Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Micro-Raman Measurements
3.2. Cyclic Voltammetry Measurements
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GO | Graphene oxide |
CVD | Chemical vapor deposition |
FWHM | Full width at half maximum |
References
- Ballif, C.; Haug, F.-J.; Boccard, M.; Verlinden, P.J.; Hahn, G. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 2022, 7, 597–616. [Google Scholar] [CrossRef]
- Urade, A.R.; Lahiri, I.; Suresh, K.S. Graphene Properties, Synthesis and Applications: A Review. JOM 2023, 75, 614–630. [Google Scholar] [CrossRef]
- Zhu, Q.-H.; Chai, J.; Wei, S.-Y.; Sun, J.-B.; Sun, Y.-J.; Kiriya, D.; Xu, M.-S. Graphene/PtSe2/Ultra-Thin SiO2/Si Broadband Photodetector with Large Responsivity and Fast Response Time. Nanomaterials 2025, 15, 519. [Google Scholar] [CrossRef]
- Abbas, K.; Ji, P.; Ullah, N.; Shafique, S.; Zhang, Z.; Ameer, M.F.; Qin, S.; Yang, S. Graphene photodetectors integrated with silicon and perovskite quantum dots. Microsyst. Nanoeng. 2024, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Politano, G.G. Optical Properties of Graphene Nanoplatelets on Amorphous Germanium Substrates. Molecules 2024, 29, 4089. [Google Scholar] [CrossRef]
- Cassidy, O.; Synnatschke, K.; Munuera, J.M.; Gabbett, C.; Carey, T.; Doolan, L.; Caffrey, E.; Coleman, J.N. Layer-by-layer assembly yields thin graphene films with near theoretical conductivity. NPJ 2D Mater. Appl. 2025, 9, 2. [Google Scholar] [CrossRef]
- Esmaeilpour, M.; Bügel, P.; Fink, K.; Studt, F.; Wenzel, W.; Kozlowska, M. Multiscale Model of CVD Growth of Graphene on Cu(111) Surface. Int. J. Mol. Sci. 2023, 24, 8563. [Google Scholar] [CrossRef] [PubMed]
- Meškinis, Š.; Lazauskas, A.; Jankauskas, Š.; Guobienė, A.; Gudaitis, R. Advancing Graphene Synthesis: Low-Temperature Growth and Hydrogenation Mechanisms Using Plasma-Enhanced Chemical Vapor Deposition. Molecules 2025, 30, 33. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon N. Y. 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Politano, G.G. Optimizing Graphene Oxide Film Quality: The Role of Solvent and Deposition Technique. C 2024, 10, 90. [Google Scholar] [CrossRef]
- Park, S.; An, J.; Potts, J.R.; Velamakanni, A.; Murali, S.; Ruoff, R.S. Hydrazine-reduction of graphite-and graphene oxide. Carbon N. Y. 2011, 49, 3019–3023. [Google Scholar] [CrossRef]
- Politano, G.G. Localized Effects in Graphene Oxide Systems: A Pathway to Hyperbolic Metamaterials. Photonics 2025, 12, 121. [Google Scholar] [CrossRef]
- Zhu, M.; Li, X.; Guo, Y.; Li, X.; Sun, P.; Zang, X.; Wang, K.; Zhong, M.; Wu, D.; Zhu, H. Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. Nanoscale 2014, 6, 4909–4914. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Srivastava, A.; Kumar, A.; Prajapat, P.; Tawale, J.S.; Pathi, P.; Gupta, G.; Srivastava, S.K. Graphene Oxide as an Effective Interface Passivation Layer for Enhanced Performance of Hybrid Silicon Solar Cells. ACS Appl. Energy Mater. 2024, 7, 4710–4724. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.-Y.; Kim, T.; Cho, S.-H.; Chung, H.-J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338. [Google Scholar] [CrossRef]
- Ying, X.; Li, K.; Liu, L.; Wang, J.; Jiang, Y.; Xu, J.; Liu, Z. Spectral photovoltaic response of graphene-silicon heterojunction. Appl. Phys. Lett. 2017, 111, 251106. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Chan, M. Doping enhanced barrier lowering in graphene-silicon junctions. Appl. Phys. Lett. 2016, 108, 263502. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chiang, C.-Y. Determination of the Highly Sensitive Carboxyl-Graphene Oxide-Based Planar Optical Waveguide Localized Surface Plasmon Resonance Biosensor. Nanomaterials 2022, 12, 2146. [Google Scholar] [CrossRef]
- Yalcin, M.; Al-Sehemi, A.G.; Erol, I.; Aksu, M.; Tillayev, S.; Dere, A.; Al-Ghamdi, A.A.; Yakuphanoğlu, F. Fabrication of photodiodes based on graphene oxide (GO) doped lanthanum hexaboride (LaB6) nanocomposites. Diam. Relat. Mater. 2024, 141, 110585. [Google Scholar] [CrossRef]
- Houmad, M.; Zaari, H.; Benyoussef, A.; El Kenz, A.; Ez-Zahraouy, H. Optical conductivity enhancement and band gap opening with silicon doped graphene. Carbon N. Y. 2015, 94, 1021–1027. [Google Scholar] [CrossRef]
- Shahrokhi, M.; Leonard, C. Tuning the band gap and optical spectra of silicon-doped graphene: Many-body effects and excitonic states. J. Alloys Compd. 2017, 693, 1185–1196. [Google Scholar] [CrossRef]
- Rafiee, M.; Abrams, D.J.; Cardinale, L.; Goss, Z.; Romero-Arenas, A.; Stahl, S.S. Cyclic voltammetry and chronoamperometry: Mechanistic tools for organic electrosynthesis. Chem. Soc. Rev. 2024, 53, 566–585. [Google Scholar] [CrossRef] [PubMed]
- Aujara, K.M.; Chieng, B.W.; Ibrahim, N.A.; Zainuddin, N.; Thevy Ratnam, C. Gamma-Irradiation Induced Functionalization of Graphene Oxide with Organosilanes. Int. J. Mol. Sci. 2019, 20, 1910. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Faggio, G.G.; Politano, G.G.; Lisi, N.; Capasso, A.; Messina, G. The structure of chemical vapor deposited graphene substrates for graphene-enhanced Raman spectroscopy. J. Phys. Condens. Matter 2024, 36, 195303. [Google Scholar] [CrossRef]
- Zheng, P.; Wu, N. Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review. Chem.—Asian J. 2017, 12, 2343–2353. [Google Scholar] [CrossRef]
- Naka, N.; Kashiwagi, S.; Nagai, Y.; Namazu, T. Micro-Raman spectroscopic analysis of single crystal silicon microstructures for surface stress mapping. Jpn. J. Appl. Phys. 2015, 54, 106601. [Google Scholar] [CrossRef]
- Phan, D.-T.; Chung, G.-S. P–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111). J. Phys. Chem. Solids 2013, 74, 1509–1514. [Google Scholar] [CrossRef]
- Ding, K.; Zhang, X.; Xia, F.; Wang, R.; Kuang, Y.; Duhm, S.; Jie, J.; Zhang, X. Surface charge transfer doping induced inversion layer for high-performance graphene/silicon heterojunction solar cells. J. Mater. Chem. A 2017, 5, 285–291. [Google Scholar] [CrossRef]
- Riazimehr, S.; Kataria, S.; Bornemann, R.; Haring Bolívar, P.; Ruiz, F.J.G.; Engström, O.; Godoy, A.; Lemme, M.C. High Photocurrent in Gated Graphene–Silicon Hybrid Photodiodes. ACS Photonics 2017, 4, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politano, G.G. Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates. Crystals 2025, 15, 603. https://doi.org/10.3390/cryst15070603
Politano GG. Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates. Crystals. 2025; 15(7):603. https://doi.org/10.3390/cryst15070603
Chicago/Turabian StylePolitano, Grazia Giuseppina. 2025. "Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates" Crystals 15, no. 7: 603. https://doi.org/10.3390/cryst15070603
APA StylePolitano, G. G. (2025). Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates. Crystals, 15(7), 603. https://doi.org/10.3390/cryst15070603