Effects of Modified Senna obtusifolia Straw Biochar on Organic Matter Mineralization and Nutrient Transformation in Siraitia grosvenorii Farmland
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Measurement Methods
2.4. Statistical Analysis
3. Results
3.1. Characterization and Elemental Composition of Different Types of Biochar
3.2. Effects of Different Types of Biochar on Soil pH and Cation Exchange Capacity (CEC)
3.3. Effects of Different Types of Biochar on Available Potassium (AK), Available Phosphorus (AP), and Alkali-Hydrolyzable Nitrogen (AN)
3.4. Effects of Different Types of Biochar on Soil Carbon Mineralization
3.5. Impact of Different Types of Biochar on Organic Carbon Components Before and After Modification
3.6. Effect of Different Types of Biochar on Soil Enzyme Activities
3.7. Correlation and Structural Equation Modeling Analysis
4. Discussion
4.1. Effects of Different Types of Biochar on Soil CO2 Emissions
4.2. Effects of Different Types of Biochar on Soil Organic Carbon and Its Carbon Component Composition
4.3. Effects of Different Types of Biochar on Soil Nutrient Transformation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolan, S.; Sharma, S.; Mukherjee, S.; Kumar, M.; Rao, C.S.; Nataraj, K.C.; Singh, G.; Vinu, A.; Bhowmik, A.; Sharma, H.; et al. Biochar modulating soil biological health: A review. Sci. Total Environ. 2024, 914, 169585. [Google Scholar] [CrossRef]
- Ojeda, G.; Gil, J.M.; Mattana, S.; Bachmann, J.; Quenea, K.; Sobral, A.J.F.N. Biochar ageing effects on soil respiration, biochar wettability and gaseous CO2 adsorption. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29, 11. [Google Scholar] [CrossRef]
- Sultan, S.; Khan, K.S.; Akmal, M.; Ahmed, Z.I.; Hussain, Q.; Khosa, S.A. Carbon mineralization in subtropical dryland soil amended with different biochar sources. Arab. J. Geosci. 2019, 12, 451. [Google Scholar] [CrossRef]
- Song, B.; Almatrafi, E.; Tan, X.; Luo, S.; Xiong, W.; Zhou, C.; Qin, M.; Liu, Y.; Cheng, M.; Zeng, G.; et al. Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality. Renew. Sustain. Energy Rev. 2022, 164, 112529. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Beiyuan, J.; Gupta, S.; Hou, D.; Karakoti, A.; Joseph, S.; Jung, S.; Kim, K.-H.; Kirkham, M.B.; et al. Multifunctional applications of biochar beyond carbon storage. Int. Mater. Rev. 2022, 67, 150–200. [Google Scholar] [CrossRef]
- Chen, S.; Liu, G.; Hong, Y.; Ma, Y.; Guo, S.; Yan, P.; Mi, W. Biochar Amendment was Less Effective for Rice Yield Improvement but More Effective for Soil Quality Relative to Inorganic Fertilization in a Low Fertility Paddy Soil. J. Soil Sci. Plant Nutr. 2024, 24, 4918–4928. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharya, T.; Shaikh, W.A.; Chakraborty, S.; Sarkar, D.; Biswas, J.K. Biochar Modification Methods for Augmenting Sorption of Contaminants. Curr. Pollut. Rep. 2022, 8, 519–555. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E.; Cornelis, W.; Zoroufchi Benis, K. Understanding the physicochemical structure of biochar affected by feedstock, pyrolysis conditions, and post-pyrolysis modification methods—A meta-analysis. J. Environ. Chem. Eng. 2024, 12, 114885. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Wang, W. Response mechanisms of agricultural soil biochemical properties and CO2 emissions to field application of modified biochar. J. Soils Sediments 2024, 24, 1194–1205. [Google Scholar] [CrossRef]
- Liu, S.; Xie, Z.; Zhu, Y.; Zhu, Y.; Jiang, Y.; Wang, Y.; Gao, H. Adsorption characteristics of modified rice straw biochar for Zn and in-situ remediation of Zn contaminated soil. Environ. Technol. Innov. 2021, 22, 101388. [Google Scholar] [CrossRef]
- Ghassemi-Golezani, K.; Farhangi-Abriz, S. Improving plant available water holding capacity of soil by solid and chemically modified biochars. Rhizosphere 2022, 21, 100469. [Google Scholar] [CrossRef]
- Hua, B.; Li, Z.; Gao, W.; Feng, H.; Chen, N.; Li, J.; Ji, X.; Zhang, L.; Wu, Z.; Yan, S.; et al. Soil amendment in plastic greenhouse using modified biochar: Soil bacterial diversity responses and microbial biomass carbon and nitrogen. Biotechnol. Lett. 2021, 43, 655–666. [Google Scholar] [CrossRef]
- Bao, Z.; Shi, C.; Tu, W.; Li, L.; Li, Q. Recent developments in modification of biochar and its application in soil pollution control and ecoregulation. Environ. Pollut. 2022, 313, 120184. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Zong, Y.; Yu, J.; Ding, H.; Kong, Y.; Ma, J.; Ding, L. Efficient removal of cadmium by salts modified-biochar: Performance assessment, theoretical calculation, and quantitative mechanism analysis. Bioresour. Technol. 2022, 361, 127717. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Liu, Q.; Chen, Z.; Wen, Z.; Liu, Y.; Huang, L.; Yu, C.; Feng, Y. Organic amendments perform better than inorganic amendments in reducing the absorption and accumulation of cadmium in lettuce. Environ. Sci. Pollut. Res. 2023, 30, 117277–117287. [Google Scholar] [CrossRef]
- Sun, T.; Gao, G.; Yang, W.; Sun, Y.; Huang, Q.; Wang, L.; Liang, X. High-efficiency remediation of Hg and Cd co-contaminated paddy soils by Fe-Mn oxide modified biochar and its microbial community responses. Biochar 2024, 6, 57. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, K.; Liu, J.; Chen, Y.; Han, L. Changes in soil properties and CO2 emissions after biochar addition: Role of pyrolysis temperature and aging. Sci. Total Environ. 2022, 839, 156333. [Google Scholar] [CrossRef]
- Bashir, S.; Hussain, Q.; Akmal, M.; Riaz, M.; Hu, H.; Ijaz, S.S.; Iqbal, M.; Abro, S.; Mehmood, S.; Ahmad, M. Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil. J. Soils Sediments 2018, 18, 874–886. [Google Scholar] [CrossRef]
- Hu, L.; Huang, R.; Zhou, L.; Qin, R.; He, X.; Deng, H.; Li, K. Effects of magnesium-modified biochar on soil organic carbon mineralization in citrus orchard. Front. Microbiol. 2023, 14, 1109272. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256–257, 1–9. [Google Scholar] [CrossRef]
- Xu, Y.; Qu, W.; Sun, B.; Peng, K.; Zhang, X.; Xu, J.; Gao, F.; Yan, Y.; Bai, T. Effects of added calcium-based additives on swine manure derived biochar characteristics and heavy metals immobilization. Waste Manag. 2021, 123, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Purakayastha, T.J.; Das, K.C.; Gaskin, J.; Harris, K.; Smith, J.L.; Kumari, S. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils. Soil Tillage Res. 2016, 155, 107–115. [Google Scholar] [CrossRef]
- Kasozi, G.N.; Zimmerman, A.R.; Nkedi-Kizza, P.; Gao, B. Catechol and Humic Acid Sorption onto a Range of Laboratory-Produced Black Carbons (Biochars). Environ. Sci. Technol. 2010, 44, 6189–6195. [Google Scholar] [CrossRef]
- Sobek, A.; Stamm, N.; Bucheli, T.D. Sorption of Phenyl Urea Herbicides to Black Carbon. Environ. Sci. Technol. 2009, 43, 8147–8152. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Li, B.; Guo, Y.; Liang, F.; Liu, W.; Wang, Y.; Cao, W.; Song, H.; Chen, J.; Guo, J. Global integrative meta-analysis of the responses in soil organic carbon stock to biochar amendment. J. Environ. Manag. 2024, 351, 119745. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Xue, J.; Zhang, L. Quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis. Sustainability 2020, 12, 3436. [Google Scholar] [CrossRef]
- Jiang, X.; Haddix, M.L.; Cotrufo, M.F. Interactions between biochar and soil organic carbon decomposition: Effects of nitrogen and low molecular weight carbon compound addition. Soil Biol. Biochem. 2016, 100, 92–101. [Google Scholar] [CrossRef]
- Wang, W.J.; Dalal, R.C.; Moody, P.W.; Smith, C.J. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol. Biochem. 2003, 35, 273–284. [Google Scholar] [CrossRef]
- Jiang, M.; Li, C.; Gao, W.; Cai, K.; Tang, Y.; Cheng, J. Comparison of long-term effects of biochar application on soil organic carbon and its fractions in two ecological sites in karst regions. Geoderma Reg. 2022, 28, e00477. [Google Scholar] [CrossRef]
- Li, S.; Wei, W.; Liu, S. Long-Term Organic Amendments Combined with Nitrogen Fertilization Regulates Soil Organic Carbon Sequestration in Calcareous Soil. Agronomy 2023, 13, 291. [Google Scholar] [CrossRef]
- Chen, W.; Liao, X.; Wu, Y.; Liang, J.B.; Mi, J.; Huang, J.; Zhang, H.; Wu, Y.; Qiao, Z.; Li, X.; et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. Waste Manag. 2017, 61, 506–515. [Google Scholar] [CrossRef]
- Virk, A.L.; Kan, Z.-R.; Liu, B.-Y.; Qi, J.-Y.; He, C.; Liu, Q.-Y.; Zhao, X.; Zhang, H.-L. Impact of biochar water extract addition on soil organic carbon mineralization and C fractions in different tillage systems. Environ. Technol. Innov. 2021, 21, 101193. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, W.; Sun, X.; Jiang, J.; Li, D.; Tang, G.; Xu, W.; Jia, H. Biochar Aged for Five Years Altered Carbon Fractions and Enzyme Activities of Sandy Soil. Land 2023, 12, 1645. [Google Scholar] [CrossRef]
- Khan, N.; Clark, I.; Sanchez-Monedero, M.A.; Shea, S.; Meier, S.; Bolan, N. Maturity indices in co-composting of chicken manure and sawdust with biochar. Bioresour. Technol. 2014, 168, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-J.; Han, X.-Z. Changes of soil properties and carbon fractions after long-term application of organic amendments in Mollisols. Catena 2016, 143, 140–144. [Google Scholar] [CrossRef]
- Shwe, K.K.; Chaopayao, N.; Yampracha, S. Mitigation of soil salinity by addition of different rice straw biochar doses in salt-affected acid soil. Environ. Res. Commun. 2024, 6, 095028. [Google Scholar] [CrossRef]
- Yang, L.; Liao, F.; Huang, M.; Yang, L.; Li, Y. Biochar Improves Sugarcane Seedling Root and Soil Properties under a Pot Experiment. Sugar Tech 2015, 17, 36–40. [Google Scholar] [CrossRef]
- Zha, Y.; Zhao, L.; Wei, J.; Niu, T.; Yue, E.; Wang, X.; Chen, Y.; Shi, J.; Zhou, T. Effect of the application of peanut shell, bamboo, and maize straw biochars on the bioavailability of Cd and growth of maize in Cd-contaminated soil. Front. Environ. Sci. 2023, 11, 1240633. [Google Scholar] [CrossRef]
- Tang, C.; Yang, J.; Xie, W.; Yao, R.; Wang, X. Effect of Biochar Application on Soil Fertility, Nitrogen Use Efficiency and Balance in Coastal Salt-Affected Soil under Barley-Maize Rotation. Sustainability 2023, 15, 2893. [Google Scholar] [CrossRef]
- Windeatt, J.H.; Ross, A.B.; Williams, P.T.; Forster, P.M.; Nahil, M.A.; Singh, S. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manag. 2014, 146, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Binh Thanh, N.; Nam Ngoc, T.; Chau Minh Thi, L.; Trang Thuy, N.; Thanh Van, T.; Binh Vu, T.; Tan Van, L. The interactive effects of biochar and cow manure on rice growth and selected properties of salt-affected soil. Arch. Agron. Soil Sci. 2018, 64, 1744–1758. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, Y.; Hao, X.; Tong, L.; Li, S.; Kang, S. Does biochar addition improve soil physicochemical properties, bacterial community and alfalfa growth for saline soils? Land Degrad. Dev. 2023, 34, 3314–3328. [Google Scholar] [CrossRef]
- Jin, X.X.; Zhang, T.X.; Hou, Y.T.; Bol, R.; Zhang, X.J.; Zhang, M.; Yu, N.; Meng, J.; Zou, H.T.; Wang, J.K. Review on the effects of biochar amendment on soil microorganisms and enzyme activity. J. Soils Sediments 2024, 24, 2599–2612. [Google Scholar] [CrossRef]
- Deng, L.; Peng, C.; Huang, C.; Wang, K.; Liu, Q.; Liu, Y.; Hai, X.; Shangguan, Z. Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China. Geoderma 2019, 353, 188–200. [Google Scholar] [CrossRef]
pH | CEC (coml·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) | AN (mg·kg−1) |
---|---|---|---|---|
5.17 ± 0.02 | 39.02 ± 2.42 | 23.96 ± 0.15 | 88.68 ± 1.62 | 58.33 ± 2.02 |
Types of Biochar | Quantity Applied | Types of Biochar × Quantity Applied | |
---|---|---|---|
pH | 5811.88 ** | 79.311 ** | 9.711 ** |
CEC | 19.245 ** | 0.546 | 0.493 |
pH | Yield (%) | C/N | C/H | Elemental Content (%) | ||||
---|---|---|---|---|---|---|---|---|
C | H | N | S | |||||
JMC | 10.11 | 31.13% | 33.76 | 23.71 | 70.89 | 2.99 | 2.10 | 0.00 |
GXC | 11.19 | 30.12% | 18.19 | 23.39 | 19.65 | 0.84 | 1.08 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Bai, Y.; Li, S.; Liu, G.; Liang, J.; Deng, H.; Li, A.; Li, L.; Pan, L.; Huang, Y. Effects of Modified Senna obtusifolia Straw Biochar on Organic Matter Mineralization and Nutrient Transformation in Siraitia grosvenorii Farmland. Agronomy 2025, 15, 1877. https://doi.org/10.3390/agronomy15081877
Hu L, Bai Y, Li S, Liu G, Liang J, Deng H, Li A, Li L, Pan L, Huang Y. Effects of Modified Senna obtusifolia Straw Biochar on Organic Matter Mineralization and Nutrient Transformation in Siraitia grosvenorii Farmland. Agronomy. 2025; 15(8):1877. https://doi.org/10.3390/agronomy15081877
Chicago/Turabian StyleHu, Lening, Yinnan Bai, Shu Li, Gaoyan Liu, Jingxiao Liang, Hua Deng, Anyu Li, Linxuan Li, Limei Pan, and Yuan Huang. 2025. "Effects of Modified Senna obtusifolia Straw Biochar on Organic Matter Mineralization and Nutrient Transformation in Siraitia grosvenorii Farmland" Agronomy 15, no. 8: 1877. https://doi.org/10.3390/agronomy15081877
APA StyleHu, L., Bai, Y., Li, S., Liu, G., Liang, J., Deng, H., Li, A., Li, L., Pan, L., & Huang, Y. (2025). Effects of Modified Senna obtusifolia Straw Biochar on Organic Matter Mineralization and Nutrient Transformation in Siraitia grosvenorii Farmland. Agronomy, 15(8), 1877. https://doi.org/10.3390/agronomy15081877