Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media
Abstract
1. Introduction
2. Results and Discussion
2.1. Production of Bioadsorbents by Low-Temperature Pyrolysis
2.2. Characterization of the Raw Material and Biochars
2.3. Influence of Particle Size and Agitation Speed
2.4. Effect of Adsorbent Load
2.5. Kinetic Study and Adsorption Isotherm
2.6. Desorption Study
3. Materials and Methods
3.1. Raw Material and Chemicals
3.2. Pyrolysis Treatment
3.3. Adsorption and Desorption Experiments
3.4. Kinetic Study and Adsorption Isotherms
- Langmuir isotherm, Equation (8):
- Freundlich isotherm, Equation (10):
- Temkin isotherm, Equation (11):
- Dubinin–Radushkevich isotherm, D-R, Equation (12):
3.5. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Acetic acid |
Amax | Maximum adsorption percentage (%) |
APD | Average Pore Diameter (Å) |
At | Adsorption percentage at a given time (%) |
Ce | Equilibrium concentration of methylene blue (mg L−1) |
Dmax | Maximum desorption percentage (%) |
D-R | Dubinin–Radushkevich isotherm |
Dt | Desorption percentage at a given time (%) |
E | Ethanol |
EOP | Exhausted olive pomace |
EOPB | Exhausted olive pomace biochar (obtained at 400 °C for 1 h) |
MB | Methylene blue |
PFO | Pseudo-first order (kinetic model) |
PSO | Pseudo-second order (kinetic model) |
qe | Equilibrium adsorption capacity (mg g−1) |
qmax | Maximum adsorption capacity (mg g−1) |
qt | Adsorption capacity at a given time (mg g−1) |
R2 | Coefficient of determination |
SE | Sum of error values (%) |
SSA | Specific surface area (m2 g−1) |
W | Water |
WG | Without grinding (pelletized biochar with original size) |
WM | Weber–Morris (kinetic model) |
α | Initial sorption rate in the Elovich model (mg g−1 h−1) |
β | Constant related to the extent of surface coverage and activation energy for chemisorption in the Elovich model (g mg−1) |
References
- Al-Asadi, S.T.; Mussa, Z.H.; Al-Qaim, F.F.; Kamyab, H.; Al-Saedi, H.F.S.; Deyab, I.F.; Kadhim, N.J. A Comprehensive Review of Methylene Blue Dye Adsorption on Activated Carbon from Edible Fruit Seeds: A Case Study on Kinetics and Adsorption Models. Carbon Trends 2025, 20, 100507. [Google Scholar] [CrossRef]
- Fito, J.; Abewaa, M.; Mengistu, A.; Angassa, K.; Ambaye, A.D.; Moyo, W.; Nkambule, T. Adsorption of Methylene Blue from Textile Industrial Wastewater Using Activated Carbon Developed from Rumex Abyssinicus Plant. Sci. Rep. 2023, 13, 5427. [Google Scholar] [CrossRef]
- Bilińska, L.; Gmurek, M. Novel Trends in AOPs for Textile Wastewater Treatment. Enhanced Dye by-Products Removal by Catalytic and Synergistic Actions. Water Resour. Ind. 2021, 26, 100160. [Google Scholar] [CrossRef]
- Sharma, M.; Tyagi, V.V.; Chopra, K.; Kothari, R.; Singh, H.M.; Pandey, A.K. Advancement in Solar Energy-Based Technologies for Sustainable Treatment of Textile Wastewater: Reuse, Recovery and Current Perspectives. J. Water Process Eng. 2023, 56, 104241. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Abdulhameed, A.S.; Al Omari, R.H.; Althahban, S.; Jazaa, Y.; Abualhaija, M.; Algburi, S. Green Vegetable Waste Composited with Chitosan as a Bioadsorbent for Effective Removal of Methylene Blue Dye from Water: Insight into Physicochemical and Adsorption Characteristics. Biomass Bioenergy 2025, 193, 107528. [Google Scholar] [CrossRef]
- Senapati, S.; Giri, J.; Mallick, L.; Singha, D.; Bastia, T.K.; Rath, P.; Rana, M.K.; Panda, A.K. Rapid Adsorption of Industrial Cationic Dye Pollutant Using Base-Activated Rice Straw Biochar: Performance, Isotherm, Kinetic and Thermodynamic Evaluation. Discov. Sustain. 2025, 6, 46. [Google Scholar] [CrossRef]
- Dominguez, M.P.; Mendoza, J.; Hechenleitner, R. Continuous and Batch Methylene Blue Removal Using Avocado Seed Carbon: Performance Evaluation and Kinetic Analysis. Bioresour. Technol. Rep. 2025, 29, 102071. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Absi, R.S. Mechanistic Understanding of the Adsorption and Thermodynamic Aspects of Cationic Methylene Blue Dye onto Cellulosic Olive Stones Biomass from Wastewater. Sci. Rep. 2020, 10, 15928. [Google Scholar] [CrossRef]
- Alardhi, S.M.; Salih, H.G.; Ali, N.S.; Khalbas, A.H.; Salih, I.K.; Saady, N.M.C.; Zendehboudi, S.; Albayati, T.M.; Harharah, H.N. Olive Stone as an Eco-Friendly Bio-Adsorbent for Elimination of Methylene Blue Dye from Industrial Wastewater. Sci. Rep. 2023, 13, 21063. [Google Scholar] [CrossRef] [PubMed]
- Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Derbal, K.; Benalia, A.; Pizzi, A. Effect of Washing Temperature on Adsorption of Cationic Dyes by Raw Lignocellulosic Biomass. Appl. Sci. 2024, 14, 10365. [Google Scholar] [CrossRef]
- Çatlıoğlu, F.; Akay, S.; Turunç, E.; Gözmen, B.; Anastopoulos, I.; Kayan, B.; Kalderis, D. Preparation and Application of Fe-Modified Banana Peel in the Adsorption of Methylene Blue: Process Optimization Using Response Surface Methodology. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100517. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Fitzsimmons, M.; Ross, A.B.; Mariner, T. Response Surface Modelling of Methylene Blue Adsorption onto Seaweed, Coconut Shell and Oak Wood Hydrochars. Water 2023, 15, 977. [Google Scholar] [CrossRef]
- Do, T.H.; Nguyen, V.T.; Dung, N.Q.; Chu, M.N.; Van Kiet, D.; Ngan, T.T.K.; Van Tan, L. Study on Methylene Blue Adsorption of Activated Carbon Made from Moringa Oleifera Leaf. Mater. Today Proc. 2020, 38, 3405–3413. [Google Scholar] [CrossRef]
- International Olive Oil Council Huiles D’ Olive. Olive Oils; International Olive Oil Council Huiles D’ Olive: Madrid, Spain, 2018. [Google Scholar]
- Fernández-Lobato, L.; Ruiz-Carrasco, B.; Tostado-Véliz, M.; Jurado, F.; Vera, D. Environmental Impact of the Most Representative Spanish Olive Oil Farming Systems: A Life Cycle Assessment Study. J. Clean. Prod. 2024, 442, 141169. [Google Scholar] [CrossRef]
- Pérez-Almada, D.; Galán-Martín, Á.; Contreras, M.D.M.; Romero-García, J.M.; Castro, E. Uncovering the Techno-Economic and Environmental Implications of a Multiproduct Biorefinery from Exhausted Olive Pomace. ACS Sustain. Chem. Eng. 2025, 13, 2732–2745. [Google Scholar] [CrossRef]
- Freda, C.; Catizzone, E.; Villone, A.; Cornacchia, G. Biomass Gasification in Rotary Kiln Integrated with a Producer Gas Thermal Cleaning Unit: An Experimental Investigation. Results Eng. 2024, 21, 101763. [Google Scholar] [CrossRef]
- Saoudi Hassani, E.M.; Duarte, H.; Brás, J.; Taleb, A.; Taleb, M.; Rais, Z.; Eivazi, A.; Norgren, M.; Romano, A.; Medronho, B. On the Valorization of Olive Oil Pomace: A Sustainable Approach for Methylene Blue Removal from Aqueous Media. Polymers 2024, 16, 3055. [Google Scholar] [CrossRef] [PubMed]
- Iwuozor, K.O.; Ighalo, J.O.; Ogunfowora, L.A.; Adeniyi, A.G.; Igwegbe, C.A. An Empirical Literature Analysis of Adsorbent Performance for Methylene Blue Uptake from Aqueous Media. J. Environ. Chem. Eng. 2021, 9, 105658. [Google Scholar] [CrossRef]
- Su, Y.; Fu, W.; Zhang, X.; Wang, X.; Bai, X. Study on the Preparation of Biochar from Xinjiang Biomass Pyrolysis and Its Adsorption Characteristics for Water Pollutants. Water. Air Soil Pollut. 2025, 236, 320. [Google Scholar] [CrossRef]
- Mohamed Abdoul-Latif, F.; Ainane, A.; Hachi, T.; Abbi, R.; Achira, M.; Abourriche, A.; Brulé, M.; Ainane, T. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents. Molecules 2023, 28, 4310. [Google Scholar] [CrossRef]
- Kan, X.; Suo, Y.; Shi, B.; Zheng, Y.; Liu, Z.; Ma, W.; Li, X. Synergistic Enhancement of Rhodamine B Adsorption by Coffee Shell Biochar Through High-Temperature Pyrolysis and Water Washing. Molecules 2025, 30, 2769. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Lin, A.B.; Chang, C.T.; Hong, G.B. Bimetallic Zinc-Iron-Modified Sugarcane Bagasse Biochar for Simultaneous Adsorption of Arsenic and Oxytetracycline from Wastewater. Molecules 2025, 30, 572. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.T.; Yang, B.; Hu, W.G.; Gao, G.J.; Jiang, X.Y.; Yu, J.G. Garlic Peel-Based Biochar Prepared under Weak Carbonation Conditions for Efficient Removal of Methylene Blue from Wastewater. Molecules 2024, 29, 4772. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Ghiasi, B.; Soelberg, N.R.; Sokhansanj, S. Biomass Torrefaction Process, Product Properties, Reactor Types, and Moving Bed Reactor Design Concepts. Front. Energy Res. 2021, 9, 728140. [Google Scholar] [CrossRef]
- Encinar, J.M.; González, J.F.; Martínez, G.; Román, S. Catalytic Pyrolysis of Exhausted Olive Oil Waste. J. Anal. Appl. Pyrolysis 2009, 85, 197–203. [Google Scholar] [CrossRef]
- Kinnunen, N.; Laurén, A.A.; Pumpanen, J.; Nieminen, T.M.; Palviainen, M. Biochar Capacity to Mitigate Acidity and Adsorb Metals—Laboratory Tests for Acid Sulfate Soil Drainage Water. Water. Air Soil Pollut. 2021, 232, 464. [Google Scholar] [CrossRef]
- Grioui, N.; Elleuch, A.; Halouani, K.; Li, Y. Valorization of Exhausted Olive Pomace for the Production of a Fuel for Direct Carbon Fuel Cell. C-J. Carbon Res. 2023, 9, 22. [Google Scholar] [CrossRef]
- Alcazar-Ruiz, A.; Garcia-Carpintero, R.; Dorado, F.; Sanchez- Silva, L. Valorization of Olive Oil Industry Subproducts: Ash and Olive Pomace Fast Pyrolysis. Food Bioprod. Process. 2021, 125, 37–45. [Google Scholar] [CrossRef]
- García, G.B.; Calero De Hoces, M.; Martínez García, C.; Cotes Palomino, M.T.; Gálvez, A.R.; Martín-Lara, M.Á. Characterization and Modeling of Pyrolysis of the Two-Phase Olive Mill Solid Waste. Fuel Process. Technol. 2014, 126, 104–111. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, S.; Qin, Y.; Wang, W.; Vassilev, S.V.; He, C.; Wei, Y.; Vassileva, C.G. Insights into Chemical Evolution Mechanism of Different Biomass during Torrefaction Based on the Properties of Torrefied Solid, Liquid, and Gaseous Products. Energy 2025, 318, 134912. [Google Scholar] [CrossRef]
- Shen, Z.; Dong, Z.; Zhang, H.; Guo, X.; Liu, H. Comprehensive Study on Morphology, Composition, and Structure Evolutions of Different Biomass Particles with Torrefaction and Low-Temperature Carbonization. Biomass Bioenergy 2025, 193, 107587. [Google Scholar] [CrossRef]
- Fodil Cherif, M.; Trache, D.; Brosse, N.; Benaliouche, F.; Tarchoun, A.F. Comparison of the Physicochemical Properties and Thermal Stability of Organosolv and Kraft Lignins from Hardwood and Softwood Biomass for Their Potential Valorization. Waste Biomass Valorization 2020, 11, 6541–6553. [Google Scholar] [CrossRef]
- Gierlinger, N.; Goswami, L.; Schmidt, M.; Burgert, I.; Coutand, C.; Rogge, T.; Schwanninger, M. In Situ FT-IR Microscopic Study on Enzymatic Treatment of Poplar Wood Cross-Sections. Biomacromolecules 2008, 9, 2194–2201. [Google Scholar] [CrossRef]
- Nilsson, R.; Olsson, M.; Westman, G.; Matic, A.; Larsson, A. Screening of Hydrogen Bonds in Modified Cellulose Acetates with Alkyl Chain Substitutions. Carbohydr. Polym. 2022, 285, 119188. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, K.; Chen, B. Linking Hydrophobicity of Biochar to the Water Repellency and Water Holding Capacity of Biochar-Amended Soil. Environ. Pollut. 2019, 253, 779–789. [Google Scholar] [CrossRef]
- Borja, R.; Raposo, F.; Rincón, B. Treatment Technologies of Liquid and Solid Wastes from Two-Phase Olive Oil Mills. Grasas y Aceites 2006, 57, 32–46. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Ossler, F.; Finney, C.E.A.; Bai, X.S.; Fatehi, H. Detailed Modeling of Hydrogen Release and Particle Shrinkage during Pyrolysis of Inhomogeneous Wood. Proc. Combust. Inst. 2023, 39, 3323–3332. [Google Scholar] [CrossRef]
- Tan, R.K.; Eberhard, W.; Büchs, J. Measurement and Characterization of Mixing Time in Shake Flasks. Chem. Eng. Sci. 2011, 66, 440–447. [Google Scholar] [CrossRef]
- Peter, C.P.; Suzuki, Y.; Rachinskiy, K.; Lotter, S.; Büchs, J. Volumetric Power Consumption in Baffled Shake Flasks. Chem. Eng. Sci. 2006, 61, 3771–3779. [Google Scholar] [CrossRef]
- Cuevas, M.; Moya, A.J.; Hodaifa, G.; Sánchez, S.; Mateo, S. Acid Insoluble Lignin Material Production by Chemical Activation of Olive Endocarps for an Efficient Furfural Adsorption-Removal from Aqueous Solutions. Environ. Res. 2024, 248, 118243. [Google Scholar] [CrossRef]
- Bai, B.; Wang, Q.; Sun, Y.; Zhou, R.; Chen, G.; Tang, Y. Synthesis of Porous MgAl-LDH on a Micelle Template and Its Application for Efficient Treatment of Oilfield Wastewater. Molecules 2023, 28, 6638. [Google Scholar] [CrossRef]
- El Bakouri, H.; Usero, J.; Morillo, J.; Ouassini, A. Adsorptive Features of Acid-Treated Olive Stones for Drin Pesticides: Equilibrium, Kinetic and Thermodynamic Modeling Studies. Bioresour. Technol. 2009, 100, 4147–4155. [Google Scholar] [CrossRef]
- Faryadi Shahgoli, M.; Reyhanitabar, A.; Najafi, N.; Oustan, S. Kinetic and Equilibrium Studies on the Zinc Adsorption–Desorption Characteristics of Some Promising Biochars in Aqueous Solutions. Arab. J. Geosci. 2022, 15, 794. [Google Scholar] [CrossRef]
- Ozdemir, N.C.; Bilici, Z.; Yabalak, E.; Dizge, N.; Balakrishnan, D.; Khoo, K.S.; Show, P.L. Physico-Chemical Adsorption of Cationic Dyes Using Adsorbent Synthesis via Hydrochloric Acid Treatment and Subcritical Method from Palm Leaf Biomass Waste. Chemosphere 2023, 339, 139558. [Google Scholar] [CrossRef]
- Kazemi, J.; Javanbakht, V. Alginate Beads Impregnated with Magnetic Chitosan@Zeolite Nanocomposite for Cationic Methylene Blue Dye Removal from Aqueous Solution. Int. J. Biol. Macromol. 2020, 154, 1426–1437. [Google Scholar] [CrossRef] [PubMed]
- Aygün, A.; Yenisoy-Karakaş, S.; Duman, I. Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties. Microporous Mesoporous Mater. 2003, 66, 189–195. [Google Scholar] [CrossRef]
- Mahmoud, D.K.; Salleh, M.A.M.; Karim, W.A.W.A.; Idris, A.; Abidin, Z.Z. Batch Adsorption of Basic Dye Using Acid Treated Kenaf Fibre Char: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2012, 181, 449–457. [Google Scholar] [CrossRef]
- Phuong, D.T.M.; Loc, N.X.; Miyanishi, T. Efficiency of Dye Adsorption by Biochars Produced from Residues of Two Rice Varieties, Japanese Koshihikari and Vietnamese IR50404. Desalin. Water Treat. 2019, 165, 333–351. [Google Scholar] [CrossRef]
- Aguado, R.; Escámez, A.; Jurado, F.; Vera, D. Experimental Assessment of a Pilot-Scale Gasification Plant Fueled with Olive Pomace Pellets for Combined Power, Heat and Biochar Production. Fuel 2023, 344, 128127. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of Biochar for the Removal of Pollutants from Aqueous Solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Salimi, A.; Roosta, A. Experimental Solubility and Thermodynamic Aspects of Methylene Blue in Different Solvents. Thermochim. Acta 2019, 675, 134–139. [Google Scholar] [CrossRef]
- Singh, H.; Chauhan, G.; Jain, A.K.; Sharma, S.K. Adsorptive Potential of Agricultural Wastes for Removal of Dyes from Aqueous Solutions. J. Environ. Chem. Eng. 2017, 5, 122–135. [Google Scholar] [CrossRef]
- Saini, R.; Pandey, M.; Mishra, R.K.; Kumar, P. Adsorption Potential of Hydrochar Derived from Hydrothermal Carbonization of Waste Biomass towards the Removal of Methylene Blue Dye from Wastewater. Biomass Convers. Biorefinery 2024, 15, 9229–9249. [Google Scholar] [CrossRef]
- Erdoan, B.C.; Ülkü, S. Cr(VI) Sorption by Using Clinoptilolite and Bacteria Loaded Clinoptilolite Rich Mineral. Microporous Mesoporous Mater. 2012, 152, 253–261. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Qu, C.; Tang, Y.; Slaný, M. Synthesis of Mg-Al hydrotalcite Clay with High Adsorption Capacity. Materials 2021, 14, 7231. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Martínez-Cartas, M.L.; Cuevas-Aranda, M. Production of Hydrochar Fuel by Microwave-Hydrothermal Carbonisation of Olive Pomace Slurry from Olive Oil Industry for Combustion Application. J. Anal. Appl. Pyrolysis 2024, 183, 106801. [Google Scholar] [CrossRef]
Parameter | EOP | Biochar 400 °C | Biochar 500 °C | |
---|---|---|---|---|
Proximate analysis | Ash (%) | 9.5 ± 0.3 | 21.5 ± 0.3 | 25.6 ± 0.1 |
Fixed carbon * (%) | 15.7 ± 1.2 | 46.7 ± 1.6 | 44.0 ± 1.4 | |
Volatile matter (%) | 74.8 ± 1.2 | 31.9 ± 1.3 | 30.4 ± 1.5 | |
Ultimate analysis | C (%) | 43.5 ± 0.2 | 56.1 ± 1.2 | 61.1 ± 0.8 |
H (%) | 5.6 ± 0.0 | 3.9 ± 0.0 | 2.6 ± 0.1 | |
N (%) | 1.6 ± 0.0 | 1.8 ± 0.0 | 1.3 ± 0.0 | |
S (%) | 1.1 ± 0.5 | 0.5 ± 0.3 | 0.6 ± 0.1 | |
O * (%) | 48.2 ± 0.2 | 37.8 ± 1.6 | 34.3 ± 0.7 |
Kinetic Models | Initial Solute Concentration (C0) and Kinetic Parameters | ||||||
---|---|---|---|---|---|---|---|
PFO | C0 (mg L−1) | qe,cal (mg g−1) | K1 (g mg−1 h−1) | R2 | SE (%) | ||
50 | 1.980 | 0.133 | 0.991 | 36.0 | |||
100 | 3.973 | 0.104 | 0.992 | 35.7 | |||
PSO | C0 (mg L−1) | qe,cal (mg g−1) | K2 (g mg−1 h−1) | R2 | SE (%) | ||
50 | 2.667 | 0.107 | 1.000 | 2.3 | |||
100 | 5.298 | 0.039 | 1.000 | 3.4 | |||
WM | C0 (mg L−1) | Kdf1(1) | R2 | SE (%) | Kdf2 (1) | R2 | SE (%) |
50 | 0.721 | 0.993 | 5.3 | 0.268 | 0.991 | 9.9 | |
100 | 1.165 | 0.994 | 4.9 | 0.451 | 0.985 | 1.7 | |
Elovich | C0 (mg L−1) | α (mg g−1 h−1) | β (g mg−1) | R2 | SE (%) | ||
50 | 1.939 | 1.981 | 0.965 | 7.8 | |||
100 | 2.553 | 0.950 | 0.982 | 6.2 |
Langmuir | KL (L mg−1) | qm (mg g−1) | R2 | SE (%) |
0.269 | 6.414 | 0.999 | 4.25 | |
Freundlich | KF (mg g−1 (mg L−1)−n) | n | R2 | SE (%) |
1.229 | 2.035 | 0.890 | 30.13 | |
Temkin | KT (L mg−1) | B (mg g−1) | R2 | SE (%) |
4.917 | 1.113 | 0.989 | 9.77 | |
D-R (1) | qm (mg g−1) | KDR 107 (mol2 J−2) | R2 | SE (%) |
4.204 | 1.600 | 0.905 | 24.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chafi, S.; Cuevas-Aranda, M.; Martínez-Cartas, M.L.; Sánchez, S. Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media. Molecules 2025, 30, 3254. https://doi.org/10.3390/molecules30153254
Chafi S, Cuevas-Aranda M, Martínez-Cartas ML, Sánchez S. Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media. Molecules. 2025; 30(15):3254. https://doi.org/10.3390/molecules30153254
Chicago/Turabian StyleChafi, Safae, Manuel Cuevas-Aranda, Mª Lourdes Martínez-Cartas, and Sebastián Sánchez. 2025. "Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media" Molecules 30, no. 15: 3254. https://doi.org/10.3390/molecules30153254
APA StyleChafi, S., Cuevas-Aranda, M., Martínez-Cartas, M. L., & Sánchez, S. (2025). Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media. Molecules, 30(15), 3254. https://doi.org/10.3390/molecules30153254