Improved Flood Insights: Diffusion-Based SAR-to-EO Image Translation
Abstract
1. Introduction
- Our Contributions.
- We propose DSE, the first diffusion-based SAR-to-EO translation framework explicitly designed for flood monitoring. Built on a Brownian Bridge formulation, DSE delivers stable training and high-fidelity EO synthesis even when optical imagery is completely unavailable at inference time.
- We integrate a blind-spot, self-supervised SAR denoising module directly into the diffusion pipeline, effectively suppressing speckle noise and boosting translation quality by up to 3.23 dB in PSNR and 0.10 in SSIM over conventional SAR2EO baselines.
- We conduct the first large-scale quantitative and human-in-the-loop evaluation on two public flood benchmarks (Sen1Floods11 and SEN12-FLOOD), and we publicly release our code, trained weights, and variance-map visualization tools to establish an open baseline for future SAR-only disaster-response research.
2. Materials and Methods
2.1. Related Work
2.1.1. EO Imagery for Disaster Management
2.1.2. SAR Imagery for Disaster Management
2.1.3. SAR-to-EO Image Translation
2.1.4. Diffusion Models
2.1.5. Self-Supervised SAR Denoising
2.2. Method
2.2.1. Brownian Bridge Diffusion Model (BBDM)
2.2.2. Pre-Processing
2.2.3. SAR-to-EO Image Translation via the DSE Framework
3. Results and Discussion
3.1. Training and Test Datasets
3.2. Evaluation Metrics
3.3. Implementation Details
3.4. Quantitative Results
3.4.1. Flood Segmentation
3.4.2. Image-to-Image Translation
3.4.3. Performance Comparison of SAR Image Denoising
3.4.4. Human Analysis
3.5. Qualitative Results
3.5.1. Image-to-Image Translation
3.5.2. Human Analysis
3.5.3. Variance Map
3.6. Limitation
3.7. Future Work
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allan, R.P.; Hawkins, E.; Bellouin, N.; Collins, B. IPCC, 2021: Summary for Policymakers. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf (accessed on 30 June 2025).
- Rohde, M.M. Floods and droughts are intensifying globally. Nat. Water 2023, 1, 226–227. [Google Scholar] [CrossRef]
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood exposure and poverty in 188 countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef] [PubMed]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Tay, C.W.; Yun, S.H.; Chin, S.T.; Bhardwaj, A.; Jung, J.; Hill, E.M. Rapid flood and damage mapping using synthetic aperture radar in response to Typhoon Hagibis, Japan. Sci. Data 2020, 7, 100. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Ju, J.; Noh, H.; Kim, M.; Choi, D.G. 1st Place Solution to MultiEarth 2023 Challenge on Multimodal SAR-to-EO Image Translation. arXiv 2023, arXiv:2306.12626. [Google Scholar]
- Li, B.; Xue, K.; Liu, B.; Lai, Y. BBDM: Image-to-image Translation with Brownian Bridge Diffusion Models. arXiv 2022, arXiv:2205.07680. [Google Scholar]
- Bonafilia, D.; Tellman, B.; Anderson, T.; Issenberg, E. Sen1Floods11: A georeferenced dataset to train and test deep learning flood algorithms for sentinel-1. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 210–211. [Google Scholar]
- Rambour, C.; Audebert, N.; Koeniguer, E.; Le Saux, B.; Crucianu, M.; Datcu, M. Sen12-flood: A Sar and Multispectral Dataset for Flood Detection. 2020. Available online: https://source.coop/repositories/esa/sen12flood/description (accessed on 30 June 2025).
- Cozannet, G.L.; Kervyn, M.; Russo, S.; Speranza, C.I.; Ferrier, P.; Foumelis, M.; Lopez, T.; Modaressi, H. Space-Based Earth Observations for Disaster Risk Management. Surv. Geophys. 2020, 41, 1209–1235. [Google Scholar] [CrossRef]
- Avalon-Cullen, C.; Caudill, C.; Newlands, N.K.; Enenkel, M. Big data, small island: Earth observations for improving flood and landslide risk assessment in Jamaica. Geosciences 2023, 13, 64. [Google Scholar] [CrossRef]
- Oh, Y.; Seo, M.; Kim, D.; Seo, J. Prototype-oriented Unsupervised Change Detection for Disaster Management. arXiv 2023, arXiv:2310.09759. [Google Scholar]
- Zhao, Q.; Yu, L. Advancing Sustainable Development Goals through Earth Observation Satellite Data: Current Insights and Future Directions. J. Remote Sens. 2025, 5, 0403. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; He, H.; Jia, Y.; Chen, R.; Ge, Y.; Ming, Z.; Zhang, L.; Li, H. MAST: An earthquake-triggered landslides extraction method combining morphological analysis edge recognition with swin-transformer deep learning model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 2586–2595. [Google Scholar] [CrossRef]
- Shukla, J.S.; Pandya, R.J. Deep learning-oriented c-GAN models for vegetative drought prediction on peninsular india. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 282–297. [Google Scholar] [CrossRef]
- Kim, D.; Seo, M.; Lee, H.; Seo, J. Masked Autoregressive Model for Weather Forecasting. arXiv 2024, arXiv:2409.20117. [Google Scholar]
- Yoon, D.; Seo, M.; Kim, D.; Choi, Y.; Cho, D. Probabilistic Weather Forecasting with Deterministic Guidance-Based Diffusion Model. In Proceedings of the European Conference on Computer Vision, Milan, Italy, 29 September–4 October 2024; pp. 108–124. [Google Scholar]
- Seo, M.; Kim, D.; Shin, S.; Kim, E.; Ahn, S.; Choi, Y. Simple baseline for weather forecasting using spatiotemporal context aggregation network. arXiv 2022, arXiv:2212.02952. [Google Scholar]
- Yu, D.; Li, X.; Ye, Y.; Zhang, B.; Luo, C.; Dai, K.; Wang, R.; Chen, X. Diffcast: A unified framework via residual diffusion for precipitation nowcasting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 27758–27767. [Google Scholar]
- Nguyen, T.; Brandstetter, J.; Kapoor, A.; Gupta, J.K.; Grover, A. Climax: A foundation model for weather and climate. arXiv 2023, arXiv:2301.10343. [Google Scholar]
- Chen, L.; Han, B.; Wang, X.; Zhao, J.; Yang, W.; Yang, Z. Machine learning methods in weather and climate applications: A survey. Appl. Sci. 2023, 13, 12019. [Google Scholar] [CrossRef]
- Nguyen, T.; Shah, R.; Bansal, H.; Arcomano, T.; Maulik, R.; Kotamarthi, R.; Foster, I.; Madireddy, S.; Grover, A. Scaling transformer neural networks for skillful and reliable medium-range weather forecasting. Adv. Neural Inf. Process. Syst. 2024, 37, 68740–68771. [Google Scholar]
- Lei, T.; Wang, J.; Li, X.; Wang, W.; Shao, C.; Liu, B. Flood Disaster Monitoring and Emergency Assessment Based on Multi-Source Remote Sensing Observations. Water 2022, 14, 2207. [Google Scholar] [CrossRef]
- Kordelas, G.A.; Manakos, I.; Lefebvre, G.; Poulin, B. Automatic Inundation Mapping Using Sentinel-2 Data Applicable to BothCamargue and Doñana Biosphere Reserves. Remote Sens. 2019, 11, 2251. [Google Scholar] [CrossRef]
- Kordelas, G.; Manakos, I.; Aragones, D.G.; Díaz-Delgado, R.; Bustamante, J. Fast and Automatic Data-Driven Thresholding for Inundation Mapping with Sentinel-2 Data. Remote. Sens. 2018, 10, 910. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112254. [Google Scholar] [CrossRef]
- Farías, C.A.; Lenardón Sánchez, M.; Bonì, R.; Cigna, F. Statistical and Independent Component Analysis of Sentinel-1 InSAR Time Series to Assess Land Subsidence Trends. Remote Sens. 2024, 16, 4066. [Google Scholar] [CrossRef]
- Lenardón Sánchez, M.; Farías, C.A.; Cigna, F. Multi-Decadal Land Subsidence Risk Assessment at Major Italian Cities by Integrating PSInSAR with Urban Vulnerability. Land 2024, 13, 2103. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Shahabi, H.; Crivellari, A.; Homayouni, S.; Blaschke, T.; Ghamisi, P. Landslide detection using deep learning and object-based image analysis. Landslides 2022, 19, 929–939. [Google Scholar] [CrossRef]
- Akosah, S.; Gratchev, I.; Kim, D.H.; Ohn, S.Y. Application of artificial intelligence and remote sensing for landslide detection and prediction: Systematic review. Remote Sens. 2024, 16, 2947. [Google Scholar] [CrossRef]
- Fang, C.; Fan, X.; Wang, X.; Nava, L.; Zhong, H.; Dong, X.; Qi, J.; Catani, F. A globally distributed dataset of coseismic landslide mapping via multi-source high-resolution remote sensing images. Earth Syst. Sci. Data 2024, 16, 4817–4842. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Zeng, X.; Zhou, S.; Sun, G.; Rao, S.; Guo, Y.; Zhu, J. A Cross-Domain Landslide Extraction Method Utilizing Image Masking and Morphological Information Enhancement. Remote Sens. 2025, 17, 1464. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, R.; Wu, R.; Bao, X.; Liu, G. Landslide detection based on pixel-level contrastive learning for semi-supervised semantic segmentation in wide areas. Landslides 2025, 22, 1087–1105. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Zheng, Y.; Shoaib, M.; Shah, S.U.; Ali, N.; Afzal, Z. Landslide susceptibility mapping using machine learning algorithm validated by persistent scatterer In-SAR technique. Sensors 2022, 22, 3119. [Google Scholar] [CrossRef]
- Schneider, D.J.; Eaton, A.R.V.; Wallace, K.L. Satellite observations of the 2016–2017 eruption of Bogoslof volcano: Aviation and ash fallout hazard implications from a water-rich eruption. Bull. Volcanol. 2020, 82, 29. [Google Scholar] [CrossRef]
- Piontek, D.; Bugliaro, L.; Kar, J.; Schumann, U.; Marenco, F.; Plu, M.; Voigt, C. The new volcanic ash satellite retrieval VACOS using MSG/SEVIRI and artificial neural networks: 2. Validation. Remote Sens. 2021, 13, 3128. [Google Scholar] [CrossRef]
- Ganci, G.; Bilotta, G.; Calvari, S.; Cappello, A.; Del Negro, C.; Herault, A. Volcanic hazard monitoring using multi-source satellite imagery. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1903–1906. [Google Scholar]
- Chen, Y.; Hantson, S.; Andela, N.; Coffield, S.R.; Graff, C.A.; Morton, D.C.; Ott, L.E.; Foufoula-Georgiou, E.; Smyth, P.; Goulden, M.L.; et al. California wildfire spread derived using VIIRS satellite observations and an object-based tracking system. Sci. Data 2022, 9, 249. [Google Scholar] [CrossRef] [PubMed]
- Seydi, S.T.; Akhoondzadeh, M.; Amani, M.; Mahdavi, S. Wildfire damage assessment over Australia using sentinel-2 imagery and MODIS land cover product within the google earth engine cloud platform. Remote Sens. 2021, 13, 220. [Google Scholar] [CrossRef]
- Rostami, A.; Shah-Hosseini, R.; Asgari, S.; Zarei, A.; Aghdami-Nia, M.; Homayouni, S. Active fire detection from landsat-8 imagery using deep multiple kernel learning. Remote Sens. 2022, 14, 992. [Google Scholar] [CrossRef]
- Hu, X.; Ban, Y.; Nascetti, A. Uni-temporal multispectral imagery for burned area mapping with deep learning. Remote Sens. 2021, 13, 1509. [Google Scholar] [CrossRef]
- Ko, B.; Kim, H.H.; Nam, J.Y. Classification of Potential Water Bodies Using Landsat 8 OLI and a Combination of Two Boosted Random Forest Classifiers. Sensors 2015, 15, 13763–13777. [Google Scholar] [CrossRef]
- Acharya, T.D.; Lee, D.H.; Yang, I.; Lee, J.K. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree. Sensors 2016, 16, 1075. [Google Scholar] [CrossRef]
- Sarp, G.; Ozcelik, M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 2017, 11, 381–391. [Google Scholar] [CrossRef]
- Mishra, K.; Prasad, P.R.C. Automatic Extraction of Water Bodies from Landsat Imagery Using Perceptron Model. J. Comput. Environ. Sci. 2015, 2015, 903465. [Google Scholar] [CrossRef]
- Skakun, S. A Neural Network Approach to Flood Mapping Using Satellite Imagery. Comput. Inform. 2012, 29, 1013–1024. [Google Scholar]
- Nemni, E.; Aylett-Bullock, J.; Belabbes, S.; Bromley, L. Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery. Remote Sens. 2020, 12, 2532. [Google Scholar] [CrossRef]
- Amitrano, D.; Di Martino, G.; Di Simone, A.; Imperatore, P. Flood detection with SAR: A review of techniques and datasets. Remote Sens. 2024, 16, 656. [Google Scholar] [CrossRef]
- Islam, M.T.; Meng, Q. An exploratory study of Sentinel-1 SAR for rapid urban flood mapping on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103002. [Google Scholar]
- Lahsaini, M.; Albano, F.; Albano, R.; Mazzariello, A.; Lacava, T. A synthetic aperture radar-based robust satellite technique (RST) for timely mapping of floods. Remote Sens. 2024, 16, 2193. [Google Scholar] [CrossRef]
- Jamali, A.; Roy, S.K.; Beni, L.H.; Pradhan, B.; Li, J.; Ghamisi, P. Residual wave vision U-Net for flood mapping using dual polarization Sentinel-1 SAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103662. [Google Scholar] [CrossRef]
- Florentino, A.; Charapaqui, S.; Jara, C.D.L.; Milla, M.A. Implementation of a ground based synthetic aperture radar (GB-SAR) for landslide monitoring: System description and preliminary results. In Proceedings of the 2016 IEEE XXIII International Congress on Electronics, Electrical Engineering and Computing (INTERCON), Piura, Peru, 2–5 August 2016; pp. 1–6. [Google Scholar]
- Aslan, G.; Foumelis, M.; Raucoules, D.; De Michele, M.; Bernardie, S.; Cakir, Z. Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French Alps. Remote Sens. 2020, 12, 1305. [Google Scholar] [CrossRef]
- Nava, L.; Monserrat, O.; Catani, F. Improving landslide detection on SAR data through deep learning. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Nava, L.; Bhuyan, K.; Meena, S.R.; Monserrat, O.; Catani, F. Rapid mapping of landslides on SAR data by attention U-Net. Remote Sens. 2022, 14, 1449. [Google Scholar] [CrossRef]
- Endo, Y.; Adriano, B.; Mas, E.; Koshimura, S. New insights into multiclass damage classification of tsunami-induced building damage from SAR images. Remote Sens. 2018, 10, 2059. [Google Scholar] [CrossRef]
- Koshimura, S.; Moya, L.; Mas, E.; Bai, Y. Tsunami damage detection with remote sensing: A review. Geosciences 2020, 10, 177. [Google Scholar] [CrossRef]
- Kwak, Y.; Yorozuya, A.; Iwami, Y. Disaster risk reduction using image fusion of optical and SAR data before and after tsunami. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–11. [Google Scholar]
- Shafapourtehrany, M.; Batur, M.; Shabani, F.; Pradhan, B.; Kalantar, B.; Özener, H. A comprehensive review of geospatial technology applications in earthquake preparedness, emergency management, and damage assessment. Remote Sens. 2023, 15, 1939. [Google Scholar] [CrossRef]
- Ross, Z.E.; Idini, B.; Jia, Z.; Stephenson, O.L.; Zhong, M.; Wang, X.; Zhan, Z.; Simons, M.; Fielding, E.J.; Yun, S.H.; et al. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science 2019, 366, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Park, S.E.; Jung, Y.T. Detection of earthquake-induced building damages using polarimetric SAR data. Remote Sens. 2020, 12, 137. [Google Scholar] [CrossRef]
- Ji, Y.; Sumantyo, J.T.S.; Chua, M.Y.; Waqar, M.M. Earthquake/Tsunami Damage Level Mapping of Urban Areas Using Full Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2296–2309. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A Collection of SAR Methodologies for Monitoring Wetlands. Remote Sens. 2015, 7, 7615–7645. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near real-time wildfire progression monitoring with Sentinel-1 SAR time series and deep learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Yu, Y.; Yang, R.; Gui, R.; Xu, Z.; Pu, F. SAR-to-Optical Image Translation Using Supervised Cycle-Consistent Adversarial Networks. IEEE Access 2019, 7, 129136–129149. [Google Scholar] [CrossRef]
- Ryu, J.; Oh, Y.; Seo, M. SAR2Earth: A SAR-to-EO Translation Dataset for Remote Sensing Applications. Available online: https://openreview.net/forum?id=JigWdDArjb (accessed on 30 June 2025).
- Seo, M.; Lee, H.; Jeon, Y.; Seo, J. Self-Pair: Synthesizing Changes from Single Source for Object Change Detection in Remote Sensing Imagery. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–7 January 2023; pp. 6374–6383. [Google Scholar]
- Li, Y.; Hu, J.; Jia, Y. Automatic SAR image enhancement based on nonsubsampled contourlet transform and memetic algorithm. Neurocomputing 2014, 134, 70–78. [Google Scholar] [CrossRef]
- Li, Y.; Gong, H.; Feng, D.D.; Zhang, Y. An Adaptive Method of Speckle Reduction and Feature Enhancement for SAR Images Based on Curvelet Transform and Particle Swarm Optimization. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3105–3116. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Denis, L.; Tupin, F.; Reigber, A.; Jäger, M. NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving (Pol)(In)SAR Denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2021–2038. [Google Scholar] [CrossRef]
- Low, S.; Nina, O.; Sappa, A.D.; Blasch, E.; Inkawhich, N. Multi-Modal Aerial View Image Challenge: Translation From Synthetic Aperture Radar to Electro-Optical Domain Results-PBVS 2023. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–14 June 2023; pp. 515–523. [Google Scholar]
- Reyes, M.F.; Auer, S.; Merkle, N.; Henry, C.; Schmitt, M. SAR-to-Optical Image Translation Based on Conditional Generative Adversarial Networks - Optimization, Opportunities and Limits. Remote Sens. 2019, 11, 2067. [Google Scholar] [CrossRef]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Song, Y.; Sohl-Dickstein, J.; Kingma, D.P.; Kumar, A.; Ermon, S.; Poole, B. Score-Based Generative Modeling through Stochastic Differential Equations. arXiv 2021, arXiv:2011.13456. [Google Scholar]
- Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8798–8807. [Google Scholar]
- Perera, M.V.; Nair, N.G.; Bandara, W.G.C.; Patel, V.M. Sar despeckling using a denoising diffusion probabilistic model. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4005305. [Google Scholar] [CrossRef]
- Lee, J.S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Frost, V.S.; Stiles, J.A.; Shanmugan, K.S.; Holtzman, J.C. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, PAMI-4, 157–166. [Google Scholar] [CrossRef]
- Kuan, D.T.; Sawchuk, A.A.; Strand, T.C.; Chavel, P. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. 1985, PAMI-7, 165–177. [Google Scholar] [CrossRef]
- Krull, A.; Buchholz, T.O.; Jug, F. Noise2void-learning denoising from single noisy images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2129–2137. [Google Scholar]
- Batson, J.; Royer, L. Noise2self: Blind denoising by self-supervision. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 524–533. [Google Scholar]
- Zhang, D.; Zhou, F.; Jiang, Y.; Fu, Z. MM-BSN: Self-Supervised Image Denoising for Real-World with Multi-Mask based on Blind-Spot Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 4188–4197. [Google Scholar]
- Esser, P.; Rombach, R.; Ommer, B. Taming transformers for high-resolution image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12873–12883. [Google Scholar]
- Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning image restoration without clean data. arXiv 2018, arXiv:1803.04189. [Google Scholar]
- Yu, J.; Du, S.; Lu, R.; Li, P.; Xie, G.; Cai, Z.; Lu, K.; Ling, Q.; Wang, C.; Qiu, L.; et al. SAR2EO: A High-resolution Image Translation Framework with Denoising Enhancement. arXiv 2023, arXiv:2304.04760. [Google Scholar]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 10684–10695. [Google Scholar]
- Mateo-Garcia, G.; Veitch-Michaelis, J.; Smith, L.; Oprea, S.V.; Schumann, G.; Gal, Y.; Baydin, A.G.; Backes, D. Towards global flood mapping onboard low cost satellites with machine learning. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
Method | Modality | Metric | ||||
---|---|---|---|---|---|---|
Pre. (0/1) | Rec. (0/1) | F1 (0/1) | IoU (0/1) | ACC | ||
U-Net [91] (ResNet34) | SAR | 0.9622/0.4267 | 0.9796/0.2871 | 0.9708/0.3409 | 0.9433/0.2146 | 0.9442 |
U-Net [91] (ResNet34) | EO | 0.9930/0.7833 | 0.9858/0.8642 | 0.9894/0.8162 | 0.9790/0.6928 | 0.9800 |
U-Net [91] (ResNet34) | SAR + EO | 0.9894/0.7673 | 0.9840/0.7954 | 0.9867/0.7685 | 0.9455/0.6291 | 0.9749 |
U-Net [91] (ResNet34) | SAR + SynEO | 0.9862/0.7085 | 0.9817/0.7352 | 0.9838/0.7041 | 0.9683/0.5556 | 0.9695 |
U-Net [91] (ResNet34) | SynEO | 0.9931/0.4697 | 0.9440/0.8723 | 0.9678/0.6070 | 0.9378/0.4377 | 0.9408 |
Method | PSNR | SSIM | LPIPS |
---|---|---|---|
Pix2PixHD [78] | 31.09 | 0.81 | 0.116 |
BBDM [10] | 29.20 | 0.74 | 0.124 |
DSE | 32.43 | 0.84 | 0.109 |
DSE + multi-temporal | 34.94 | 0.87 | 0.082 |
Method | PSNR | SSIM |
---|---|---|
Noise2Void [83] | 26.42 | 0.628 |
Noise2Self [84] | 26.98 | 0.682 |
MM-BSN (Ours) [85] | 27.25 | 0.695 |
Modality | IoU |
---|---|
SAR + EO | 0.5532 |
SAR + SynEO | 0.5464 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, M.; Jung, J.; Choi, D.-G. Improved Flood Insights: Diffusion-Based SAR-to-EO Image Translation. Remote Sens. 2025, 17, 2260. https://doi.org/10.3390/rs17132260
Seo M, Jung J, Choi D-G. Improved Flood Insights: Diffusion-Based SAR-to-EO Image Translation. Remote Sensing. 2025; 17(13):2260. https://doi.org/10.3390/rs17132260
Chicago/Turabian StyleSeo, Minseok, Jinwook Jung, and Dong-Geol Choi. 2025. "Improved Flood Insights: Diffusion-Based SAR-to-EO Image Translation" Remote Sensing 17, no. 13: 2260. https://doi.org/10.3390/rs17132260
APA StyleSeo, M., Jung, J., & Choi, D.-G. (2025). Improved Flood Insights: Diffusion-Based SAR-to-EO Image Translation. Remote Sensing, 17(13), 2260. https://doi.org/10.3390/rs17132260