Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = RHBD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2240 KiB  
Article
A Low-Power Read-Decoupled Radiation-Hardened 16T SRAM for Space Applications
by Sung-Jun Lim and Sung-Hun Jo
Appl. Sci. 2025, 15(12), 6536; https://doi.org/10.3390/app15126536 - 10 Jun 2025
Viewed by 435
Abstract
Advancements in CMOS technology have significantly reduced both transistor dimensions and inter-device spacing, leading to a lower critical charge at sensitive nodes. As a result, SRAM cells used in space applications have become increasingly vulnerable to single-event upset (SEU) caused by the harsh [...] Read more.
Advancements in CMOS technology have significantly reduced both transistor dimensions and inter-device spacing, leading to a lower critical charge at sensitive nodes. As a result, SRAM cells used in space applications have become increasingly vulnerable to single-event upset (SEU) caused by the harsh radiation environment. To ensure reliable operation under such conditions, radiation-hardened SRAM designs are essential. In this paper, we propose a low-power read-decoupled radiation-hardened 16T (LDRH16T) SRAM cell to mitigate the effects of SEU. The proposed cell is evaluated against several state-of-the-art soft-error-tolerant SRAM designs, including QUCCE12T, WE-QUATRO, RHBD10T, SIS10T, EDP12T, SEA14T, and SAW16T. Simulations are conducted using a 90 nm CMOS process at a supply voltage of 1 V and a temperature of 27 °C. Simulation results show that LDRH16T successfully recovers its original state after injection at all sensitive nodes. Furthermore, since its storage nodes are decoupled from the bit lines during read operations, the proposed cell achieves the highest read stability among the compared designs. It also exhibits superior write ability, shorter write delay, and significantly lower hold power consumption. In addition, LDRH16T demonstrates excellent overall performance across key evaluation metrics and proves its capability for reliable operation in space environments. Full article
Show Figures

Figure 1

14 pages, 4290 KiB  
Article
RHLP-18T: A Radiation-Hardened 18T SRAM with Enhanced Read Stability and Low Power Consumption
by Han-Gyeol Kim and Sung-Hun Jo
Appl. Sci. 2025, 15(10), 5712; https://doi.org/10.3390/app15105712 - 20 May 2025
Viewed by 452
Abstract
Electronic equipment in space is constantly exposed to high-energy particles, which can induce Single Event Upsets (SEUs) in memory components, threatening system reliability. To address this critical challenge, we propose RHLP-18T, a radiation-hardened 18-transistor (18T) Static Random-Access Memory (SRAM) cell designed to enhance [...] Read more.
Electronic equipment in space is constantly exposed to high-energy particles, which can induce Single Event Upsets (SEUs) in memory components, threatening system reliability. To address this critical challenge, we propose RHLP-18T, a radiation-hardened 18-transistor (18T) Static Random-Access Memory (SRAM) cell designed to enhance robustness against radiation-induced faults. The proposed cell integrates circuit-level Radiation-Hardened-by-Design (RHBD) techniques to mitigate both SEUs and multi-node upsets. Comprehensive simulations were conducted using 90 nm CMOS technology, benchmarking RHLP-18T against nine existing RHBD cells (RHBD14T, HPHS12T, NRHC14T, QCCS12T, RHMC12T, RHWC12T, SEA14T, SIMR-18T, and SERSC16T). Simulation results demonstrate that the proposed RHLP-18T cell exhibits superior SEU tolerance, achieving a Read Static Noise Margin (RSNM) over three times higher than the next best design. Moreover, the proposed cell achieves the lowest hold power consumption among all evaluated cells. These improvements result in the highest Figure of Merit (FOM), indicating that RHLP-18T provides an optimal trade-off between robustness and overall performance for operation in radiation-exposed environments. Full article
Show Figures

Figure 1

11 pages, 11863 KiB  
Article
Single-Event Upset Characterization of a Shift Register in 16 nm FinFET Technology
by Federico D’Aniello, Marcello Tettamanti, Syed Adeel Ali Shah, Serena Mattiazzo, Stefano Bonaldo, Valeria Vadalà and Andrea Baschirotto
Electronics 2025, 14(7), 1421; https://doi.org/10.3390/electronics14071421 - 31 Mar 2025
Viewed by 763
Abstract
Today, many electronic circuits are required to be able to work effectively, even in environments exposed to ionizing radiation. This work examines the effects of ionizing radiation on shift registers realized in a bulk 16 nm FinFET technology, focusing on Single-Event Upset (SEU). [...] Read more.
Today, many electronic circuits are required to be able to work effectively, even in environments exposed to ionizing radiation. This work examines the effects of ionizing radiation on shift registers realized in a bulk 16 nm FinFET technology, focusing on Single-Event Upset (SEU). An SEU occurs when a charged particle ionizes a sensitive node in the circuit, causing a stored bit to flip from one logical state to its opposite. This study estimates the saturation cross-section for the 16 nm FinFET technology and compares it with results from a 28 nm planar CMOS technology. The experiments were conducted at the SIRAD facility of INFN Legnaro Laboratories (Italy). The device under test was irradiated with the ion sources 58Ni and 28Si, both with different tilt angles, to assess the number of SEUs with different LET and range values. Additionally, the study evaluates the effectiveness of the radiation-hardened by design technique, specifically the Triple Modular Redundancy (TMR), which is a technique commonly employed in planar technologies. However, in this particular case study, TMR proved to be ineffective, and the reasons behind this limitation are analyzed along with potential improvements for future designs. Full article
Show Figures

Figure 1

13 pages, 4058 KiB  
Article
Soft Error-Tolerant and Highly Stable Low-Power SRAM for Satellite Applications
by Jong-Yeob Oh and Sung-Hun Jo
Appl. Sci. 2025, 15(1), 375; https://doi.org/10.3390/app15010375 - 3 Jan 2025
Cited by 1 | Viewed by 1247
Abstract
As CMOS technology has advanced, the transistor integration density of static random-access memory (SRAM) cells has increased. This has led to a reduction in the critical charge of sensitive nodes, making the SRAM cells more susceptible to soft errors. When high-energy particles in [...] Read more.
As CMOS technology has advanced, the transistor integration density of static random-access memory (SRAM) cells has increased. This has led to a reduction in the critical charge of sensitive nodes, making the SRAM cells more susceptible to soft errors. When high-energy particles in space strike the sensitive nodes of an SRAM cell, a single-event upset (SEU) can occur, altering the stored data. Additionally, the charge-sharing effect between transistors can cause single-event multi-node upsets (SEMNUs). To address these challenges, this paper proposes a radiation-hardened 16T SRAM cell optimized for stability and power, referred to as RHSP16T. The performance of the proposed RHSP16T cell was compared with other radiation-hardened SRAM cells, including QUC-CE12T, WE-QUATRO, RHBD10T, RHD12T, and RSP14T. Simulation results indicate that the proposed RHSP16T cell exhibits higher read and write stability, along with lower-leakage power consumption. compared with all other cells. This demonstrates that RHSP16T ensures high reliability for stored data. Furthermore, EQM results show that the RHSP16T cell outperformed the compared designs in overall SRAM cell performance. The proposed integrated circuit was implemented in a 90 nm CMOS process and operated on 1 V supply voltage. Full article
Show Figures

Figure 1

14 pages, 6184 KiB  
Article
Radiation-Hardened 16T SRAM Cell with Improved Read and Write Stability for Space Applications
by Jong-Yeob Oh and Sung-Hun Jo
Appl. Sci. 2024, 14(24), 11940; https://doi.org/10.3390/app142411940 - 20 Dec 2024
Cited by 2 | Viewed by 1138
Abstract
The critical charge of sensitive nodes decreases as transistors scale down with the advancement of CMOS technology, making SRAM cells more susceptible to soft errors in the space industry. When a radiation particle strikes a sensitive node of a conventional 6T SRAM cell, [...] Read more.
The critical charge of sensitive nodes decreases as transistors scale down with the advancement of CMOS technology, making SRAM cells more susceptible to soft errors in the space industry. When a radiation particle strikes a sensitive node of a conventional 6T SRAM cell, a single event upset (SEU) can occur, flipping in the stored data in the cell. Additionally, charge sharing between transistors can cause single-event multi-node upsets (SEMNUs), where data in multiple nodes are flipped simultaneously due to a single particle strike. Therefore, this paper proposes a radiation-hardened high stability 16T (RHHS16T) cell for space applications. The characteristics of RHHS16T are evaluated and compared with previously proposed radiation-hardened SRAM cells such as QUCCE12T, WEQUATRO, RHBD10T, RHD12T, RSP14T, RHPD14T, and RHBD14T. Simulation results for RHHS16T indicated that the proposed cell demonstrates improved performance in read stability, write access time, and write stability compared to all comparison cells. These improvements in the proposed cell are achieved with higher power consumption and a minor area penalty. Notably, isolating the storage node from the bit line during read operations and the feedback loop between nodes during write operations enables the proposed RHHS16T to achieve enhanced read stability and write stability, respectively. The proposed integrated circuit was implemented using a 90 nm CMOS process and operates at a supply voltage of 1V. Furthermore, RHHS16T provides high immunity against SEUs and SEMNUs. Through its enhanced read and write stability, it ensures reliable data retention for space applications. Full article
Show Figures

Figure 1

24 pages, 18551 KiB  
Article
A CMOS 12-Bit 3MS/s Rad-Hard Digital-to-Analog Converter Based on a High-Linearity Resistor String Poly-Matrix
by Cristiano Calligaro and Umberto Gatti
Chips 2024, 3(2), 129-152; https://doi.org/10.3390/chips3020006 - 8 May 2024
Cited by 2 | Viewed by 2905
Abstract
This work presents a rad-hard 12-bit 3 MS/s resistor string DAC for space applications. The converter has been developed using rad-hardened techniques both at architecture and layout levels starting from a conventional topology. The design considers the different effects of the radiation that [...] Read more.
This work presents a rad-hard 12-bit 3 MS/s resistor string DAC for space applications. The converter has been developed using rad-hardened techniques both at architecture and layout levels starting from a conventional topology. The design considers the different effects of the radiation that could damage the circuits in space environments. The DAC has been developed and integrated a standard CMOS 0.13 μm technology by IHP, using RHBD techniques. Low Earth Orbit (LEO) requires a TID value of around 100 krad (Si), according to the expected length of the mission. The temperature range is between −55 °C and 125 °C. The DAC power budget is similar to that of terrestrial applications. The measured INL (Integral Non-Linearity) and DNL (Differential Non-Linearity) are better than 0.2 LSB, while the ENOB (Effective Number Of Bits) at a 3 MS/s clock exceeds 9.7 bits while loading a 10 pF capacitor. The DAC has been characterized under radiation, showing a fluctuation in the analog output lower than 2 LSB (mainly due to measurement uncertainty) up to 500 krad (Si). Power consumption shows a negligible increase, too. A 10-bit version of the same DAC as the downscaled 12-bit one has been developed as well. Full article
Show Figures

Figure 1

10 pages, 2488 KiB  
Article
Soft-Error-Aware Radiation-Hardened Ge-DLTFET-Based SRAM Cell Design
by Pushpa Raikwal, Prashant Kumar, Meena Panchore, Pushpendra Dwivedi and Kanchan Cecil
Electronics 2023, 12(14), 3198; https://doi.org/10.3390/electronics12143198 - 24 Jul 2023
Cited by 3 | Viewed by 1910
Abstract
In this paper, a soft-error-aware radiation-hardened 6T SRAM cell has been implemented using germanium-based dopingless tunnel FET (Ge DLTFET). In a circuit level simulation, the device-circuit co-design approach is used. Semiconductor devices are very prone to the radiation environment; hence, finding out the [...] Read more.
In this paper, a soft-error-aware radiation-hardened 6T SRAM cell has been implemented using germanium-based dopingless tunnel FET (Ge DLTFET). In a circuit level simulation, the device-circuit co-design approach is used. Semiconductor devices are very prone to the radiation environment; hence, finding out the solution to the problem became a necessity for the designers. Single event upset (SEU), also known as soft error, is one of the most frequent issues to tackle in semiconductor devices. To mitigate the effect of soft error due to single-event upset, the radiation-hardening-by-design (RHBD) technique has been employed for Ge DLTFET-based SRAM cells. This technique uses RC feedback paths between the two cross-coupled inverters of an SRAM cell. The soft-error sensitivity is estimated for a conventional and RHBD-based SRAM cell design. It is found that the RHBD-based SRAM cell design is more efficient to mitigate the soft-error effect in comparison to the conventional design. The delay and stability parameters, obtained from the N-curve, of the Ge DLTFET-based SRAM cell performs better than the conventional Si TFET-based SRAM cell. There is an improvement of 305x & 850x in the static power noise margin and write trip power values of the Ge DLTFET SRAM cell with respect to the conventional Si TFET SRAM cell. Full article
(This article belongs to the Special Issue Advanced CMOS Devices)
Show Figures

Figure 1

14 pages, 2557 KiB  
Article
A High-Reliability 12T SRAM Radiation-Hardened Cell for Aerospace Applications
by Ruxue Yao, Hongliang Lv, Yuming Zhang, Xu Chen, Yutao Zhang, Xingming Liu and Geng Bai
Micromachines 2023, 14(7), 1305; https://doi.org/10.3390/mi14071305 - 25 Jun 2023
Cited by 5 | Viewed by 3425
Abstract
The static random-access memory (SRAM) cells used in the high radiation environment of aerospace have become highly vulnerable to single-event effects (SEE). Therefore, a 12T SRAM-hardened circuit (RHB-12T cell) for the soft error recovery is proposed using the radiation hardening design (RHBD) concept. [...] Read more.
The static random-access memory (SRAM) cells used in the high radiation environment of aerospace have become highly vulnerable to single-event effects (SEE). Therefore, a 12T SRAM-hardened circuit (RHB-12T cell) for the soft error recovery is proposed using the radiation hardening design (RHBD) concept. To verify the performance of the RHB-12T, the proposed cell is simulated by the 28 nm CMOS process and compared with other hardened cells (Quatro-10T, WE-Quatro-12T, RHM-12T, RHD-12T, and RSP-14T). The simulation results show that the RHB-12T cell can recover not only from single-event upset caused by their sensitive nodes but also from single-event multi-node upset caused by their storage node pairs. The proposed cell exhibits 1.14×/1.23×/1.06× shorter read delay than Quatro-10T/WE-Quatro-12T/RSP-14T and 1.31×/1.11×/1.18×/1.37× shorter write delay than WE-Quatro-12T/RHM-12T/RHD-12T/RSP-14T. It also shows 1.35×/1.11×/1.04× higher read stability than Quatro-10T/RHM-12T/RHD-12T and 1.12×/1.04×/1.09× higher write ability than RHM-12T/RHD-12T/RSP-14T. All these improvements are achieved at the cost of a slightly larger area and power consumption. Full article
(This article belongs to the Special Issue MEMS for Aerospace Applications, 2nd Edition)
Show Figures

Figure 1

11 pages, 1946 KiB  
Article
A Novel Low-Power and Soft Error Recovery 10T SRAM Cell
by Changjun Liu, Hongxia Liu and Jianye Yang
Micromachines 2023, 14(4), 845; https://doi.org/10.3390/mi14040845 - 13 Apr 2023
Cited by 3 | Viewed by 2425
Abstract
In SRAM cells, as the size of transistors and the distance between transistors decrease rapidly, the critical charge of the sensitive node decreases, making SRAM cells more susceptible to soft errors. If radiation particles hit the sensitive nodes of a standard 6T SRAM [...] Read more.
In SRAM cells, as the size of transistors and the distance between transistors decrease rapidly, the critical charge of the sensitive node decreases, making SRAM cells more susceptible to soft errors. If radiation particles hit the sensitive nodes of a standard 6T SRAM cell, the data stored in the cell are flipped, resulting in a single event upset. Therefore, this paper proposes a low-power SRAM cell, called PP10T, for soft error recovery. To verify the performance of PP10T, the proposed cell is simulated by the 22 nm FDSOI process, and compared with the standard 6T cell and several 10T SRAM cells, such as Quatro-10T, PS10T, NS10T, and RHBD10T. The simulation results show that all of the sensitive nodes of PP10T can recover their data, even when S0 and S1 nodes flip at the same time. PP10T is also immune to read interference, because the change of the ‘0’ storage node, directly accessed by the bit line during the read operation, does not affect other nodes. In addition, PP10T consumes very low-holding power due to the smaller leakage current of the circuit. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

14 pages, 3189 KiB  
Article
A Novel DNU Self-Recoverable and SET Pulse Filterable Latch Design for Aerospace Applications
by Shixin Wang, Lixin Wang, Min Guo, Yuanzhe Li and Bowang Li
Electronics 2023, 12(5), 1193; https://doi.org/10.3390/electronics12051193 - 1 Mar 2023
Cited by 1 | Viewed by 2155
Abstract
This paper presents a novel double node upset (DNU) self-recoverable and single event transient (SET) pulse filterable latch design in 28 nm CMOS technology. The loop structure formed by C-elements (CEs) ensures that the latch can self-recover from the DNUs. A Schmitt trigger [...] Read more.
This paper presents a novel double node upset (DNU) self-recoverable and single event transient (SET) pulse filterable latch design in 28 nm CMOS technology. The loop structure formed by C-elements (CEs) ensures that the latch can self-recover from the DNUs. A Schmitt trigger at the output can filter out transient pulses from anywhere in the circuit. A clock-controlled inverter channel that connects the input to the output reduces the transmission latency. The simulation results show that the proposed design is completely immune to DNUs, and the delay power area product (DPAP) is reduced by more than 50% compared with the previous design. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

13 pages, 4500 KiB  
Article
A Single-Event-Hardened Scheme of Phase-Locked Loop Microsystems for Aerospace Applications
by Qi Xiang, Hongxia Liu and Yulun Zhou
Micromachines 2022, 13(12), 2102; https://doi.org/10.3390/mi13122102 - 28 Nov 2022
Cited by 2 | Viewed by 2193
Abstract
In order to improve the ability of the phase-locked loop (PLL) microsystem applied in the aerospace environment to suppress the irradiation effect, this study presents an efficient charge pump hardened scheme by using the radiation-hardened-by-design (RHBD) technology. In this study, the sensitivity analysis [...] Read more.
In order to improve the ability of the phase-locked loop (PLL) microsystem applied in the aerospace environment to suppress the irradiation effect, this study presents an efficient charge pump hardened scheme by using the radiation-hardened-by-design (RHBD) technology. In this study, the sensitivity analysis of the single-event transient (SET) at different nodes of charge pump and different bombardment energies is carried out. Without changing the original structure and loop parameters, a hardened scheme of phase-locked loop to suppress the single-event effect is proposed. A digital control circuit is added between the charge pump and low-pass filter, which greatly reduces the sensitivity of the charge pump to the SET. The classical double-exponential current pulse model is used to simulate the SET effect on the unreinforced and reinforced phase-locked loops, and the reliability of the proposed reinforcement scheme is verified. The simulation results based on the SMIC 130 nm standard complementary metal–oxide–semiconductor (CMOS) process show that the peak value of the transient response fluctuation of the phase-locked loop using the proposed single-event-hardened scheme decreased by 94.2%, the lock recovery time increased by 75.3%, and the maximum phase shift decreased by 90.8%. This shows that the hardened scheme can effectively reduce the sensitivity of the PLL microsystems to the SET effects. Full article
(This article belongs to the Special Issue MEMS for Aerospace Applications, 2nd Edition)
Show Figures

Figure 1

10 pages, 3609 KiB  
Communication
The Effects of Total Ionizing Dose on the SEU Cross-Section of SOI SRAMs
by Peixiong Zhao, Bo Li, Hainan Liu, Jinhu Yang, Yang Jiao, Qiyu Chen, Youmei Sun and Jie Liu
Electronics 2022, 11(19), 3188; https://doi.org/10.3390/electronics11193188 - 5 Oct 2022
Cited by 4 | Viewed by 3044
Abstract
The total ionizing dose (TID) effects on single-event upset (SEU) hardness are investigated for two silicon-on-insulator (SOI) static random access memories (SRAMs) with different layout structures in this paper. The contrary changing trends of TID on SEU sensitivity for 6T and 7T SOI [...] Read more.
The total ionizing dose (TID) effects on single-event upset (SEU) hardness are investigated for two silicon-on-insulator (SOI) static random access memories (SRAMs) with different layout structures in this paper. The contrary changing trends of TID on SEU sensitivity for 6T and 7T SOI SRAMs are observed in our experiment. After 800 krad(Si) irradiation, the SEU cross-sections of 6T SRAMs increases by 15%, while 7T SRAMs decreases by 60%. Experimental results show that the SEU cross-sections are not only affected by TID irradiation, but also strongly correlate with the layout structure of the memory cells. Theoretical analysis shows that the decrease of SEU cross-section of 7T SRAM is caused by a raised OFF-state equivalent resistance of the delay transistor N5 after TID exposure, which is because the radiation-induced charges are trapped in the shallow trench, and isolation oxide (STI) and buried oxide (BOX) enhance the carrier scattering rate of delay transistor N5. Full article
(This article belongs to the Special Issue Radiation Effects of Advanced Electronic Devices and Circuits)
Show Figures

Figure 1

17 pages, 11416 KiB  
Article
A Novel Radiation-Hardened CCDM-TSPC Compared with Seven Well-Known RHBD Flip-Flops in 180 nm CMOS Process
by Shixin Wang, Lixin Wang, Yue Wang, Min Guo and Yuanzhe Li
Electronics 2022, 11(19), 3098; https://doi.org/10.3390/electronics11193098 - 28 Sep 2022
Cited by 2 | Viewed by 3527
Abstract
Numerous radiation-hardened-by-design (RHBD) flip-flops have been developed to increase the dependability of digital chips for space applications over the past two decades. In this paper, the radiation immunity and performance of seven well-known RHBD flip-flops are discussed. A novel cross-connected dual modular redundant [...] Read more.
Numerous radiation-hardened-by-design (RHBD) flip-flops have been developed to increase the dependability of digital chips for space applications over the past two decades. In this paper, the radiation immunity and performance of seven well-known RHBD flip-flops are discussed. A novel cross-connected dual modular redundant true single-phase clock (TSPC) D flip-flop (CCDM-TSPC) is proposed. The presented CCDM-TSPC replaces the typical master-slave D flip-flop (MS-DFF) with the fundamental TSPC structure to shorten the circuit’s propagation time. All sensitive points in the circuit are radiation-hardened by using means of cross-connection. The simulation results of the SPECTRE tool show that CCDM-TSPC is completely immune to single-event upsets (SEUs). CCDM-TSPC reduces the C-Q delay by 75% and the layout area by 85% compared with the traditional triple modular redundancy D flip-flop (TMR-DFF). Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

12 pages, 2021 KiB  
Article
A Fully Polarity-Aware Double-Node-Upset-Resilient Latch Design
by Jung-Jin Park, Young-Min Kang, Geon-Hak Kim, Ik-Joon Chang and Jinsang Kim
Electronics 2022, 11(15), 2465; https://doi.org/10.3390/electronics11152465 - 8 Aug 2022
Cited by 7 | Viewed by 2779
Abstract
Due to aggressive scaling down, multiple-node-upset hardened design has become a major concern regarding radiation hardening. The proposed latch overcomes the architecture and performance limitations of state-of-the-art double-node-upset (DNU)-resilient latches. A novel stacked latch element is developed with multiple thresholds, regular architecture, increased [...] Read more.
Due to aggressive scaling down, multiple-node-upset hardened design has become a major concern regarding radiation hardening. The proposed latch overcomes the architecture and performance limitations of state-of-the-art double-node-upset (DNU)-resilient latches. A novel stacked latch element is developed with multiple thresholds, regular architecture, increased number of single-event upset (SEU)-insensitive nodes, low power dissipation, and high robustness. The radiation-aware layout considering layout-level issues is also proposed. Compared with state-of-the-art DNU-resilient latches, simulation results show that the proposed latch exhibits up to 92% delay and 80% power reduction in data activity ratio (DAR) of 100%. The radiation simulation using the dual-double exponential current source model shows that the proposed latch has the strongest radiation-hardening capability among the other DNU-resilient latches. Full article
(This article belongs to the Special Issue Radiation Tolerant Electronics, Volume II)
Show Figures

Figure 1

13 pages, 1541 KiB  
Article
TID Sensitivity Assessment of Quadrature LC-Tank VCOs Implemented in 65-nm CMOS Technology
by Arijit Karmakar, Valentijn De Smedt and Paul Leroux
Electronics 2022, 11(9), 1399; https://doi.org/10.3390/electronics11091399 - 27 Apr 2022
Cited by 2 | Viewed by 2508
Abstract
This article presents a comprehensive assessment of the ionizing radiation induced effects on the performance of quadrature phase LC-tank based voltage-controlled-oscillators (VCOs). Two different quadrature VCOs (QVCOs) that are capable of generating frequencies in the range of 2.5 GHz to 2.9 GHz are [...] Read more.
This article presents a comprehensive assessment of the ionizing radiation induced effects on the performance of quadrature phase LC-tank based voltage-controlled-oscillators (VCOs). Two different quadrature VCOs (QVCOs) that are capable of generating frequencies in the range of 2.5 GHz to 2.9 GHz are implemented in a commercial 65 nm bulk CMOS technology to target for harsh radiation environments like space applications and high-energy physics (HEP) experiments. Each of the QVCOs consumes 13 mW power from a 1.2 V supply. The architectures are based on the popular implementation of two different types of QVCOs: parallel-coupled QVCO (PQVCO) and super-harmonic coupled QVCO (SQVCO). The various performance metrics (oscillation frequency, quadrature phase, phase noise, frequency tuning range, and power consumption) of the two different QVCOs are evaluated with respect to a Total ionizing Dose (TID) up to a level of approximately 100 Mrad (SiO2) through X-ray irradiation. During irradiation, the electrical characterization of the samples of the prototype are performed under biased condition at room temperature. Before irradiation, the QVCOs (PQVCO and SQVCO) achieve phase noise equal to −115 dBc/Hz and −119 dBc/Hz at 1 MHz offset, resulting in figure-of-merit (FoM) of −172.2 dBc/Hz and −176.4 dBc/Hz respectively. The test-setup of the TID experiment is discussed and the results obtained are statistically analyzed in this article to perform a comparative study of the performance of the two different QVCOs and evaluate the effectiveness of the radiation hardened by design techniques (RHBDs) employed in the implementations. Post-irradiation, the overall variations of the frequencies of the oscillators are less than 1% and the change in tuning range (TR) is less than 5% as observed from the tested samples. Full article
(This article belongs to the Special Issue Radiation Tolerant Electronics, Volume II)
Show Figures

Graphical abstract

Back to TopTop