Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (581)

Search Parameters:
Keywords = SiO2 deposition layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15569 KiB  
Article
Studies on the Chemical Etching and Corrosion Resistance of Ultrathin Laminated Alumina/Titania Coatings
by Ivan Netšipailo, Lauri Aarik, Jekaterina Kozlova, Aivar Tarre, Maido Merisalu, Kaisa Aab, Hugo Mändar, Peeter Ritslaid and Väino Sammelselg
Corros. Mater. Degrad. 2025, 6(3), 36; https://doi.org/10.3390/cmd6030036 (registering DOI) - 2 Aug 2025
Abstract
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic [...] Read more.
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic layer deposition. The coatings were chemically etched and subjected to corrosion, ultrasound, and thermal shock tests. The coating etching resistance efficiency (Re) was determined by measuring via XRF the change in the coating sublayer mass thickness after etching in hot 80% H2SO4. The maximum Re values of ≥98% for both alumina and titania sublayers were obtained for the laminates deposited at 250–400 °C on both substrates. In these coatings, the titania sublayers were crystalline. The lowest Re values of 15% and 50% for the alumina and titania sublayers, respectively, were measured for laminate grown at 80 °C on silicon. The coatings deposited at 160–200 °C demonstrated a delay in the increase of Re values, attributed to the changes in the titania sublayers before full crystallization. Coatings grown at higher temperatures were also more resistant to ultrasound and liquid nitrogen treatments. In contrast, coatings deposited at 125 °C on SS had better corrosion protection, as demonstrated via electrochemical impedance spectroscopy and a standard immersion test in FeCl3 solution. Full article
Show Figures

Figure 1

22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 308
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

20 pages, 6738 KiB  
Article
Biocompatible Inorganic PVD MeSiON Thin Films (Me = Cr or Zr) Used to Enhance the Bond Strength Between NiCr-Based Metallic Frameworks and Ceramic in Dental Restorations
by Mihaela Dinu, Cosmin Mihai Cotrut, Alina Vladescu (Dragomir), Florin Baciu, Anca Constantina Parau, Iulian Pana, Lidia Ruxandra Constantin and Catalin Vitelaru
Dent. J. 2025, 13(7), 318; https://doi.org/10.3390/dj13070318 - 14 Jul 2025
Viewed by 219
Abstract
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve [...] Read more.
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve the bond strength between NiCr-based metal frameworks and ceramic coatings by introducing biocompatible inorganic MeSiON thin films (Me = Cr or Zr) as interlayers. Methods: MeSiON coatings with a thickness of ~2 μm were deposited on NiCr alloy using cathodic arc evaporation. To tailor the stoichiometry, morphology, and mechanical properties of the coatings, the substrate bias voltage was varied: −50 V, −100 V, −150 V, −200 V. Structural and surface characterization was performed using SEM/EDS, XRD, profilometry, and contact angle analysis. The coating adhesion was evaluated by using standardized scratch testing, while the bond strength was evaluated using a three-point bending test. Results: The NiCr alloy exhibited a dendritic microstructure, and the ceramic layer consisted mainly of quartz, feldspar, kaolin, and ZrO2. ZrSiON coatings showed superior roughness, elemental incorporation, and adhesion compared to Cr-based coatings, these properties being further improved by increasing the substrate bias. The highest bond strength was achieved with a ZrSiON coating deposited at −200 V, a result we attributed to increased surface roughness and mechanical interlocking at the ceramic-metal interface. Conclusions: CrSiON and ZrSiON interlayers enhanced ceramic-to-metal adhesion in NiCr-based dental restorations. The enhancement in bond strength is primarily ascribed to substrate bias-induced modifications in the coating’s stoichiometry, roughness, and adhesion. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

19 pages, 4319 KiB  
Article
Investigation of Corrosion Resistance of 60Si2MnA Spring Steel Coated with Zn-Al in Atmospheric Environments
by Yurong Wang, Hui Xiao, Baolong Liu, Shilong Chen, Xiaofei Jiao, Shuwei Song, Wenyue Zhang and Ying Jin
Materials 2025, 18(14), 3215; https://doi.org/10.3390/ma18143215 - 8 Jul 2025
Viewed by 288
Abstract
To investigate the corrosion resistance of 60Si2MnA spring steel coated with Zn-Al in a domestic atmospheric environment containing harmful salts, the corrosion environmental factors (temperature, humidity, deposited salts, and pH) were obtained through field research. The deliquescence and weathering behavior of harmful salts [...] Read more.
To investigate the corrosion resistance of 60Si2MnA spring steel coated with Zn-Al in a domestic atmospheric environment containing harmful salts, the corrosion environmental factors (temperature, humidity, deposited salts, and pH) were obtained through field research. The deliquescence and weathering behavior of harmful salts were studied using impedance methods to establish their characteristic curves. Additionally, a self-designed salt deposition test apparatus was employed to conduct accelerated atmospheric corrosion tests under constant salt deposition (10 g/m2) and controlled temperature and humidity conditions (20 °C/75% RH and 40 °C/75% RH) over different corrosion periods. The results show that noticeable red rust appeared on the samples after one month of corrosion. As the temperature increased, the consumption of the coating accelerated. XRD and Raman analyses reveal that the main corrosion products of the coating materials were ZnO, Zn(OH)2, and Zn5(CO3)2(OH)6, while the red rust primarily consisted of iron oxides and hydroxides. In the early stages of corrosion, the self-corrosion current density was relatively low due to the protective effects of the coating and the corrosion product layer, indicating good corrosion resistance. However, in the later stages, the integrity of the coating and the corrosion product layer deteriorated, leading to a significant increase in the self-corrosion current density and a decline in corrosion resistance. This study provides a data foundation for understanding the corrosion behavior of Zn-Al-coated spring steel in atmospheric environments and offers theoretical insights for developing more corrosion-resistant coatings and optimizing anti-corrosion measures. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

9 pages, 1221 KiB  
Article
High-Performance GaN-Based Green Flip-Chip Mini-LED with Lattice-Compatible AlN Passivation Layer
by Jiahao Song, Lang Shi, Siyuan Cui, Lingyue Meng, Qianxi Zhou, Jingjing Jiang, Conglong Jin, Jiahui Hu, Kuosheng Wen and Shengjun Zhou
Nanomaterials 2025, 15(13), 1048; https://doi.org/10.3390/nano15131048 - 5 Jul 2025
Viewed by 405
Abstract
The GaN-based green miniaturized light-emitting diode (mini-LED) is a key component for the realization of full-color display. Optimized passivation layers can alleviate the trapping of carriers by sidewall defects and are regarded as an effective way to improve the external quantum efficiency (EQE) [...] Read more.
The GaN-based green miniaturized light-emitting diode (mini-LED) is a key component for the realization of full-color display. Optimized passivation layers can alleviate the trapping of carriers by sidewall defects and are regarded as an effective way to improve the external quantum efficiency (EQE) efficiency of mini-LEDs. Since AlN has a closer lattice match to GaN compared to other heterogeneous passivation materials, we boosted the EQE of GaN-based green flip-chip mini-LEDs through the deposition of a lattice-compatible AlN passivation layer through atomic layer deposition (ALD) and a SiO2 passivation layer through plasma-enhanced chemical vapor deposition (PECVD). Benefiting from reduced sidewall nonradiative recombination, the EQE of the green flip-chip mini-LED with a composite ALD-AlN/PECVD-SiO2 passivation layer reached 34.14% at 5 mA, which is 34.6% higher than that of the green flip-chip mini-LED with a single PECVD-SiO2 passivation layer. The results provide guidance for the realization of high-performance mini-LEDs by selecting lattice-compatible passivation layers. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

29 pages, 8189 KiB  
Article
The Key Controlling Factors and Mechanisms for the Formation of Sandstone-Type Uranium Deposits in the Central Part of the Ulanqab Depression, Erlian Basin
by Yang Liu, Hu Peng, Ning Luo, Xiaolin Yu, Ming Li and Bo Ji
Minerals 2025, 15(7), 688; https://doi.org/10.3390/min15070688 - 27 Jun 2025
Viewed by 360
Abstract
The characteristics of interlayer oxidation zones constrain sandstone-type uranium mineralization. This study conducted a quantitative characterization of the interlayer oxidation zones in the uranium-bearing reservoir of the Saihan Formation in the central Wulanchabu Subbasin of the Erlian Basin through sand dispersion system mapping, [...] Read more.
The characteristics of interlayer oxidation zones constrain sandstone-type uranium mineralization. This study conducted a quantitative characterization of the interlayer oxidation zones in the uranium-bearing reservoir of the Saihan Formation in the central Wulanchabu Subbasin of the Erlian Basin through sand dispersion system mapping, the analysis of sedimentary debris components, environmentally sensitive parameters, and elemental geochemical characteristics. The formation mechanisms and controlling factors of interlayer oxidation zones were investigated, along with uranium mineralization patterns. Research findings reveal that the sandbodies in the study area primarily consist of red sandstone, yellow sandstone, gray ore-bearing sandstone, and primary gray sandstone, representing strong oxidation zones, weak oxidation zones, transitional zones, and reduction zones, respectively. Although the mineral debris content shows minimal variation among different zones, feldspar dissolution is more prevalent in oxidized zones. During interlayer oxidation, environmentally sensitive parameters exhibit an ascending trend from strong oxidation zones through weak oxidation zones and reduction zones to mineralized transitional zones. Four transition metal elements (Co, Ni, Zn, and Mo) demonstrate enrichment in mineralized transitional zones. The development of interlayer oxidation zones is directly controlled by reservoir heterogeneity and sedimentary environments. Oxidation subzones primarily occur in sandbodies with moderate thickness (40–80 m), sand content ratios of 40%–80%, and 2–10 or 10–18 mudstone barriers (approximately 20 m thick), mainly in braided river channels and channel margin deposits. Reduction zones develop in thicker sandbodies (~100 m) with higher sand contents (~80%), fewer mudstone barriers (2–8 layers), greater thickness (40–80 m), and predominantly channel margin deposits. Transitional zones mainly occur in braided distributary channels and floodplain deposits. When oxygen-bearing uranium fluids infiltrate reservoirs, oxygen reacts with reductants like organic matter, whereFe2+ oxidizes to Fe3+, S2− reacts with oxygen, and U4+ oxidizes to U6+, migrating as uranyl complexes. As oxygen depletes, Fe3+ reduces to Fe2+, combining with S2− to form pyrite between mineral grains. Uranyl complexes reduce to precipitate as pitchblende, while some U4+ reacts with SiO44−, forming coffinite, occurring as colloids around quartz debris or pyrite. The concurrent enrichment of certain transition metal elements occurs during this process. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

7 pages, 656 KiB  
Communication
Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates
by Grazia Giuseppina Politano
Crystals 2025, 15(7), 603; https://doi.org/10.3390/cryst15070603 - 27 Jun 2025
Viewed by 273
Abstract
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis [...] Read more.
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis revealed a slight but measurable broadening (~0.7 cm−1) of the Si TO phonon mode at 514 cm−1, indicating local interfacial strain. Cyclic voltammetry measurements showed a substantial increase in photocurrent in comparison to pristine silicon substrates. These effects are attributed to a GO-induced p-type inversion layer and enhanced interfacial charge transfer. The results suggest that GO can serve as a functional interfacial layer for improving silicon-based optoelectronic and photoelectrochemical devices. Full article
(This article belongs to the Special Issue Optical Characterization of Functional Materials)
Show Figures

Figure 1

16 pages, 2734 KiB  
Article
Achieving a High Energy Storage Performance in Grain Engineered (Ba,Sr)(Zr,Ti)O3 Ferroelectric Films Integrated on Si
by Fuyu Lv, Chao Liu, Hongbo Cheng and Jun Ouyang
Nanomaterials 2025, 15(12), 920; https://doi.org/10.3390/nano15120920 - 13 Jun 2025
Viewed by 368
Abstract
BaTiO3-based lead-free ferroelectric films with a large recoverable energy density (Wrec) and a high energy efficiency (η) are crucial components for next-generation dielectric capacitors, which are used in energy conditioning and storage applications in integrated circuits. [...] Read more.
BaTiO3-based lead-free ferroelectric films with a large recoverable energy density (Wrec) and a high energy efficiency (η) are crucial components for next-generation dielectric capacitors, which are used in energy conditioning and storage applications in integrated circuits. In this study, grain-engineered (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 (BSZT) ferroelectric thick films (~500 nm) were prepared on Si substrates. These films were deposited at 350 °C, 100 °C lower than the temperature at which the LaNiO3 buffer layer was deposited on Pt/Ti. This method reduced the (001) grain population due to a weakened interface growth mode, while promoting volume growth modes that produced (110) and (111) grains with a high polarizability. As a result, these films exhibited a maximum polarization of ~88.0 μC/cm2, a large Wrec of ~203.7 J/cm3, and a high energy efficiency η of 81.2% (@ 6.4 MV/cm). The small-field dielectric constant nearly tripled as compared with that of the same BSZT/LaNiO3 heterostructure deposited at the same temperature (350 °C or 450 °C). The enhanced linear dielectric response, delayed ferroelectric polarization saturation, and increased dielectric strength due to the nano-grain size, collectively contributed to the improved energy storage performance. This work provides a novel approach for fabricating high-performance dielectric capacitors for energy storage applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

24 pages, 70177 KiB  
Article
Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran
by Abdorrahman Rajabi, Reza Nozaem, Sara Momenipour, Shojaedin Niroomand, Shahrokh Rajabpour, Somaye Rezaei, Pura Alfonso, Carles Canet, Ahmad Kazemi Mehrnia, Pouria Mahmoodi, Amir Mahdavi, Mansoor Kazemirad, Omid Laghari Firouzjaei and Mohammad Amini
Minerals 2025, 15(6), 590; https://doi.org/10.3390/min15060590 - 30 May 2025
Viewed by 914
Abstract
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a [...] Read more.
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a NW–SE oriented ductile shear zone, parallel to the Zagros thrust zone, experienced significant deformation. Detailed structural studies indicate that the iron mineralization is primarily stratiform to stratabound and hosted in late Triassic to early Jurassic silicified dolomites and schists. These ore deposits consist of lenticular iron oxide orebodies and exhibit various structures and textures, including banded, laminated, folded, disseminated, and massive forms of magnetite and hematite. The Fe2O3 content in the mineralized layers varies from 30 to 91 wt%, whereas MnO has an average of 3.9 wt%. The trace elements are generally low, except for elevated concentrations of Cu (up to 4350 ppm) and Zn (up to 3270 ppm). Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis of magnetite reveals high concentrations of Mg, Al, Si, Mn, Ti, Cu, and Zn, with significant depletion of elements such as Ga, Ge, As, and Nb. This study refutes the hypothesis of vein-like or hydrothermal genesis, providing evidence for a sedimentary origin based on the trace element geochemistry of magnetite and LA-ICP-MS geochemical data. The Dehbid banded iron ores (BIOs) are thought to have formed under geodynamic conditions similar to those of BIOs in back-arc tectonic settings. The combination of anoxic conditions, submarine hydrothermal iron fluxes, and redox fluctuations is essential for the formation of these deposits, suggesting that similar iron–manganese deposits can form during the Phanerozoic under specific geodynamic and oceanographic conditions, particularly in tectonically active back-arc environments. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Polymetallic Ore Deposits)
Show Figures

Figure 1

13 pages, 3697 KiB  
Article
Interfacial Chemical and Electrical Performance Study and Thermal Annealing Refinement for AlTiO/4H-SiC MOS Capacitors
by Yu-Xuan Zeng, Wei Huang, Hong-Ping Ma and Qing-Chun Zhang
Nanomaterials 2025, 15(11), 814; https://doi.org/10.3390/nano15110814 - 28 May 2025
Viewed by 384
Abstract
The gate reliability issues in SiC-based devices with a gate dielectric formed through heat oxidation are important factors limiting their application in power devices. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) were combined using the ALD process [...] Read more.
The gate reliability issues in SiC-based devices with a gate dielectric formed through heat oxidation are important factors limiting their application in power devices. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) were combined using the ALD process to form a composite AlTiO gate dielectric on a 4H-SiC substrate. TDMAT and TMA were the precursors selected and deposited at 200 °C, and the samples were Ar or N2 annealed at temperatures ranging from 300 °C to 700 °C. An XPS analysis suggested that the AlTiO film had been deposited with a high overall quality and the involvement of Ti atoms had increased the interfacial bonding with the substrate. The as-deposited MOS structure had band shifts of ΔEC = 1.08 eV and ΔEV = 2.41 eV. After annealing, the AlTiO bandgap increased by 0.85 eV at most, and better band alignment was attained. Leakage current and breakdown voltage characteristic investigations were conducted after Al electrode deposition. The leakage current density and electrical breakdown field of an MOS capacitor structure with a SiC substrate were ~10−3 A/cm2 and 6.3 MV/cm, respectively. After the annealing process, both the measures of the JV performance of the MOS capacitor had improved to ~10−6 A/cm2 and 7.2 MV/cm. The interface charge Neff of the AlTiO layer was 4.019 × 1010 cm−2. The AlTiO/SiC structure fabricated in this work proved the feasibility of adjusting the properties of single-component gate dielectric materials using the ALD method, and using a suitable thermal annealing process has great potential to improve the performance of the compound MOS dielectric layer. Full article
(This article belongs to the Special Issue Advanced Studies in Wide-Bandgap Nanomaterials and Devices)
Show Figures

Figure 1

22 pages, 9593 KiB  
Article
Study on Characteristics of Ash Accumulation During Co-Combustion of Salix Biomass and Coal
by Yan Zhang, Chengzhe Shen, Dongxv Wang, Jinbao Zhang, Kai Yang, Haisong Yang, Hailong Liu, Xintong Wen, Yong Zhang, Yunhao Shao, Ruyu Yan, Ningzhu Ye and Lei Deng
Energies 2025, 18(11), 2713; https://doi.org/10.3390/en18112713 - 23 May 2025
Viewed by 385
Abstract
Co-combustion of coal and biomass for power generation technology could not only realize the effective utilization of biomass energy, but also reduce the emission of greenhouse gases. In this study, a system of a settling furnace with high temperature is applied to study [...] Read more.
Co-combustion of coal and biomass for power generation technology could not only realize the effective utilization of biomass energy, but also reduce the emission of greenhouse gases. In this study, a system of a settling furnace with high temperature is applied to study the ash deposition of the co-combustion of coal and salix. The effects of salix blending ratio, flue gas temperature, and wall temperature on ash deposition are studied. The micro-morphology, elemental content, and compound composition of the ash samples are characterized by scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS) and X-Ray Diffraction (XRD), respectively. The results show that with the biomass blending ratio increasing from 5% to 30%, the content of Ca in ash increases from 8.92% to 20.59%. In particular, when the salix blending ratio exceeds 20%, plenty of the low-melting-point compounds of Ca aggravate the melting adhesion of ash particles, causing serious ash accumulation. Therefore, the salix blending radio is recommended to be limited to no more than 20%. With the increase in flue gas temperature, ash particles melt and stick, forming ash accumulation. Under the condition of flue gas temperature ≥ 1200 °C, a serious ash particle melting flow occurs, and CaO covers the surface of the ash particles, making the ash particles adhere to each other, which makes them difficult to remove. Therefore, controlling the flue gas temperature below 1200 °C is necessary. When the temperature crosses the threshold range of 500–600 °C, the Ca and K contents increase by 35.6% and 41.9%, respectively, while the Si content decreases by 9.7%. The increase in K and Ca content leads to the thickening of the initial layer of the ash deposit, which facilitates the formation of the sintered layer of the deposited ash. Meanwhile, the reduction in Si content leads to the particles’ adhesion, which markedly increases the degree of ash slagging. Once the wall temperature exceeds 600 °C, severe ash slagging becomes a threat to the safe operation of the boiler. Therefore, the wall temperature should not exceed 600 °C. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

16 pages, 4136 KiB  
Article
Synthesis and Characterization of MgO-ZrO2 Heterostructure: Optical, Mechanical and Electrical Properties
by Tabasum Huma, Nadimullah Hakimi, Muhammad Anwar ul haq, Tanzeel Huma, Lei Xu and Xinkun Zhu
Crystals 2025, 15(5), 465; https://doi.org/10.3390/cryst15050465 - 15 May 2025
Viewed by 610
Abstract
The synthesis and characterization of MgO-ZrO2 heterostructures are examined in this work. To promote the creation of nanowires, the Si substrate is first covered with a catalyst layer of various Au thicknesses. Sputtering is used to achieve this deposition. After that, chemical [...] Read more.
The synthesis and characterization of MgO-ZrO2 heterostructures are examined in this work. To promote the creation of nanowires, the Si substrate is first covered with a catalyst layer of various Au thicknesses. Sputtering is used to achieve this deposition. After that, chemical vapor deposition (CVD) with a Au catalyst layer is used to create MgO nanowire arrays on the silicon substrate. Second, MgO/ZrO2 Core–shell Nanowire Arrays are created by applying ZrO2 layers to the surface of MgO nanowires of different diameters using chemical vapor deposition (CVD) procedures. The presence of both magnesium oxide (MgO) and zirconium dioxide (ZrO2) in their oxidized forms was shown by the detailed characterization of the MgO-ZrO2 core–shell nanowire samples utilizing a variety of methods. Phase formation, mechanical homogeneity, optical characteristics, and topographical structure and roughness were all thoroughly examined at various stresses. MgO hardness values ranged from 1.4 to 3.2 GPa, whereas MgO-ZrO2 ranged from 0.38 to 1.2 GPa. The I–V parameter study was a further step in the examination of the heterostructure’s electrical properties. The structural, morphological, optical, mechanical, and electrical properties of the MgO-ZrO2 heterostructure were all thoroughly described using these techniques. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

17 pages, 4370 KiB  
Article
Modified Silica Particles Coated with Cu-Al Layered Double Hydroxide for Phosphate and Arsenate Removal in Water Treatment
by Andrija Savić, Marija M. Vuksanović, Marjetka Savić, Nataša Knežević, Aleksandra Šaponjić, Svetlana Ilić and Adela Egelja
Molecules 2025, 30(10), 2138; https://doi.org/10.3390/molecules30102138 - 13 May 2025
Viewed by 612
Abstract
Environmental pollution remains one of the most pressing challenges facing modern society, with the removal of toxic substances from water sources being of particular concern. In this study, a composite material was synthesized by combining Cu-Al layered double hydroxides (CuAl-LDHs) with modified silica [...] Read more.
Environmental pollution remains one of the most pressing challenges facing modern society, with the removal of toxic substances from water sources being of particular concern. In this study, a composite material was synthesized by combining Cu-Al layered double hydroxides (CuAl-LDHs) with modified silica particles, aiming to develop an efficient and environmentally friendly adsorbent for the removal of phosphate and arsenate ions from water. CuAl-LDH, with a Cu2+/Al3+ molar ratio of 2:1, was synthesized using the co-precipitation method in the presence of modified silica maintaining an LDH/SiO2 mass ratio of 2:1. The silica particles were functionalized with 3-glycidyloxypropyltrimethoxysilane (GLYMO) followed by modification with polyethyleneimine (PEI) to enhance their adsorption properties. X-ray diffraction (XRD) confirmed the successful deposition of CuAl-LDH on the silica surface, while scanning electron microscopy (SEM) revealed the porous structure of the silica and the uniform deposition of LDH. Adsorption experiments were performed to evaluate the removal efficiency of phosphate and arsenate ions under varying conditions. Equilibrium adsorption capacities, based on the Langmuir isotherm model, were determined to be 44.6 mg·g−1 for phosphate (PO43−) and 32.3 mg·g−1 for arsenate (As(V)) at 25 °C. The sorption behavior was better described by the Freundlich isotherm model, which yielded KF values of 15.4 L·mg−1 for phosphate and 13.9 L·mg−1 for arsenate. Both batch and kinetic experiments confirmed the high adsorption efficiency of the composite, demonstrating its potential as a promising material for water treatment applications. Full article
Show Figures

Graphical abstract

20 pages, 7568 KiB  
Article
Carbon Nano-Onions–Polyvinyl Alcohol Nanocomposite for Resistive Monitoring of Relative Humidity
by Bogdan-Catalin Serban, Niculae Dumbravescu, Octavian Buiu, Marius Bumbac, Carmen Dumbravescu, Mihai Brezeanu, Cristina Pachiu, Cristina-Mihaela Nicolescu, Cosmin Romanitan and Oana Brincoveanu
Sensors 2025, 25(10), 3047; https://doi.org/10.3390/s25103047 - 12 May 2025
Viewed by 585
Abstract
This paper reports several preliminary investigations concerning the relative humidity (RH) detection response of a chemiresistive sensor that uses a novel sensing layer based on pristine carbon nano-onions (CNOs) and polyvinyl alcohol (PVA) at a 1/1 and 2/1 w/w ratio. The [...] Read more.
This paper reports several preliminary investigations concerning the relative humidity (RH) detection response of a chemiresistive sensor that uses a novel sensing layer based on pristine carbon nano-onions (CNOs) and polyvinyl alcohol (PVA) at a 1/1 and 2/1 w/w ratio. The sensing device, including a Si/SiO2 substrate and gold electrodes, is obtained by depositing the CNOs–PVA aqueous suspension on the sensing structure by drop casting. The composition and morphology of the sensing film are explored by means of scanning electron microscopy, Raman spectroscopy, atomic force microscopy, and X-ray diffraction. The manufactured sensor’s room temperature RH detection performance is examined by applying a continuous flow of the electric current between the interdigitated electrodes and measuring the voltage as the RH varies from 5% to 95%. For RH below 82% (sensing layer based on CNOs–PVA at 1/1 w/w ratio) or below 50.5% (sensing layer based on CNOs–PVA at 2/1 w/w ratio), the resistance varies linearly with RH, with a moderate slope. The newly developed sensor, using CNOs–PVA at a 1:1 ratio (w/w), responded as well as or better than the reference sensor. At the same time, the recorded recovery time was about 30 s, which is half the recovery time of the reference sensor. Additionally, the changes in resistance (ΔR/ΔRH) for different humidity levels showed that the CNOs–PVA layer at 1:1 was more sensitive at humidity levels above 80%. The main RH sensing mechanisms considered and discussed are the decrease in the hole concentration in the CNOs during the interaction with an electron donor molecule, such as water, and the swelling of the hydrophilic PVA. The experimental RH detection data are analyzed and compared with the RH sensing results reported in previously published work on RH detectors employing sensing layers based on oxidized carbon nanohorns–polyvinylpirrolidone (PVP), oxidized carbon nanohorns–PVA and CNOs–polyvinylpyrrolidone. Full article
Show Figures

Figure 1

14 pages, 6214 KiB  
Article
Low-Refractive-Index SiO2 Nanocolumnar Thin Films Fabricated by Oblique Angle Deposition
by Bojie Jia, Gang Chen, Sheng Zhou, Xiaofeng Ma, Qiuyu Zhang, Yujia Geng, Teng Xu and Dingquan Liu
Materials 2025, 18(10), 2225; https://doi.org/10.3390/ma18102225 - 12 May 2025
Viewed by 477
Abstract
The refractive index is one of the most important optical parameters of optical thin films. Optical films with a low refractive index can effectively reduce the residual reflection on the film surface, which is one of the most important parameters pursued by scholars. [...] Read more.
The refractive index is one of the most important optical parameters of optical thin films. Optical films with a low refractive index can effectively reduce the residual reflection on the film surface, which is one of the most important parameters pursued by scholars. In this research, SiO2 thin films with a low refractive index and nanocolumnar structures were prepared by oblique angle deposition (OAD). The SiO2 thin films deposited at different inclination angles were prepared using the electron beam evaporative deposition method. The single-layer film samples were measured by ellipsometry, infrared spectrometry, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The experimental results demonstrated that at an inclination angle of 85°, the average refractive index of the film decreased to 1.30 in the 350–1300 nm wavelength range. Additionally, the film deposited on one side of a crystalline Al2O3 substrate achieved a transmittance of 92.1% in the 350–1500 nm wavelength range and the residual reflectance was reduced by 0.7%. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

Back to TopTop