Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (587)

Search Parameters:
Keywords = Synthetic Aperture Radar (SAR) imagery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 14923 KiB  
Article
Multi-Sensor Flood Mapping in Urban and Agricultural Landscapes of the Netherlands Using SAR and Optical Data with Random Forest Classifier
by Omer Gokberk Narin, Aliihsan Sekertekin, Caglar Bayik, Filiz Bektas Balcik, Mahmut Arıkan, Fusun Balik Sanli and Saygin Abdikan
Remote Sens. 2025, 17(15), 2712; https://doi.org/10.3390/rs17152712 - 5 Aug 2025
Abstract
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning [...] Read more.
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning method to evaluate the July 2021 flood in the Netherlands. The research developed 25 different feature scenarios through the combination of Sentinel-1, Landsat-8, and Radarsat-2 imagery data by using backscattering coefficients together with optical Normalized Difference Water Index (NDWI) and Hue, Saturation, and Value (HSV) images and Synthetic Aperture Radar (SAR)-derived Grey Level Co-occurrence Matrix (GLCM) texture features. The Random Forest (RF) classifier was optimized before its application based on two different flood-prone regions, which included Zutphen’s urban area and Heijen’s agricultural land. Results demonstrated that the multi-sensor fusion scenarios (S18, S20, and S25) achieved the highest classification performance, with overall accuracy reaching 96.4% (Kappa = 0.906–0.949) in Zutphen and 87.5% (Kappa = 0.754–0.833) in Heijen. For the flood class F1 scores of all scenarios, they varied from 0.742 to 0.969 in Zutphen and from 0.626 to 0.969 in Heijen. Eventually, the addition of SAR texture metrics enhanced flood boundary identification throughout both urban and agricultural settings. Radarsat-2 provided limited benefits to the overall results, since Sentinel-1 and Landsat-8 data proved more effective despite being freely available. This study demonstrates that using SAR and optical features together with texture information creates a powerful and expandable flood mapping system, and RF classification performs well in diverse landscape settings. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Flood Forecasting and Monitoring)
Show Figures

Figure 1

48 pages, 16562 KiB  
Article
Dense Matching with Low Computational Complexity for   Disparity Estimation in the Radargrammetric Approach of SAR Intensity Images
by Hamid Jannati, Mohammad Javad Valadan Zoej, Ebrahim Ghaderpour and Paolo Mazzanti
Remote Sens. 2025, 17(15), 2693; https://doi.org/10.3390/rs17152693 - 3 Aug 2025
Viewed by 153
Abstract
Synthetic Aperture Radar (SAR) images and optical imagery have high potential for extracting digital elevation models (DEMs). The two main approaches for deriving elevation models from SAR data are interferometry (InSAR) and radargrammetry. Adapted from photogrammetric principles, radargrammetry relies on disparity model estimation [...] Read more.
Synthetic Aperture Radar (SAR) images and optical imagery have high potential for extracting digital elevation models (DEMs). The two main approaches for deriving elevation models from SAR data are interferometry (InSAR) and radargrammetry. Adapted from photogrammetric principles, radargrammetry relies on disparity model estimation as its core component. Matching strategies in radargrammetry typically follow local, global, or semi-global methodologies. Local methods, while having higher accuracy, especially in low-texture SAR images, require larger kernel sizes, leading to quadratic computational complexity. Conversely, global and semi-global models produce more consistent and higher-quality disparity maps but are computationally more intensive than local methods with small kernels and require more memory (RAM). In this study, inspired by the advantages of local matching algorithms, a computationally efficient and novel model is proposed for extracting corresponding pixels in SAR-intensity stereo images. To enhance accuracy, the proposed two-stage algorithm operates without an image pyramid structure. Notably, unlike traditional local and global models, the computational complexity of the proposed approach remains stable as the input size or kernel dimensions increase while memory consumption stays low. Compared to a pyramid-based local normalized cross-correlation (NCC) algorithm and adaptive semi-global matching (SGM) models, the proposed method maintains good accuracy comparable to adaptive SGM while reducing processing time by up to 50% relative to pyramid SGM and achieving a 35-fold speedup over the local NCC algorithm with an optimal kernel size. Validated on a Sentinel-1 stereo pair with a 10 m ground-pixel size, the proposed algorithm yields a DEM with an average accuracy of 34.1 m. Full article
23 pages, 8942 KiB  
Article
Optical and SAR Image Registration in Equatorial Cloudy Regions Guided by Automatically Point-Prompted Cloud Masks
by Yifan Liao, Shuo Li, Mingyang Gao, Shizhong Li, Wei Qin, Qiang Xiong, Cong Lin, Qi Chen and Pengjie Tao
Remote Sens. 2025, 17(15), 2630; https://doi.org/10.3390/rs17152630 - 29 Jul 2025
Viewed by 276
Abstract
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the [...] Read more.
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the challenges of cloud-induced data gaps and cross-sensor geometric biases by proposing an advanced optical and SAR image-matching framework specifically designed for cloud-prone equatorial regions. We use a prompt-driven visual segmentation model with automatic prompt point generation to produce cloud masks that guide cross-modal feature-matching and joint adjustment of optical and SAR data. This process results in a comprehensive digital orthophoto map (DOM) with high geometric consistency, retaining the fine spatial detail of optical data and the all-weather reliability of SAR. We validate our approach across four equatorial regions using five satellite platforms with varying spatial resolutions and revisit intervals. Even in areas with more than 50 percent cloud cover, our method maintains sub-pixel edging accuracy under manual check points and delivers comprehensive DOM products, establishing a reliable foundation for downstream environmental monitoring and ecosystem analysis. Full article
Show Figures

Figure 1

8 pages, 4452 KiB  
Proceeding Paper
Synthetic Aperture Radar Imagery Modelling and Simulation for Investigating the Composite Scattering Between Targets and the Environment
by Raphaël Valeri, Fabrice Comblet, Ali Khenchaf, Jacques Petit-Frère and Philippe Pouliguen
Eng. Proc. 2025, 94(1), 11; https://doi.org/10.3390/engproc2025094011 - 25 Jul 2025
Viewed by 227
Abstract
The high resolution of the Synthetic Aperture Radar (SAR) imagery, in addition to its capability to see through clouds and rain, makes it a crucial remote sensing technique. However, SAR images are very sensitive to radar parameters, the observation geometry and the scene’s [...] Read more.
The high resolution of the Synthetic Aperture Radar (SAR) imagery, in addition to its capability to see through clouds and rain, makes it a crucial remote sensing technique. However, SAR images are very sensitive to radar parameters, the observation geometry and the scene’s characteristics. Moreover, for a complex scene of interest with targets located on a rough soil, a composite scattering between the target and the surface occurs and creates distortions on the SAR image. These characteristics can make the SAR images difficult to analyse and process. To better understand the complex EM phenomena and their signature in the SAR image, we propose a methodology to generate raw SAR signals and SAR images for scenes of interest with a target located on a rough surface. With this prospect, the entire radar acquisition chain is considered: the sensor parameters, the atmospheric attenuation, the interactions between the incident EM field and the scene, and the SAR image formation. Simulation results are presented for a rough dielectric soil and a canonical target considered as a Perfect Electric Conductor (PEC). These results highlight the importance of the composite scattering signature between the target and the soil. Its power is 21 dB higher that that of the target for the target–soil configuration considered. Finally, these simulations allow for the retrieval of characteristics present in actual SAR images and show the potential of the presented model in investigating EM phenomena and their signatures in SAR images. Full article
Show Figures

Figure 1

22 pages, 2420 KiB  
Article
BiEHFFNet: A Water Body Detection Network for SAR Images Based on Bi-Encoder and Hybrid Feature Fusion
by Bin Han, Xin Huang and Feng Xue
Mathematics 2025, 13(15), 2347; https://doi.org/10.3390/math13152347 - 23 Jul 2025
Viewed by 201
Abstract
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder [...] Read more.
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder and hybrid feature fuse network (BiEHFFNet) is proposed for achieving accurate water body detection. First, a bi-encoder structure based on ResNet and Swin Transformer is used to jointly extract local spatial details and global contextual information, enhancing feature representation in complex scenarios. Additionally, the convolutional block attention module (CBAM) is employed to suppress irrelevant information of the output features of each ResNet stage. Second, a cross-attention-based hybrid feature fusion (CABHFF) module is designed to interactively integrate local and global features through cross-attention, followed by channel attention to achieve effective hybrid feature fusion, thus improving the model’s ability to capture water structures. Third, a multi-scale content-aware upsampling (MSCAU) module is designed by integrating atrous spatial pyramid pooling (ASPP) with the Content-Aware ReAssembly of FEatures (CARAFE), aiming to enhance multi-scale contextual learning while alleviating feature distortion caused by upsampling. Finally, a composite loss function combining Dice loss and Active Contour loss is used to provide stronger boundary supervision. Experiments conducted on the ALOS PALSAR dataset demonstrate that the proposed BiEHFFNet outperforms existing methods across multiple evaluation metrics, achieving more accurate water body detection. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods in Remote Sensing)
Show Figures

Figure 1

25 pages, 6316 KiB  
Article
Integration of Remote Sensing and Machine Learning Approaches for Operational Flood Monitoring Along the Coastlines of Bangladesh Under Extreme Weather Events
by Shampa, Nusaiba Nueri Nasir, Mushrufa Mushreen Winey, Sujoy Dey, S. M. Tasin Zahid, Zarin Tasnim, A. K. M. Saiful Islam, Mohammad Asad Hussain, Md. Parvez Hossain and Hussain Muhammad Muktadir
Water 2025, 17(15), 2189; https://doi.org/10.3390/w17152189 - 23 Jul 2025
Viewed by 725
Abstract
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess [...] Read more.
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess near real-time flood inundation patterns associated with extreme weather events, including recent cyclones between 2017 to 2024 (namely, Mora, Titli, Fani, Amphan, Yaas, Sitrang, Midhili, and Remal) as well as intense monsoonal rainfall during the same period, across a large spatial scale, to support disaster risk management efforts. Three machine learning algorithms, namely, random forest (RF), support vector machine (SVM), and K-nearest neighbors (KNN), were applied to flood extent data derived from SAR imagery to enhance flood detection accuracy. Among these, the SVM algorithm demonstrated the highest classification accuracy (75%) and exhibited superior robustness in delineating flood-affected areas. The analysis reveals that both cyclone intensity and rainfall magnitude significantly influence flood extent, with the western coastal zone (e.g., Morrelganj and Kaliganj) being most consistently affected. The peak inundation extent was observed during the 2023 monsoon (10,333 sq. km), while interannual variability in rainfall intensity directly influenced the spatial extent of flood-affected zones. In parallel, eight major cyclones, including Amphan (2020) and Remal (2024), triggered substantial flooding, with the most severe inundation recorded during Cyclone Remal with an area of 9243 sq. km. Morrelganj and Chakaria were consistently identified as flood hotspots during both monsoonal and cyclonic events. Comparative analysis indicates that cyclones result in larger areas with low-level inundation (19,085 sq. km) compared to monsoons (13,829 sq. km). However, monsoon events result in a larger area impacted by frequent inundation, underscoring the critical role of rainfall intensity. These findings underscore the utility of SAR-ML integration in operational flood monitoring and highlight the urgent need for localized, event-specific flood risk management strategies to enhance flood resilience in the GBM delta. Full article
Show Figures

Figure 1

23 pages, 4237 KiB  
Article
Debris-Flow Erosion Volume Estimation Using a Single High-Resolution Optical Satellite Image
by Peng Zhang, Shang Wang, Guangyao Zhou, Yueze Zheng, Kexin Li and Luyan Ji
Remote Sens. 2025, 17(14), 2413; https://doi.org/10.3390/rs17142413 - 12 Jul 2025
Viewed by 320
Abstract
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing [...] Read more.
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing offers wide coverage, existing optical and Synthetic Aperture Radar (SAR)-based techniques face challenges in direct volume estimation due to resolution constraints and rapid terrain changes. This study proposes a Super-Resolution Shape from Shading (SRSFS) approach enhanced by a Non-local Piecewise-smooth albedo Constraint (NPC), hereafter referred to as NPC SRSFS, to estimate debris-flow erosion volume using single high-resolution optical satellite imagery. By integrating publicly available global Digital Elevation Model (DEM) data as prior terrain reference, the method enables accurate post-disaster topography reconstruction from a single optical image, thereby reducing reliance on stereo imagery. The NPC constraint improves the robustness of albedo estimation under heterogeneous surface conditions, enhancing depth recovery accuracy. The methodology is evaluated using Gaofen-6 satellite imagery, with quantitative comparisons to aerial Light Detection and Ranging (LiDAR) data. Results show that the proposed method achieves reliable terrain reconstruction and erosion volume estimates, with accuracy comparable to airborne LiDAR. This study demonstrates the potential of NPC SRSFS as a rapid, cost-effective alternative for post-disaster debris-flow assessment. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

19 pages, 11574 KiB  
Article
Multiscale Eight Direction Descriptor-Based Improved SAR–SIFT Method for Along-Track and Cross-Track SAR Images
by Wei Wang, Jinyang Chen and Zhonghua Hong
Appl. Sci. 2025, 15(14), 7721; https://doi.org/10.3390/app15147721 - 10 Jul 2025
Viewed by 287
Abstract
Image matching between spaceborne synthetic aperture radar (SAR) images are frequently interfered with by speckle noise, resulting in low matching accuracy, and the vast coverage of SAR images renders the direct matching approach inefficient. To address this issue, the study puts forward a [...] Read more.
Image matching between spaceborne synthetic aperture radar (SAR) images are frequently interfered with by speckle noise, resulting in low matching accuracy, and the vast coverage of SAR images renders the direct matching approach inefficient. To address this issue, the study puts forward a multi-scale adaptive improved SAR image block matching method (called STSU–SAR–SIFT). To improve accuracy, this method addresses the issue of the number of feature points under different thresholds by using the SAR–Shi–Tomasi response function in a multi-scale space. Then, the SUSAN function is used to constrain the effect of coherent noise on the initial feature points, and the multi-scale and multi-directional GLOH descriptor construction approach is used to boost the robustness of descriptors. To improve efficiency, the method adopts the main and additional image overlapping area matching method to reduce the search range and uses multi-core CPU+GPU collaborative parallel computing to boost the efficiency of the SAR–SIFT algorithm by block processing the overlapping area. The experimental results demonstrate that the STSU–SAR–SIFT approach presented in this paper has better accuracy and distribution. After the algorithm acceleration, the efficiency is obviously improved. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

30 pages, 25009 KiB  
Article
Advancing Scalable Methods for Surface Water Monitoring: A Novel Integration of Satellite Observations and Machine Learning Techniques
by Megan Renshaw and Lori A. Magruder
Geosciences 2025, 15(7), 255; https://doi.org/10.3390/geosciences15070255 - 3 Jul 2025
Viewed by 361
Abstract
Accurate surface water volume (SWV) estimates are crucial for effective water resource management and for the regional monitoring of hydrological trends. This study introduces a multi-resolution surface water volume estimation framework that integrates ICESat-2 altimetry, Sentinel-1 Synthetic Aperture Radar (SAR), and Sentinel-2 multispectral [...] Read more.
Accurate surface water volume (SWV) estimates are crucial for effective water resource management and for the regional monitoring of hydrological trends. This study introduces a multi-resolution surface water volume estimation framework that integrates ICESat-2 altimetry, Sentinel-1 Synthetic Aperture Radar (SAR), and Sentinel-2 multispectral imagery via machine learning to improve the vertical resolution of a digital elevation model (DEM) to improve the accuracy of SWV estimates. The machine learning approach provides a significant improvement in terrain accuracy relative to the DEM, reducing RMSE by ~66% and 78% across the two models, respectively, over the initial data product fidelity. Assessing the resulting SWV estimates relative to GRACE-FO terrestrial water storage in parts of the Amazon Basin, we found strong correlations and basin-wide drying trends. Notably, the high correlation (r > 0.8) between our surface water estimates and the GRACE-FO signal in the Manaus region highlights our method’s ability to resolve key hydrological dynamics. Our results underscore the value of improved vertical DEM availability for global hydrological studies and offer a scalable framework for future applications. Future work will focus on expanding our DEM dataset, further validation, and scaling this methodology for global applications. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 2568 KiB  
Article
Improved Flood Insights: Diffusion-Based SAR-to-EO Image Translation
by Minseok Seo, Jinwook Jung and Dong-Geol Choi
Remote Sens. 2025, 17(13), 2260; https://doi.org/10.3390/rs17132260 - 1 Jul 2025
Viewed by 626
Abstract
Floods, exacerbated by climate change, necessitate timely and accurate situational awareness to support effective disaster response. While electro-optical (EO) satellite imagery has been widely employed for flood assessment, its utility is significantly limited under conditions such as cloud cover or nighttime. Synthetic Aperture [...] Read more.
Floods, exacerbated by climate change, necessitate timely and accurate situational awareness to support effective disaster response. While electro-optical (EO) satellite imagery has been widely employed for flood assessment, its utility is significantly limited under conditions such as cloud cover or nighttime. Synthetic Aperture Radar (SAR) provides consistent imaging regardless of weather or lighting conditions but it remains challenging for human analysts to interpret. To bridge this modality gap, we present diffusion-based SAR-to-EO image translation (DSE), a novel framework designed specifically for enhancing the interpretability of SAR imagery in flood scenarios. Unlike conventional GAN-based approaches, our DSE leverages the Brownian Bridge Diffusion Model to achieve stable and high-fidelity EO synthesis. Furthermore, it integrates a self-supervised SAR denoising module to effectively suppress SAR-specific speckle noise, thereby improving the quality of the translated outputs. Quantitative experiments on the SEN12-FLOOD dataset show that our method improves PSNR by 3.23 dB and SSIM by 0.10 over conventional SAR-to-EO baselines. Additionally, a user study with SAR experts revealed that flood segmentation performance using synthetic EO (SynEO) paired with SAR was nearly equivalent to using true EO–SAR pairs, with only a 0.0068 IoU difference. These results confirm the practicality of the DSE framework as an effective solution for EO image synthesis and flood interpretation in SAR-only environments. Full article
(This article belongs to the Special Issue Deep Learning Innovations in Remote Sensing)
Show Figures

Figure 1

17 pages, 5319 KiB  
Article
Quantitative Detection of Floating Debris in Inland Reservoirs Using Sentinel-1 SAR Imagery: A Case Study of Daecheong Reservoir
by Sunmin Lee, Bongseok Jeong, Donghyeon Yoon, Jinhee Lee, Jeongho Lee, Joonghyeok Heo and Moung-Jin Lee
Water 2025, 17(13), 1941; https://doi.org/10.3390/w17131941 - 28 Jun 2025
Viewed by 384
Abstract
Rapid rises in water levels due to heavy rainfall can lead to the accumulation of floating debris, posing significant challenges for both water quality and resource management. However, real-time monitoring of floating debris remains difficult due to the discrepancy between meteorological conditions and [...] Read more.
Rapid rises in water levels due to heavy rainfall can lead to the accumulation of floating debris, posing significant challenges for both water quality and resource management. However, real-time monitoring of floating debris remains difficult due to the discrepancy between meteorological conditions and the timing of debris accumulation. To address this limitation, this study proposes an amplitude change detection (ACD) model based on time-series synthetic aperture radar (SAR) imagery, which is less affected by weather conditions. The model statistically distinguishes floating debris from open water based on their differing scattering characteristics. The ACD approach was applied to 18 pairs of Sentinel-1 SAR images acquired over Daecheong Reservoir from June to September 2024. A stringent type I error threshold (α < 1 × 10−8) was employed to ensure reliable detection. The results revealed a distinct cumulative effect, whereby the detected debris area increased immediately following rainfall events. A positive correlation was observed between 10-day cumulative precipitation and the debris-covered area. For instance, on 12 July, a floating debris area of 0.3828 km2 was detected, which subsequently expanded to 0.4504 km2 by 24 July. In contrast, on 22 August, when rainfall was negligible, no debris was detected (0 km2), indicating that precipitation was a key factor influencing the detection sensitivity. Comparative analysis with optical imagery further confirmed that floating debris tended to accumulate near artificial barriers and narrow channel regions. Overall, this study demonstrates that this spatial pattern suggests the potential to use detection results to estimate debris transport pathways and inform retrieval strategies. Full article
Show Figures

Figure 1

15 pages, 3945 KiB  
Technical Note
Joint SAR–Optical Image Compression with Tunable Progressive Attentive Fusion
by Diego Valsesia and Tiziano Bianchi
Remote Sens. 2025, 17(13), 2189; https://doi.org/10.3390/rs17132189 - 25 Jun 2025
Viewed by 350
Abstract
Remote sensing tasks, such as land cover classification, are increasingly becoming multimodal problems, where information from multiple imaging devices, complementing each other, can be fused. In particular, synergies between optical and synthetic aperture radar (SAR) are widely recognized to be beneficial in a [...] Read more.
Remote sensing tasks, such as land cover classification, are increasingly becoming multimodal problems, where information from multiple imaging devices, complementing each other, can be fused. In particular, synergies between optical and synthetic aperture radar (SAR) are widely recognized to be beneficial in a variety of tasks. At the same time, archival of multimodal imagery for global coverage poses significant storage requirements due to the multitude of available sensors, and their increasingly higher resolutions. In this paper, we exploit redundancies between SAR and optical imaging modalities to create a joint encoding that improves storage efficiency. A novel neural network design with progressive attentive fusion modules is proposed for joint compression. The model is also promptable at test time with a desired tradeoff between the input modalities, to enable flexibility in the fidelity of the joint representation to each of them. Moreover, we show how end-to-end optimization of the joint compression model, including its modality tradeoff prompt, allows for better accuracy on downstream tasks leveraging multimodal inference when a constraint on the rate is to be met. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

30 pages, 5702 KiB  
Article
Monitoring Tropical Forest Disturbance and Recovery: A Multi-Temporal L-Band SAR Methodology from Annual to Decadal Scales
by Derek S. Tesser, Kyle C. McDonald, Erika Podest, Brian T. Lamb, Nico Blüthgen, Constance J. Tremlett, Felicity L. Newell, Edith Villa-Galaviz, H. Martin Schaefer and Raul Nieto
Remote Sens. 2025, 17(13), 2188; https://doi.org/10.3390/rs17132188 - 25 Jun 2025
Viewed by 448
Abstract
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of [...] Read more.
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of particular utility in tropical regions where clouds obscure optical satellite observations. To characterize tropical forest recovery in the Lowland Chocó Biodiversity Hotspot of Ecuador, we apply over a decade of dual-polarized (HH + HV) L-band SAR datasets from the Japanese Space Agency’s (JAXA) PALSAR and PALSAR-2 sensors. We assess the complementarity of the dual-polarized imagery with less frequently available fully-polarimetric imagery, particularly in the context of their respective temporal and informational trade-offs. We examine the radar image texture associated with the dual-pol radar vegetation index (DpRVI) to assess the associated determination of forest and nonforest areas in a topographically complex region, and we examine the equivalent performance of texture measures derived from the Freeman–Durden polarimetric radar decomposition classification scheme applied to the fully polarimetric data. The results demonstrate that employing a dual-polarimetric decomposition classification scheme and subsequently deriving the associated gray-level co-occurrence matrix mean from the DpRVI substantially improved the classification accuracy (from 88.2% to 97.2%). Through this workflow, we develop a new metric, the Radar Forest Regeneration Index (RFRI), and apply it to describe a chronosequence of a tropical forest recovering from naturally regenerating pasture and cacao plots. Our findings from the Lowland Chocó region are particularly relevant to the upcoming NASA-ISRO NISAR mission, which will enable the comprehensive characterization of vegetation structural parameters and significantly enhance the monitoring of biodiversity conservation efforts in tropical forest ecosystems. Full article
(This article belongs to the Special Issue NISAR Global Observations for Ecosystem Science and Applications)
Show Figures

Figure 1

23 pages, 11022 KiB  
Article
Multi-Sensor Remote Sensing for Early Identification of Loess Landslide Hazards: A Comprehensive Approach
by Jinyuan Mao, Qiaomei Su, Yueqin Zhu, Yu Xiao, Tianxiao Yan and Lei Zhang
Appl. Sci. 2025, 15(12), 6890; https://doi.org/10.3390/app15126890 - 18 Jun 2025
Viewed by 360
Abstract
Under the influence of extreme climatic conditions, landslide disasters occur frequently in the Loess Plateau due to complex geological structures, loose soil, and frequent intense rainfall. These events are often concealed, posing significant challenges for disaster prevention. High-resolution optical remote sensing combined with [...] Read more.
Under the influence of extreme climatic conditions, landslide disasters occur frequently in the Loess Plateau due to complex geological structures, loose soil, and frequent intense rainfall. These events are often concealed, posing significant challenges for disaster prevention. High-resolution optical remote sensing combined with field surveys can improve identification accuracy; however, concerns persist regarding issues such as omission and misidentification during hazard identification and monitoring processes. To address these challenges, this study proposes an integrated remote-sensing identification approach, focusing specifically on the central region of Tianshui, a typical landslide-prone area within the Loess Plateau. Utilizing Sentinel-1 and JL1LF01A remote-sensing imagery collected from 2022 to 2023, we conducted ground deformation monitoring through the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique. By integrating deformation results with optical imagery features indicative of potential landslide sites, a comprehensive identification method was developed to precisely detect potential landslide hazards. Verification of the identified sites was subsequently performed using the Google Earth platform, resulting in the establishment of a final dataset of potential landslide hazards within the study area. This outcome clearly demonstrates the high applicability and accuracy of the integrated remote-sensing identification method in the context of landslide hazard assessment. Furthermore, this research provides a solid scientific foundation for geological hazard identification efforts and plays a critical guiding role in disaster prevention and mitigation in Tianshui City, thereby enhancing the region’s capacity to withstand disaster risks and effectively safeguarding local lives and property. Full article
(This article belongs to the Special Issue Applications of Big Data and Artificial Intelligence in Geoscience)
Show Figures

Figure 1

27 pages, 7899 KiB  
Article
Tracking Post-Fire Vegetation Regrowth and Burned Areas Using Bitemporal Sentinel-1 SAR Data: A Google Earth Engine Approach in Heath Vegetation of Mooloolah River National Park, Queensland, Australia
by Harikesh Singh, Prashant K. Srivastava, Rajendra Prasad and Sanjeev Kumar Srivastava
Remote Sens. 2025, 17(12), 2031; https://doi.org/10.3390/rs17122031 - 12 Jun 2025
Viewed by 1191
Abstract
This study utilizes the unique capabilities of Sentinel-1 C-band synthetic aperture radar (SAR) data to map post-fire burned areas and monitor vegetation recovery in a heath-dominated Queensland National Park. Sentinel-1 SAR data were used due to their cloud-penetrating capability and frequent revisit times. [...] Read more.
This study utilizes the unique capabilities of Sentinel-1 C-band synthetic aperture radar (SAR) data to map post-fire burned areas and monitor vegetation recovery in a heath-dominated Queensland National Park. Sentinel-1 SAR data were used due to their cloud-penetrating capability and frequent revisit times. Using Google Earth Engine (GEE), a bitemporal ratio analysis was applied to SAR data from post-fire periods between 2021 and 2023. SAR backscatter changes over time captured fire impacts and subsequent vegetation regrowth. This differentiation was further enhanced with k-means clustering. Validation was supported by Sentinel-2 dNBR and official fire history records. The dNBR provided a quantitative assessment of burn severity and was used alongside the fire history data to evaluate the accuracy of the burned area classification. While Sentinel-2 false-colour composite (FCC) imagery was generated for visualisation and interpretation purposes, the primary validation relied on dNBR and QPWS fire history records. The results highlighted significant vegetation regrowth, with some areas returning to near pre-fire biomass levels by March 2023. This approach demonstrates the sensitivity of Sentinel-1 SAR, especially in VV polarization, for detecting subtle changes in vegetation, providing a cost-effective method for post-fire ecosystem monitoring and informing ecological management strategies amid increasing wildfire events. Full article
Show Figures

Figure 1

Back to TopTop