wood properties during particle- and fibreboard production of hard- and softwood trees. BioRes Sci. 2009, 4, 49–71. [Google Scholar] [CrossRef]
- Ayatollahi, M.R.; Nabavi-Kivi, A.; Bahrami, B.; Yazid Yahya, M.; Khosravani, M.R. The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Eng. Fract. Mech. 2020, 237, 107225. [Google Scholar] [CrossRef]
- Stoia, D.I.; Linul, E. Tensile, flexural and fracture properties of MEX-printed PLA-based composites. Theor. Appl. Fract. Mech. 2024, 132, 104478. [Google Scholar] [CrossRef]
- Mazur, K.E.; Borucka, A.; Kaczor, P.; Gądek, S.; Bogucki, R.; Mirzewiński, D.; Kuciel, S. Mechanical, Thermal and microstructural characteristic of 3D printed polylactide composites with natural fibers: Wood, bamboo and cork. J. Polym. Environ. 2022, 30, 2341–2354. [Google Scholar] [CrossRef]
- Phan, N.-T.; Auslender, F.; Gril, J.; Moutou Pitti, R. Effects of cellulose fibril cross-linking on the mechanical behavior of wood at different scales. Wood Sci. Technol. 2024, 58, 1555–1583. [Google Scholar] [CrossRef]
- Li, Z.; Lin, Y.; Cheng, H.; Qian, S.; Fang, X. Synergistic effects of thermoplastic starch and nanofibrillated cellulose on the mechanical, thermal, and micromorphological properties of polylactic acid composites. Polym. Compos. 2025, 46, 8336–8348. [Google Scholar] [CrossRef]
- Shamsudin, Z.; Dom, A.H.M.; Razak, M.A.A.; Mesri, M.; Mulyadi. Analysis on the effect of elevated loading of reclaimed spent bleach earth on physico-mechanical properties of PLA polymer composite in single screw extrusion process. J. Adv. Res. Appl. Mech. 2024, 112, 162–174. [Google Scholar] [CrossRef]
- Yang, X.; Steck, J.; Yang, J.; Wang, Y.; Suo, Z. Degradable plastics are vulnerable to cracks. Engineering 2021, 7, 624–629. [Google Scholar] [CrossRef]
- Brüster, B.; Martin, A.; Bardon, J.; Koutsawa, Y.; Bernstorff, S.; Raquez, J.-M.; André, S.; Dubois, P.; Addiego, F. In situ multiscale study of deformation heterogeneities in polylactide-based materials upon drawing: Influence of initial crystallinity and plasticization. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 1452–1468. [Google Scholar] [CrossRef]
- Radzif, A.A.; Chai, A.B.; Ch’ng, S.Y.; Tshai, K.Y. Study of the chemical endurance of particulate reinforced thermoplastic composites. Int. J. Nanoelectron. Mater. 2024, 17, 133–136. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, J.; Liang, X.; Huang, Z.; Li, J.; Peng, S. Crystallization behaviors regulations and mechanical performances enhancement approaches of polylactic acid (PLA) biodegradable materials modified by organic nucleating agents. Int. J. Biol. Macromol. 2023, 233, 123581. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qiu, S.; Sun, J.; Ren, Y.; Wang, S.; Wang, X.; Wang, W.; Li, H.; Fei, B.; Gu, X.; et al. A new strategy to prepare fully bio-based poly(lactic acid) composite with high flame retardancy, UV resistance, and rapid degradation in soil. Chem. Eng. J. 2022, 428, 131979. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Yang, F.; Tang, C.; Huang, Q. Effect of H2O2 bleaching treatment on the properties of finished transparent wood. Polymers 2019, 11, 776. [Google Scholar] [CrossRef]
- Lu, D.; Xiong, X.; Lu, G.; Gui, C.; Pang, X. Effects of NaOH/H2O2/Na2SiO3 bleaching pretreatment method on wood dyeing properties. Coatings 2023, 13, 233. [Google Scholar] [CrossRef]
- Rosu, L.; Varganici, C.; Mustata, F.; Rosu, D.; Rosca, I.; Rusu, T. Epoxy Coatings Based on Modified Vegetable Oils for Wood Surface Protection against Fungal Degradation. ACS Appl. Mater. Interfaces 2020, 12, 14443–14458. [Google Scholar] [CrossRef] [PubMed]
- Rowell, R.M. Chemical modification of wood: A short review. Wood Mater. Sci. Eng. 2006, 1, 29–33. [Google Scholar] [CrossRef]
- Plaza, N.Z.; Pingali, S.V.; Ibach, R.E. Nanostructural changes correlated to decay resistance of chemically modified wood fibers. Fibers 2022, 10, 40. [Google Scholar] [CrossRef]
- Papadopoulos, A.N.; Bikiaris, D.N.; Mitropoulos, A.C.; Kyzas, G.Z. Nanomaterials and chemical modifications for enhanced key wood properties: A review. Nanomaterials 2019, 9, 607. [Google Scholar] [CrossRef]
- Shao, Z.; Kumagai, S.; Kameda, T.; Saito, Y.; Yoshioka, T. Effects of heating rate and temperature on product distribution of poly-lactic acid and poly-3-hydroxybutyrate-co-3-hydroxyhexanoate. J. Mater. Cycles Waste Manag. 2023, 25, 650–661. [Google Scholar] [CrossRef]
- Adachi, W.; Kumagai, S.; Shao, Z.; Saito, Y.; Yoshioka, T. Selective recovery of pyrolyzates of biodegradable (PLA, PHBH) and common plastics (HDPE, PP, PS) during co-pyrolysis under slow heating. Sci. Rep. 2024, 14, 16476. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xu, S.; Yu, C.; Pan, P. Stereocomplexed materials of chiral polymers tuned by crystallization: A case study on poly(lactic acid). Acc. Mater. Res. 2022, 3, 1309–1322. [Google Scholar] [CrossRef]
- Grabowska, B.; Skowron, M.; Kaczmarska, K. Polylactide used as filment in 3d printing—Part 2: TG-DTG, DSC and drift investigations. J. Cast. Mater. Eng. 2023, 7, 41–48. [Google Scholar] [CrossRef]
- Hebda, M.; Laska, M.; Szechyńska-Hebda, M. Application of a device used for observation of controlled thermal processes in a furnace. J. Therm. Anal. Calorim. 2013, 114, 1099–1109. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Torayno, D.; Gaugler, M.; Luedtke, J.; Krause, A. Chemical imaging of the polylactic acid—Wood adhesion interface of bonded veneer products. Fibers 2022, 10, 17. [Google Scholar] [CrossRef]
- Pop, N.; Mogoş, A.M.; Vlase, G.; Vlase, T.; Doca, N. Theoretic analysis and experimental evidence for relationships between the derivative thermogravimetric curves and the Gramm–Schmidt profiles. J. Therm. Anal. Calorim. 2013, 113, 113–119. [Google Scholar] [CrossRef]
- Tan, L.; Shi, R.; Ji, Q.; Wang, B.; Quan, F.; Xia, Y. Effect of Na+ and Ca2+ on the thermal degradation of carboxymethylcellulose in air. Polym. Polym. Compos. 2017, 25, 309–314. [Google Scholar] [CrossRef]
- Zou, H.; Yi, C.; Wang, L.; Liu, H.; Xu, W. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J. Therm. Anal. Calorim. 2009, 97, 929–935. [Google Scholar] [CrossRef]
- Shen, D.K.; Gu, S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol. 2009, 100, 6496–6504. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.-Y.; Nie, S.-P.; Xie, M.-Y. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem. X 2021, 12, 100168. [Google Scholar] [CrossRef] [PubMed]
- Lahlali, R.; Song, T.; Chu, M.; Yu, F.; Kumar, S.; Karunakaran, C.; Peng, G. Evaluating changes in cell-wall components associated with clubroot resistance using fourier transform infrared spectroscopy and RT-PCR. Int. J. Mol. Sci. 2017, 18, 2058. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, T.; Tobin, M.J.; Puskar, L.; Sani, M.-A.; Kao, N.; Gupta, R.K.; Pannirselvam, M.; Quazi, N.; Bhattacharya, S. Chemically imaging the interaction of acetylated nanocrystalline cellulose (NCC) with a polylactic acid (PLA) polymer matrix. Cellulose 2017, 24, 1717–1729. [Google Scholar] [CrossRef]
- Mahmud, S.; Long, Y.; Wang, J.; Dai, J.; Zhang, R.; Zhu, J. Waste cellulose fibers reinforced polylactide toughened by direct blending of epoxidized soybean oil. Fibers Polym. 2020, 21, 2949–2961. [Google Scholar] [CrossRef]
- Pornbencha, K.; Boonmalert, T.; Seubsai, A.; Dittanet, P. Synthesis of polylactic acid/cellulose composite extracted from pineapple leaves. Key Eng. Mater. 2021, 891, 131–136. [Google Scholar] [CrossRef]
- Kumar, S.; Dang, R.; Manna, A.; Dhiman, N.K.; Sharma, S.; Dwivedi, S.P.; Kumar, A.; Li, C.; Tag-Eldin, E.M.; Abbas, M. Optimization of chemical treatment process parameters for enhancement of mechanical properties of Kenaf fiber-reinforced polylactic acid composites: A comparative study of mechanical, morphological and microstructural analysis. J. Mater. Res. Technol. 2023, 26, 8366–8387. [Google Scholar] [CrossRef]
- Cruz Fabian, D.R.; Durpekova, S.; Dusankova, M.; Cisar, J.; Drohsler, P.; Elich, O.; Borkova, M.; Cechmankova, J.; Sedlarik, V. Renewable poly(lactic acid)lignocellulose biocomposites for the enhancement of the water retention capacity of the soil. Polymers 2023, 15, 2243. [Google Scholar] [CrossRef]
- Gwon, J.G.; Lee, S.Y.; Doh, G.H.; Kim, J.H. Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J. Appl. Polym. Sci. 2010, 116, 3212–3219. [Google Scholar] [CrossRef]
- Partini, M.; Pantani, R. Determination of crystallinity of an aliphatic polyester by FTIR spectroscopy. Polym. Bull. 2007, 59, 403–412. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Liu, Y.; Jiao, Y. Effect of molecular weight on conformational changes of PEO: An infrared spectroscopic analysis. J. Mater. Sci. 2015, 50, 1544–1552. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 2012, 126, E337–E344. [Google Scholar] [CrossRef]
- Niu, S.; Zhou, Y.; Yu, H.; Lu, C.; Han, K. Investigation on thermal degradation properties of oleic acid and its methyl and ethyl esters through TG-FTIR. Energy Convers. Manag. 2017, 149, 495–504. [Google Scholar] [CrossRef]
- Gong, L.; Pan, Y.; Cui, L.; Zhang, X. Atomic insights into the thermal degradation of polyethylene terephthalate combining STA-FTIR and DFT methods. Fuel 2024, 364, 131067. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Ismail, S.O.; Zahedi, M.; Khan, A.; Usman, H. 3D printing and morphological characterisation of polymeric composite scaffolds. Eng. Struct. 2020, 216, 110752. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Tzounis, L.; Maniadi, A.; Velidakis, E.; Mountakis, N.; Papageorgiou, D.; Liebscher, M.; Mechtcherine, V. Sustainable additive manufacturing: Mechanical response of polypropylene over multiple recycling processes. Sustainability 2021, 13, 159. [Google Scholar] [CrossRef]
- Pricop, B.; Sava, Ș.D.; Lohan, N.-M.; Bujoreanu, L.-G. DMA Investigation of the factors influencing the glass transition in 3D printed specimens of shape memory recycled PET. Polymers 2022, 14, 2248. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, H.; Zhang, Y.; Xue, F.; Huang, S.; Wen, H.; Li, J.; de Christiansen, J.C.; Yu, D.; Wu, Z.; et al. Deformation and structure evolution of glassy poly(lactic acid) below the glass transition temperature. CrystEngComm 2015, 17, 5651–5663. [Google Scholar] [CrossRef]
- Ohtani, Y.; Okumura, K.; Kawaguchi, A. Crystallization behavior of amorphous poly(l-Lactide). J. Macromol. Sci. Part B 2003, 42, 875–888. [Google Scholar] [CrossRef]
- Masanet, E.; Heeren, N.; Kagawa, S.; Cullen, J.; Lifset, R.; Wood, R. Material efficiency for climate change mitigation. J. Ind. Ecol. 2021, 25, 254–259. [Google Scholar] [CrossRef]
- Tupenaite, L.; Kanapeckiene, L.; Naimaviciene, J.; Kaklauskas, A.; Gecys, T. Timber construction as a solution to climate change: A systematic literature review. Buildings 2023, 13, 976. [Google Scholar] [CrossRef]
- Korkmaz, E. Parklets As Public Space. In Proceedings of the International Conference of Contemporary Affairs in Architecture and Urbanism-ICCAUA, Antalya, Turkey, 23–25 May 2024; Volume 7, pp. 885–891. [Google Scholar] [CrossRef]
- Stevens, Q.; Leorke, D.; Thai, H.M.H.; Innocent, T.; Tolentino, C. Playful, portable, pliable interventions into street spaces: Deploying a ‘playful parklet’ across Melbourne’s suburbs. J. Urban Des. 2024, 29, 231–251. [Google Scholar] [CrossRef]
- Iždinský, J.; Reinprecht, L.; Vidholdová, Z. Particleboards from recycled pallets. Forests 2021, 12, 1597. [Google Scholar] [CrossRef]
- Negawo, T.A.; Polat, Y.; Kilic, A. Effect of compatibilizer and fiber loading on ensete fiber-reinforced HDPE green composites: Physical, mechanical, and morphological properties. Compos. Sci. Technol. 2021, 213, 108937. [Google Scholar] [CrossRef]
- Beigbeder, J.; Soccalingame, L.; Perrin, D.; Bénézet, J.-C.; Bergeret, A. How to manage biocomposites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene (PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites. Waste Manag. 2019, 83, 184–193. [Google Scholar] [CrossRef] [PubMed]
Factor | PLA 3D870 | PBAT Ecoflex | CW630PU |
---|---|---|---|
Printability | Minimal warping and high dimensional accuracy; ideal for complex architectural details. | Flexible, ductile, and useful for adding toughness or flexibility to PLA. | Composites can be extruded without nozzle clogging and offer decent layer adhesion. |
Mechanical strength | Enhanced resistance and strength compared to standard PLA. | Improves flexibility, toughness, and resistance when blended with PLA. | Adds stiffness and structural integrity to matrices. |
Dimensional stability | Dimensional accuracy provided proper cooling/annealing. | Good flexibility; less stability for precision models. | Reduces shrinkage and warping when used in composites. |
Heat resistance | Improved thermal resistance. | Lower thermal resistance. | Low heat resistance. |
Surface finish/aesthetic appeal | Fine detail and smooth surfaces; critical for an architectural model. | Flexible; used in blends rather than for visual appeal | Texture improves the visual authenticity of prints. |
Biodegradability | More environmentally friendly than petroleum-based plastics. | compostable under industrial conditions. | High biodegradability and low environmental impact. |
Sustainability | Derived from renewable resources (like corn), contributing to a reduced carbon footprint | Suitable for green applications due to its fully compostable nature. | Natural fibers support eco-conscious manufacturing and sustainability goals. |
Identifier | PLA [% wt.] | PBAT [% wt.] | Wood [% wt.] |
---|---|---|---|
PLA | 100 | - | - |
PLA/PBAT (PPf and PPp) | 60 | 40 | - |
PLA/PBAT/wood (PPWf and PPWp) | 48 | 32 | 20 |
Granulation Unit EUP 50 (4 mm Perforated Plate) | |||||
---|---|---|---|---|---|
Base temp | Inlet temp | Head temp | Water bath temp | Melt pressure | Blade speed |
170 °C | 175 °C | 170 °C | 60 °C | 10 bar | 78 rpm |
Extruder TSK 30 | |||||
Heating Zone 4 | Zone 3 | Zone 2 | Zone 1 | Throughput | Screw speed |
204 °C | 181 °C | 160 °C | 154 °C | 2 kg h−1 | 500 rpm |
Feature | External Outline | Infill Region (Enhanced Layers) |
---|---|---|
Layer height | 0.5 mm; 0.8 mm | 0.5–2.4 mm |
Flow rate | 100% | 120–130% |
Printing speed | 25 mm s−1 | 35–60 mm s−1 |
Infill pattern | Rectilinear (45°/−45°) | Rectilinear (45°/−45°) |
External Outline | Infill Region | Outline to Infill Ratio | |||||
---|---|---|---|---|---|---|---|
Composition | Layer (mm) | Composition | Nozzle (mm) | Layer (mm) | Infill (%) | ||
PPWp1 | 0.5 | PPp1 | 1.0 | 0.5 | 25 | 1:1 | |
PPWp2 | 0.5 | PPp2 | 1.0 | 1.0 | 25 | 1:1 | |
PPWp3 | 0.5 | PPp3 | 1.4 | 1.5 | 25 | 1:3 | |
PPWp4 | 0.8 | PPp4 | 1.4 | 2.4 | 25 | 1:3 |
Parameter | PPW | Reference (PLA Fiberlogy) |
---|---|---|
Printhead | Main | Auxiliary |
Strategy | Outline—2 layers | Infill |
Single layer width | 2.00 mm | 4.50 mm |
Layer height | 1.00 mm | 1.50 mm |
Flow rate | 100% | 100% |
Temperature (nozzle/build plate) | 230 °C/60 °C | 220 °C/50 °C |
Processing speed (the first layer) | 20 mm s−1 | 20 mm s−1 |
Processing speed | 30 mm s−1 | 80 mm s−1 |
Sample Designation | Tensile Strength (N mm−2) | Elongation (mm) |
---|---|---|
PPWp1/PPp1 | 6.5 ± 0.14 | 3.7 ± 0.17 |
PPWpp2/PPp2 | 6.8 ± 0.14 | 3.7 ± 0.19 |
PPWp3/PPp3 | 7.9 ± 0.14 | 3.5 ± 0.21 |
PPWp4/PPp4 | 7.7 ± 0.49 | 3.4 ± 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaróg, T.; Góra, M.; Góra, M.; Maroszek, M.; Hodor, K.; Hodor, K.; Hebda, M.; Szechyńska-Hebda, M. Biodegradable Meets Functional: Dual-Nozzle Printing of Eco-Conscious Parklets with Wood-Filled PLA. Materials 2025, 18, 2951. https://doi.org/10.3390/ma18132951
Jaróg T, Góra M, Góra M, Maroszek M, Hodor K, Hodor K, Hebda M, Szechyńska-Hebda M. Biodegradable Meets Functional: Dual-Nozzle Printing of Eco-Conscious Parklets with Wood-Filled PLA. Materials. 2025; 18(13):2951. https://doi.org/10.3390/ma18132951
Chicago/Turabian StyleJaróg, Tomasz, Mateusz Góra, Michał Góra, Marcin Maroszek, Krzysztof Hodor, Katarzyna Hodor, Marek Hebda, and Magdalena Szechyńska-Hebda. 2025. "Biodegradable Meets Functional: Dual-Nozzle Printing of Eco-Conscious Parklets with Wood-Filled PLA" Materials 18, no. 13: 2951. https://doi.org/10.3390/ma18132951
APA StyleJaróg, T., Góra, M., Góra, M., Maroszek, M., Hodor, K., Hodor, K., Hebda, M., & Szechyńska-Hebda, M. (2025). Biodegradable Meets Functional: Dual-Nozzle Printing of Eco-Conscious Parklets with Wood-Filled PLA. Materials, 18(13), 2951. https://doi.org/10.3390/ma18132951