Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (36,260)

Search Parameters:
Keywords = SEM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4622 KiB  
Article
Durability Analysis of Brick-Faced Clay-Core Walls in Traditional Residential Architecture in Quanzhou, China
by Yuhong Ding, Ruiming Guan, Li Chen, Jinxuan Wang, Yangming Zhang, Yili Fu and Canjin Zhang
Coatings 2025, 15(8), 909; https://doi.org/10.3390/coatings15080909 (registering DOI) - 3 Aug 2025
Abstract
This study analyzes the durability of brick-faced clay-core walls (BCWs) in the traditional residential architecture of Quanzhou—a UNESCO World Heritage City. Taking the northern gable of Ding Gongchen’s former residence as an example, the mechanical properties, microscopic structure, and changes in chemical symbol, [...] Read more.
This study analyzes the durability of brick-faced clay-core walls (BCWs) in the traditional residential architecture of Quanzhou—a UNESCO World Heritage City. Taking the northern gable of Ding Gongchen’s former residence as an example, the mechanical properties, microscopic structure, and changes in chemical symbol, oxides and minerals of the red bricks and clay-cores were analyzed using finite element mechanics analysis (FEM), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and X-ray diffraction (XRD). The results indicate a triple mechanism: (1) The collaborative protection and reinforcement mechanism of “brick-wrapped-clay”. (2) The infiltration and destruction mechanism of external pollutants. (3) The material stability mechanism of silicate minerals. Therefore, the key to maintaining the durability of BCWs lies in the synergistic effect of brick and clay materials and the stability of silicate mineral materials, providing theoretical and methodological support for sustainable research into brick and clay constructions. Full article
32 pages, 1747 KiB  
Article
Can Regional Infrastructure Predict Its Economic Resilience? Limited Evidence from Spatial Modelling
by Mantas Rimidis and Mindaugas Butkus
Sustainability 2025, 17(15), 7046; https://doi.org/10.3390/su17157046 (registering DOI) - 3 Aug 2025
Abstract
This study examines whether regional infrastructure can predict economic resilience in European regions, focusing on resistance, recovery, and reorientation during the COVID-19 crisis. While infrastructure is widely recognized as a key factor influencing regional resilience, its explicit role has been underexplored in the [...] Read more.
This study examines whether regional infrastructure can predict economic resilience in European regions, focusing on resistance, recovery, and reorientation during the COVID-19 crisis. While infrastructure is widely recognized as a key factor influencing regional resilience, its explicit role has been underexplored in the European context. Using a comprehensive literature review and spatial econometric models applied to NUTS-2 level data from 2017 to 2024, we investigate the direct and spatial spillover effects of various infrastructure types—transportation, healthcare, tourism, education, and digital access—on regional resilience outcomes. We apply OLS and four spatial models (SEM, SLX, SDEM, SDM) under 29 spatial weighting matrices to account for spatial autocorrelation. Results show that motorway density, early school leaving, and healthcare infrastructure in neighbouring regions significantly affect resistance. For recovery, railway density and GDP per capita emerge as key predictors, with notable spatial spillovers. Reorientation is shaped by population structure, railway density, and tourism infrastructure, with both positive and negative spatial dynamics observed. The findings underscore the importance of infrastructure not only in isolation but also within regional systems, revealing complex interdependencies. We conclude that policymakers must consider spatial externalities and coordinate infrastructure investments to enhance regional economic resilience across interconnected Europe. Full article
Show Figures

Figure 1

22 pages, 1504 KiB  
Article
Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media
by Safae Chafi, Manuel Cuevas-Aranda, Mª Lourdes Martínez-Cartas and Sebastián Sánchez
Molecules 2025, 30(15), 3254; https://doi.org/10.3390/molecules30153254 (registering DOI) - 3 Aug 2025
Abstract
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was [...] Read more.
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was characterized by FTIR, N2 adsorption–desorption isotherms, SEM-EDX, and proximate analysis, revealing a mesoporous structure with a relatively low specific surface area but enriched in surface functional groups, likely due to the partial degradation of lignocellulosic components. Adsorption experiments were conducted to optimize operational parameters such as solid particle size (2–3 mm), agitation speed (75 rpm), and bioadsorbent dosage (1 g per 0.05 L of MB solution), which allowed for dye removal efficiencies close to 100%. Kinetic studies showed that MB adsorption followed a pseudo-second-order model, while equilibrium data at 30 °C were best described by the Langmuir isotherm (R2 = 0.999; SE = 4.25%), suggesting monolayer coverage and strong adsorbate–adsorbent affinity. Desorption trials using water, ethanol, and their mixtures resulted in low MB recovery, whereas the addition of 10% acetic acid significantly improved desorption performance. Under optimal conditions, up to 52% of the retained dye was recovered. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
19 pages, 4765 KiB  
Article
Dehydration-Driven Changes in Solid Polymer Electrolytes: Implications for Titanium Anodizing Efficiency
by Andrea Valencia-Cadena, Maria Belén García-Blanco, Pablo Santamaría and Joan Josep Roa
Materials 2025, 18(15), 3645; https://doi.org/10.3390/ma18153645 (registering DOI) - 3 Aug 2025
Abstract
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and [...] Read more.
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and SEM analyses revealed shape deformation and microcrack formation at temperatures above 40 °C, potentially reducing particle packing efficiency and electrolyte performance. Particle size distribution shifted from bimodal to trimodal upon aging, with an overall size reduction of up to 39.5% due to dehydration effects, impacting ionic transport properties. Weight-loss measurements indicated a diffusion-limited dehydration mechanism, stabilizing at 15–16% mass loss. Fourier transform infrared analysis confirmed water removal while maintaining the essential sulfonic acid groups responsible for ionic conductivity. In dry anodizing tests on titanium, aged electrolytes enhanced process efficiency, producing TiO2 films with improved optical properties—color and brightness—while preserving thickness and uniformity (~70 nm). The results highlight the need to carefully control thermal exposure to maintain electrolyte integrity and ensure consistent process performance. Full article
(This article belongs to the Special Issue Novel Materials and Techniques for Dental Implants)
Show Figures

Figure 1

22 pages, 3304 KiB  
Article
The Mechanism by Which Colour Patch Characteristics Influence the Visual Landscape Quality of Rhododendron simsii Landscape Recreational Forests
by Yan Liu, Juyang Liao, Yaqi Huang, Qiaoyun Li, Linshi Wu, Xinyu Yi, Ling Wang and Chan Chen
Horticulturae 2025, 11(8), 898; https://doi.org/10.3390/horticulturae11080898 (registering DOI) - 3 Aug 2025
Abstract
Landscape quality and the productivity of Rhododendron simsii are directly related to the maintenance of ecological functions in the alpine region. The specific relationship between the spatial pattern of colour patches and the visual quality of R. simsii landscape recreational forests has been [...] Read more.
Landscape quality and the productivity of Rhododendron simsii are directly related to the maintenance of ecological functions in the alpine region. The specific relationship between the spatial pattern of colour patches and the visual quality of R. simsii landscape recreational forests has been insufficiently explored. In this study, we constructed a model of the relationship between landscape colour patches and the aesthetic value of such a forest, analysing the key factors driving changes in its landscape quality. A total of 1549 participants were asked to assess 16 groups of landscape photographs. The results showed that variations in perceived aesthetic quality were stimulated by colour patch dynamics and spatial heterogeneity. Utilising structural equation modelling (SEM), we identified key indicators synergistically influencing aesthetic quality, including the area percentage, shape, and distribution of colour patches, which demonstrated strong explanatory power (R2 = 0.83). The SEM also revealed that the red patch area, mean perimeter area ratio, and separation index are critical latent variables with standardised coefficients of 0.54, 0.65, and 0.62, respectively. These findings provide actionable design strategies: (1) optimising chromatic contrast through high-saturation patches, (2) controlling geometric complexity, and (3) improving spatial coherence. These results advance the theoretical framework for landscape aesthetic evaluation and offer practical guidance for landscape recreational forest management. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

15 pages, 2885 KiB  
Article
Effects of Modified Senna obtusifolia Straw Biochar on Organic Matter Mineralization and Nutrient Transformation in Siraitia grosvenorii Farmland
by Lening Hu, Yinnan Bai, Shu Li, Gaoyan Liu, Jingxiao Liang, Hua Deng, Anyu Li, Linxuan Li, Limei Pan and Yuan Huang
Agronomy 2025, 15(8), 1877; https://doi.org/10.3390/agronomy15081877 (registering DOI) - 3 Aug 2025
Abstract
Biochar has garnered considerable attention as a soil amendment due to its unique physicochemical properties. Its application not only enhances soil carbon sequestration but also improves nutrient availability. Incorporating biochar into soil is regarded as a promising strategy for mitigating global climate change [...] Read more.
Biochar has garnered considerable attention as a soil amendment due to its unique physicochemical properties. Its application not only enhances soil carbon sequestration but also improves nutrient availability. Incorporating biochar into soil is regarded as a promising strategy for mitigating global climate change while delivering substantial environmental and agricultural benefits. In this study, biochar was extracted from Siraitia grosvenorii and subsequently modified through alkali treatment. A laboratory incubation experiment was conducted to assess the effects of unmodified (JMC) and modified (GXC) biochar, applied at different rates (1%, 2%, and 4%), on organic carbon mineralization and soil nutrient dynamics. Results indicated that, at equivalent application rates, JMC-treated soils exhibited lower CO2 emissions than those treated with GXC, with emissions increasing alongside biochar dosage. After the incubation, the 1% JMC treatment exhibited a mineralization rate of 17.3 mg·kg−1·d−1, which was lower than that of the control (CK, 18.8 mg·kg−1·d−1), suggesting that JMC effectively inhibited organic carbon mineralization and reduced CO2 emissions, thereby contributing positively to carbon sequestration in Siraitia grosvenorii farmland. In contrast, GXC application significantly enhanced soil nutrient levels, particularly increasing available phosphorus (AP) by 14.33% to 157.99%. Furthermore, partial least squares structural equation modeling (PLS-SEM) identified application rate and pH as the key direct factors influencing soil nutrient availability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 6988 KiB  
Article
Effect of Substrate Temperature on the Structural, Morphological, and Infrared Optical Properties of KBr Thin Films
by Teng Xu, Qingyuan Cai, Weibo Duan, Kaixuan Wang, Bojie Jia, Haihan Luo and Dingquan Liu
Materials 2025, 18(15), 3644; https://doi.org/10.3390/ma18153644 (registering DOI) - 3 Aug 2025
Abstract
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning [...] Read more.
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results reveal a complex, non-monotonic response to temperature rather than a simple linear trend. As the substrate temperature increases, growth evolves from a mixed polycrystalline texture to a pronounced (200) preferred orientation. Morphological analysis shows that the film surface is smoothest at 150 °C, while the microstructure becomes densest at 200 °C. These structural variations directly modulate the optical constants: the refractive index attains its highest values in the 150–200 °C window, approaching that of bulk KBr. Cryogenic temperature (6 K) FTIR measurements further demonstrate that suppression of multi-phonon absorption markedly enhances the infrared transmittance of the films. Taken together, the data indicate that 150–200 °C constitutes an optimal process window for fabricating KBr films that combine superior crystallinity, low defect density, and high packing density. This study elucidates the temperature-driven structure–property coupling and offers valuable guidance for optimizing high-performance infrared and cryogenic optical components. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

24 pages, 1376 KiB  
Article
Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields
by Ruth Rubí Peña-Holguín, Carlos Andrés Vaca-Coronel, Ruth María Farías-Lema, Sonnia Valeria Zapatier-Castro and Juan Diego Valenzuela-Cobos
Agriculture 2025, 15(15), 1679; https://doi.org/10.3390/agriculture15151679 (registering DOI) - 2 Aug 2025
Abstract
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the [...] Read more.
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the key factors influencing the adoption of IoT technologies by farmers in the province of Guayas, Ecuador, and their impact on agricultural yields. The research is grounded in innovation diffusion theory and technology acceptance models, which emphasize the role of perception, usability, training, and economic viability in digital adoption. A total of 250 surveys were administered, with 232 valid responses (92.8% response rate), reflecting strong interest from the agricultural sector in digital transformation and precision agriculture. Using structural equation modeling (SEM), the results confirm that general perception of IoT (β = 0.514), practical functionality (β = 0.488), and technical training (β = 0.523) positively influence adoption, while high implementation costs negatively affect it (β = −0.651), all of which are statistically significant (p < 0.001). Furthermore, adoption has a strong positive effect on agricultural yield (β = 0.795). The model explained a high percentage of variance in both adoption (R2 = 0.771) and performance (R2 = 0.706), supporting its predictive capacity. These findings underscore the need for public and private institutions to implement targeted training and financing strategies to overcome economic barriers and foster the sustainable integration of IoT technologies in Ecuadorian agriculture. Full article
Show Figures

Figure 1

25 pages, 7588 KiB  
Article
Electrophoretic Deposition of Green-Synthesized Hydroxyapatite on Thermally Oxidized Titanium: Enhanced Bioactivity and Antibacterial Performance
by Mariana Relva, Daniela Santo, Ricardo Alexandre, Pedro Faia, Sandra Carvalho, Zohra Benzarti and Susana Devesa
Appl. Sci. 2025, 15(15), 8598; https://doi.org/10.3390/app15158598 (registering DOI) - 2 Aug 2025
Abstract
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer [...] Read more.
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer with a hydroxyapatite (HAp) top layer synthesized via a green route using Hylocereus undatus extract. The HAp was deposited by electrophoretic deposition (EPD), enabling continuous coverage and strong adhesion to the pre-treated Ti-6Al-4V substrate. Structural, morphological, chemical, and electrical characterizations were performed using XRD, SEM, EDS, Raman spectroscopy, and impedance spectroscopy. Bioactivity was assessed through apatite formation in simulated body fluid (SBF), while antibacterial properties were evaluated against Staphylococcus aureus. The results demonstrated successful formation of crystalline TiO2 (rutile phase) and calcium-rich HAp with good surface coverage. The HAp-coated surfaces exhibited significantly enhanced bioactivity and strong antibacterial performance, likely due to the combined effects of surface roughness and the bioactive compounds present in the plant extract. This study highlights the potential of eco-friendly, bio-inspired surface engineering to improve the biological performance of titanium-based implants. Full article
12 pages, 2532 KiB  
Article
Efficient Oxygen Evolution Reaction Performance Achieved by Tri-Doping Modification in Prussian Blue Analogs
by Yanhong Ding, Bin Liu, Haiyan Xiang, Fangqi Ren, Tianzi Xu, Jiayi Liu, Haifeng Xu, Hanzhou Ding, Yirong Zhu and Fusheng Liu
Inorganics 2025, 13(8), 258; https://doi.org/10.3390/inorganics13080258 (registering DOI) - 2 Aug 2025
Abstract
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost [...] Read more.
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost hydrogen. In water electrolysis technology, the electrocatalytic activity of the electrode affects the kinetics of the oxygen evolution reaction (OER) and the hydrogen evolution rate. This study utilizes the liquid phase co-precipitation method to synthesize three types of Prussian blue analog (PBA) electrocatalytic materials: Fe/PBA(Fe4[Fe(CN)6]3), Fe-Mn/PBA((Fe, Mn)3[Fe(CN)6]2·nH2O), and Fe-Mn-Co/PBA((Mn, Co, Fe)3II[FeIII(CN)6]2·nH2O). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that Fe-Mn-Co/PBA has a smaller particle size and higher crystallinity, and its grain boundary defects provide more active sites for electrochemical reactions. The electrochemical test shows that Fe-Mn-Co/PBA exhibits the best electrochemical performance. The overpotential of the oxygen evolution reaction (OER) under 1 M alkaline electrolyte at 10/50 mA·cm−2 is 270/350 mV, with a Tafel slope of 48 mV·dec−1, and stable electrocatalytic activity is maintained at 5 mA·cm−2. All of these are attributed to the synergistic effect of Fe, Mn, and Co metal ions, grain refinement, and the generation of grain boundary defects and internal stresses. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

18 pages, 8702 KiB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 (registering DOI) - 2 Aug 2025
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

21 pages, 738 KiB  
Article
Impact of Macro Factors on NPLs in the Banking Industry of Kazakhstan
by Almas Kalimoldayev, Yelena Popova, Olegs Cernisevs and Sergejs Popovs
J. Risk Financial Manag. 2025, 18(8), 431; https://doi.org/10.3390/jrfm18080431 (registering DOI) - 2 Aug 2025
Abstract
The importance of non-performing loans (NPLs) for the stability of financial sectors is difficult to overestimate. The NPL level depends on numerous factors; this study’s goal is to determine the impact of macroeconomic factors on NPLs with the mediation effect of foreign, saving [...] Read more.
The importance of non-performing loans (NPLs) for the stability of financial sectors is difficult to overestimate. The NPL level depends on numerous factors; this study’s goal is to determine the impact of macroeconomic factors on NPLs with the mediation effect of foreign, saving and social factors in Kazakhstan’s banking sector. To determine the affecting factors, the authors performed a systematic literature review. To determine the dependencies between constructs, the Partial Least Squares Structural Equation Modeling (PLS-SEM) method was used. Macroeconomic factors’ direct effect on non-performing loans (NPLs) was examined; a significant negative dependence was determined. The mediation effect of foreign, saving, and social factors was investigated. Foreign factors have a mediation effect, strengthening the dependence between macro factors and NPLs. Nevertheless, they do not have a mediating effect; moreover, they balance and make the effect of macro factors on NPLs statistically insignificant. These findings allow policy-makers to stabilize the situation on NPLs in the financial markets of developing countries like Kazakhstan by directly influencing not only the financial sector but also other sectors of the national economy. Full article
(This article belongs to the Section Banking and Finance)
Show Figures

Figure 1

23 pages, 2593 KiB  
Article
Preliminary Comparison of Ammonia- and Natural Gas-Fueled Micro-Gas Turbine Systems in Heat-Driven CHP for a Small Residential Community
by Mateusz Proniewicz, Karolina Petela, Christine Mounaïm-Rousselle, Mirko R. Bothien, Andrea Gruber, Yong Fan, Minhyeok Lee and Andrzej Szlęk
Energies 2025, 18(15), 4103; https://doi.org/10.3390/en18154103 (registering DOI) - 1 Aug 2025
Abstract
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two [...] Read more.
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two systems were modelled in Ebsilon 15 software: a natural gas case (benchmark) and an ammonia-fueled case, both based on the same on-design parameters. Off-design simulations evaluated performance over variable ambient temperatures and loads. Idealized, unrecuperated cycles were adopted to isolate the thermodynamic impact of the fuel switch under complete combustion assumption. Under these assumptions, the study shows that the ammonia system produces more electrical energy and less excess heat, yielding marginally higher electrical efficiency and EUF (26.05% and 77.63%) than the natural gas system (24.59% and 77.55%), highlighting ammonia’s utilization potential in such a context. Future research should target validating ammonia combustion and emission profiles across the turbine load range, and updating the thermodynamic model with a recuperator and SCR accounting for realistic pressure losses. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 3rd Edition)
Show Figures

Figure 1

48 pages, 3956 KiB  
Article
SEP and Blockchain Adoption in Western Balkans and EU: The Mediating Role of ESG Activities and DEI Initiatives
by Vasiliki Basdekidou and Harry Papapanagos
FinTech 2025, 4(3), 37; https://doi.org/10.3390/fintech4030037 (registering DOI) - 1 Aug 2025
Abstract
This paper explores the intervening role in SEP performance of corporate environmental, cultural, and ethnic activities (ECEAs) and diversity, equity, inclusion, and social initiatives (DEISIs) on blockchain adoption (BCA) strategy, particularly useful in the Western Balkans (WB), which demands transparency due to extended [...] Read more.
This paper explores the intervening role in SEP performance of corporate environmental, cultural, and ethnic activities (ECEAs) and diversity, equity, inclusion, and social initiatives (DEISIs) on blockchain adoption (BCA) strategy, particularly useful in the Western Balkans (WB), which demands transparency due to extended fraud and ethnic complexities. In this domain, a question has been raised: In BCA strategies, is there any correlation between SEP performance and ECEAs and DEISIs in a mediating role? A serial mediation model was tested on a dataset of 630 WB and EU companies, and the research conceptual model was validated by CFA (Confirmation Factor Analysis), and the SEM (Structural Equation Model) fit was assessed. We found a statistically sound (significant, positive) correlation between BCA and ESG success performance, especially in the innovation and integrity ESG performance success indicators, when DEISIs mediate. The findings confirmed the influence of technology, and environmental, cultural, ethnic, and social factors on BCA strategy. The findings revealed some important issues of BCA that are of worth to WB companies’ managers to address BCA for better performance. This study adds to the literature on corporate blockchain transformation, especially for organizations seeking investment opportunities in new international markets to diversify their assets and skill pool. Furthermore, it contributes to a deeper understanding of how DEI initiatives impact the correlation between business transformation and socioeconomic performance, which is referred to as the “social impact”. Full article
(This article belongs to the Special Issue Fintech Innovations: Transforming the Financial Landscape)
Show Figures

Figure 1

11 pages, 3000 KiB  
Article
Comparative Study of the Bulk and Foil Zinc Anodic Behavior Kinetics in Oxalic Acid Aqueous Solutions
by Vanya Lilova, Emil Lilov, Stephan Kozhukharov, Georgi Avdeev and Christian Girginov
Materials 2025, 18(15), 3635; https://doi.org/10.3390/ma18153635 (registering DOI) - 1 Aug 2025
Abstract
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical [...] Read more.
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical behavior, particularly in induction period durations. The induction period’s duration depended on electrolyte concentration, current density, and temperature. Notably, the temperature dependence of the kinetics exhibited contrasting trends: the induction period for foil electrodes increased with temperature, while that of bulk electrodes decreased. Chemical analysis and polishing treatment comparisons showed no significant differences between the foil and bulk electrodes. However, Scanning Electron Microscopy (SEM) observations of samples anodized at different temperatures, combined with Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) analysis of dissolved electrode material, provided insights into the distinct anodic behaviors. X-ray Diffraction (XRD) studies further confirmed these findings, revealing a crystallographic orientation dependence of the anodic behavior. These results provide detailed information about the electrochemical properties of zinc electrodes, with implications for optimizing their performance in various applications. Full article
Show Figures

Figure 1

Back to TopTop