# TID Sensitivity Assessment of Quadrature LC-Tank VCOs Implemented in 65-nm CMOS Technology

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Implementation

## 3. Experimental Results

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Musa, A.; Murakami, R.; Sato, T.; Chaivipas, W.; Okada, K.; Matsuzawa, A. A Low Phase Noise Quadrature Injection Locked Frequency Synthesizer for MM-Wave Applications. IEEE J. Solid-State Circuits
**2011**, 46, 2635–2649. [Google Scholar] [CrossRef] - Chamas, I.R.; Raman, S. Analysis and Design of a CMOS Phase-Tunable Injection-Coupled LC Quadrature VCO (PTIC-QVCO). IEEE J. Solid-State Circuits
**2009**, 44, 784–796. [Google Scholar] [CrossRef] - Eroglu, A. Non-Invasive Quadrature Modulator Balancing Method to Optimize Image Band Rejection. IEEE Trans. Circuits Syst. I Regul. Pap.
**2014**, 61, 600–612. [Google Scholar] [CrossRef] - Nikoofard, A.; Kananian, S.; Fotowat-Ahmady, A. A fully analog calibration technique for phase and gain mismatches in image-reject receivers. AEU-Int. J. Electron. Commun.
**2015**, 69, 823–835. [Google Scholar] [CrossRef] - Lee, J.; Razavi, B. A 40-Gb/s clock and data recovery circuit in 0.18-μm CMOS technology. IEEE J. Solid-State Circuits
**2003**, 38, 2181–2190. [Google Scholar] [CrossRef] - Mazzanti, A.; Svelto, F.; Andreani, P. On the amplitude and phase errors of quadrature LC-tank CMOS oscillators. IEEE J. Solid-State Circuits
**2006**, 41, 1305–1313. [Google Scholar] [CrossRef] - Natarajan, A.; Komijani, A.; Guan, X.; Babakhani, A.; Hajimiri, A. A 77-GHz Phased-Array Transceiver with On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting. IEEE J. Solid-State Circuits
**2006**, 41, 2807–2819. [Google Scholar] [CrossRef][Green Version] - Scheir, K.; Bronckers, S.; Borremans, J.; Wambacq, P.; Rolain, Y. A 52 GHz Phased-Array Receiver Front-End in 90 nm Digital CMOS. IEEE J. Solid-State Circuits
**2008**, 43, 2651–2659. [Google Scholar] [CrossRef] - Nikoofard, A.; Kananian, S.; Fotowat-Ahmady, A. Off-Resonance Oscillation, Phase Retention, and Orthogonality Modeling in Quadrature Oscillators. IEEE Trans. Circuits Syst. I Regul. Pap.
**2016**, 63, 883–894. [Google Scholar] [CrossRef] - Zhang, L.; Kuo, N.C.; Niknejad, A.M. A 37.5–45 GHz Superharmonic-Coupled QVCO with Tunable Phase Accuracy in 28 nm CMOS. IEEE J. Solid-State Circuits
**2019**, 54, 2754–2764. [Google Scholar] [CrossRef] - Oliveira, L.B.; Fernandes, J.R.; Filanovsky, I.M.; Verhoeven, C.J.; Silva, M.M. Analysis and Design of Quadrature Oscillators; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Koo, J.; Kim, B.; Park, H.J.; Sim, J.Y. A Quadrature RC Oscillator with Noise Reduction by Voltage Swing Control. IEEE Trans. Circuits Syst. I Regul. Pap.
**2019**, 66, 3077–3088. [Google Scholar] [CrossRef] - Dai, L.; Harjani, R. A low-phase-noise CMOS ring oscillator with differential control and quadrature outputs. In Proceedings of the 14th Annual IEEE International ASIC/SOC Conference (IEEE Cat. No.01TH8558), Arlington, VA, USA, 12–15 September 2001; pp. 134–138. [Google Scholar] [CrossRef]
- Pankratz, E.J.; Sanchez-Sinencio, E. Multiloop High-Power-Supply-Rejection Quadrature Ring Oscillator. IEEE J. Solid-State Circuits
**2012**, 47, 2033–2048. [Google Scholar] [CrossRef] - Behbahani, F.; Kishigami, Y.; Leete, J.; Abidi, A. CMOS mixers and polyphase filters for large image rejection. IEEE J. Solid-State Circuits
**2001**, 36, 873–887. [Google Scholar] [CrossRef][Green Version] - Sah, S.P.; Yu, X.; Heo, D. Design and Analysis of a Wideband 15–35-GHz Quadrature Phase Shifter with Inductive Loading. IEEE Trans. Microw. Theory Tech.
**2013**, 61, 3024–3033. [Google Scholar] [CrossRef] - Lee, T.H. The Design of CMOS Radio-Frequency Integrated Circuits; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Andreani, P.; Bonfanti, A.; Romano, L.; Samori, C. Analysis and design of a 1.8-GHz CMOS LC quadrature VCO. IEEE J. Solid-State Circuits
**2002**, 37, 1737–1747. [Google Scholar] [CrossRef] - Chang, H.Y.; Chiu, Y.T. K-Band CMOS Differential and Quadrature Voltage-Controlled Oscillators for Low Phase-Noise and Low-Power Applications. IEEE Trans. Microw. Theory Tech.
**2012**, 60, 46–59. [Google Scholar] [CrossRef] - Chang, H.Y.; Lin, C.H.; Liu, Y.C.; Yeh, Y.L.; Chen, K.; Wu, S.H. 65-nm CMOS Dual-Gate Device for Ka-Band Broadband Low-Noise Amplifier and High-Accuracy Quadrature Voltage-Controlled Oscillator. IEEE Trans. Microw. Theory Tech.
**2013**, 61, 2402–2413. [Google Scholar] [CrossRef] - Decanis, U.; Ghilioni, A.; Monaco, E.; Mazzanti, A.; Svelto, F. A Low-Noise Quadrature VCO Based on Magnetically Coupled Resonators and a Wideband Frequency Divider at Millimeter Waves. IEEE J. Solid-State Circuits
**2011**, 46, 2943–2955. [Google Scholar] [CrossRef] - Kuo, N.C.; Chien, J.C.; Niknejad, A.M. Design and Analysis on Bidirectionally and Passively Coupled QVCO with Nonlinear Coupler. IEEE Trans. Microw. Theory Tech.
**2015**, 63, 1130–1141. [Google Scholar] [CrossRef] - Karmakar, A.; Wang, J.; Prinzie, J.; De Smedt, V.; Leroux, P. A Review of Semiconductor Based Ionising Radiation Sensors Used in Harsh Radiation Environments and Their Applications. Radiation
**2021**, 1, 194–217. [Google Scholar] [CrossRef] - Faccio, F.; Michelis, S.; Cornale, D.; Paccagnella, A.; Gerardin, S. Radiation-Induced Short Channel (RISCE) and Narrow Channel (RINCE) Effects in 65 and 130 nm MOSFETs. IEEE Trans. Nucl. Sci.
**2015**, 62, 2933–2940. [Google Scholar] [CrossRef] - Borghello, G. Ionizing Radiation Effects in Nanoscale CMOS Technologies Exposed to Ultra-High Doses. Ph.D. Thesis, University of Udine, Udine, Italy, 2019. [Google Scholar]
- Borghello, G.; Lerario, E.; Faccio, F.; Koch, H.; Termo, G.; Michelis, S.; Marquez, F.; Palomo, F.; Muñoz, F. Ionizing radiation damage in 65 nm CMOS technology: Influence of geometry, bias and temperature at ultra-high doses. Microelectron. Reliab.
**2021**, 116, 114016. [Google Scholar] [CrossRef] - Wang, T.; Wang, K.; Chen, L.; Dinh, A.; Bhuva, B.; Shuler, R. A RHBD LC-Tank Oscillator Design Tolerant to Single-Event Transients. IEEE Trans. Nucl. Sci.
**2010**, 57, 3620–3625. [Google Scholar] [CrossRef] - Prinzie, J.; Christiansen, J.; Moreira, P.; Steyaert, M.; Leroux, P. Comparison of a 65 nm CMOS Ring- and LC-Oscillator Based PLL in Terms of TID and SEU Sensitivity. IEEE Trans. Nucl. Sci.
**2017**, 64, 245–252. [Google Scholar] [CrossRef] - Monda, D.; Ciarpi, G.; Saponara, S. Design and Verification of a 6.25 GHz LC-Tank VCO Integrated in 65 nm CMOS Technology Operating up to 1 Grad TID. IEEE Trans. Nucl. Sci.
**2021**, 68, 2524–2532. [Google Scholar] [CrossRef] - Jagtap, S.; Sharma, D.; Gupta, S. Design of SET tolerant LC oscillators using distributed bias circuitry. Microelectron. Reliab.
**2015**, 55, 1537–1541. [Google Scholar] [CrossRef] - Karthigeyan, A.; Radha, S.; Manikandan, E. Single event transient mitigation techniques for a cross-coupled LC oscillator, including a single-event transient hardened CMOS LC-VCO circuit. IET Circuits Devices Syst.
**2022**, 16, 178–188. [Google Scholar] [CrossRef] - Jagtap, S.; Anmadwar, S.; Rudrapati, S.; Gupta, S. A Single-Event Transient-Tolerant High-Frequency CMOS Quadrature Phase Oscillator. IEEE Trans. Nucl. Sci.
**2019**, 66, 2072–2079. [Google Scholar] [CrossRef] - Loveless, T.D.; Jagannathan, S.; Zhang, E.X.; Fleetwood, D.M.; Kauppila, J.S.; Haeffner, T.D.; Massengill, L.W. Combined Effects of Total Ionizing Dose and Temperature on a K-Band Quadrature LC-Tank VCO in a 32 nm CMOS SOI Technology. IEEE Trans. Nucl. Sci.
**2017**, 64, 204–211. [Google Scholar] [CrossRef] - Chamas, I.R.; Raman, S. A Comprehensive Analysis of Quadrature Signal Synthesis in Cross-Coupled RF VCOs. IEEE Trans. Circuits Syst. I Regul. Pap.
**2007**, 54, 689–704. [Google Scholar] [CrossRef] - Mirzaei, A.; Heidari, M.E.; Bagheri, R.; Chehrazi, S.; Abidi, A.A. The Quadrature LC Oscillator: A Complete Portrait Based on Injection Locking. IEEE J. Solid-State Circuits
**2007**, 42, 1916–1932. [Google Scholar] [CrossRef] - Prinzie, J.; Christiansen, J.; Moreira, P.; Steyaert, M.; Leroux, P. A 2.56-GHz SEU Radiation Hard LC-Tank VCO for High-Speed Communication Links in 65-nm CMOS Technology. IEEE Trans. Nucl. Sci.
**2018**, 65, 407–412. [Google Scholar] [CrossRef] - Menouni, M.; Barbero, M.; Bompard, F.; Bonacini, S.; Fougeron, D.; Gaglione, R.; Rozanov, A.; Valerio, P.; Wang, A. 1-Grad total dose evaluation of 65 nm CMOS technology for the HL-LHC upgrades. J. Instrum.
**2015**, 10, C05009. [Google Scholar] [CrossRef][Green Version] - Tong, H.; Cheng, S.; Lo, Y.C.; Karsilayan, A.I.; Silva-Martinez, J. An LC Quadrature VCO Using Capacitive Source Degeneration Coupling to Eliminate Bi-Modal Oscillation. IEEE Trans. Circuits Syst. I Regul. Pap.
**2012**, 59, 1871–1879. [Google Scholar] [CrossRef] - Gierkink, S.; Levantino, S.; Frye, R.; Samori, C.; Boccuzzi, V. A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling. IEEE J. Solid-State Circuits
**2003**, 38, 1148–1154. [Google Scholar] [CrossRef] - Hegazi, E.; Sjoland, H.; Abidi, A. A filtering technique to lower LC oscillator phase noise. IEEE J. Solid-State Circuits
**2001**, 36, 1921–1930. [Google Scholar] [CrossRef][Green Version] - Wu, T.; Moon, U.K.; Mayaram, K. Dependence of LC VCO oscillation frequency on bias current. In Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS), Island of Kos, Greece, 21–24 May 2006; p. 4. [Google Scholar] [CrossRef][Green Version]
- Heiman, F.; Warfield, G. The effects of oxide traps on the MOS capacitance. IEEE Trans. Electron Devices
**1965**, 12, 167–178. [Google Scholar] [CrossRef][Green Version] - Fernández-Martínez, P.; Cortés, I.; Hidalgo, S.; Flores, D.; Palomo, F.R. Simulation of Total Ionising Dose in MOS capacitors. In Proceedings of the 8th Spanish Conference on Electron Devices, CDE’2011, Palma de Mallorca, Spain, 8–11 February 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Rael, J.; Abidi, A.A. Physical processes of phase noise in differential LC oscillators. In Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No. 00CH37044), Orlando, FL, USA, 24 May 2000; pp. 569–572. [Google Scholar]
- Re, V.; Gaioni, L.; Manghisoni, M.; Ratti, L.; Traversi, G. Comprehensive Study of Total Ionizing Dose Damage Mechanisms and Their Effects on Noise Sources in a 90 nm CMOS Technology. IEEE Trans. Nucl. Sci.
**2008**, 55, 3272–3279. [Google Scholar] [CrossRef] - Mazza, G.; Panati, S. A Compact, Low Jitter, CMOS 65 nm 4.8–6 GHz Phase-Locked Loop for Applications in HEP Experiments Front-End Electronics. IEEE Trans. Nucl. Sci.
**2018**, 65, 1212–1217. [Google Scholar] [CrossRef] - Biereigel, S.; Kulis, S.; Leitao, P.; Francisco, R.; Moreira, P.; Leroux, P.; Prinzie, J. A low noise fault tolerant radiation hardened 2.56 Gbps clock-data recovery circuit with high speed feed forward correction in 65 nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap.
**2019**, 67, 1438–1446. [Google Scholar] [CrossRef]

**Figure 2.**(

**a**) Tunable LC-tank circuit with ac-coupled NMOS varactor, (

**b**) ring oscillators for phase lead/lag selection, and (

**c**) oscillator generated output waveforms for different ring oscillator configurations.

**Figure 3.**A simplified block diagram of the PQVCO where two oscillator cores are coupled with each other through transconductance (${g}_{m,c}$) circuit.

**Figure 5.**A simplified block diagram of the SQVCO where two oscillator cores coupled with each other through a center-tap inductor.

**Figure 7.**Overview of test setup for radiation assessment of QVCOs and the micrograph of the die (2 mm × 2 mm) in the top right corner.

**Figure 8.**Percentage frequency variations of (

**a**) PQVCO and (

**b**) SQVCO measured with respect to the TID of the order of 100 Mrad (SiO${}_{2}$).

**Figure 9.**(

**a**) Tuning ranges, (

**b**) core power consumption of SQVCO and PQVCO measured with respect to the TID of the order of 100 Mrad (SiO${}_{2}$).

**Figure 10.**(

**a**) Variations of Q-phase error measured with respect to TID of 100 Mrad (SiO${}_{2}$), (

**b**) simulated Q-phase error for the SQVCO and PQVCO with respect to different relative mismatch in ${C}_{tank}$.

**Figure 11.**Phase noise measured at ${f}_{center}$ before (pre-rad) and after (post-rad) radiation exposure of the order of 100 Mrad (SiO${}_{2}$) from the outputs of the (

**a**) PQVCO and (

**b**) SQVCO.

**Table 1.**Performance comparison with respect to previously published VCOs and QVCOs which are tested under radiation (TID).

Reference | TNS’17 [28] | TNS’18 [36] | TNS’18 [46] | TCASI’19 [47] | TNS’21 [29] | TNS’17 [33] | This Work | |
---|---|---|---|---|---|---|---|---|

Technology (nm) | 65 | 65 | 65 | 65 | 65 | 32 | 65 | |

Type | VCO | VCO | VCO | VCO | VCO | QVCO | QVCO ${}^{\u2020}$ | QVCO ${}^{\u2021}$ |

Oscillator Area (mm${}^{2}$) | - | - | 0.124 | - | 0.061 | 0.0484 | 0.458 | 0.367 |

Frequency (GHz) | 2.2–3.2 | 2.5–2.65 | 4.8–6.0 | 4.9–5.2 | 5.4–6.8 | 20.1–20.7 | 2.6–2.9 | 2.5–2.8 |

Tuning Range (%) | 30 ** | 5.8 | 4 | 5.9 ** | 23 | 3 | 9.9 | |

Phase Noise ${}^{\S \S}$ @1 MHz (dBc/Hz) | −110 | −118 | - | −122 | −100 | −99 | −119 | −115 |

VCO Gain (MHz/V) | 240 ** | - | 1850 | 100 ** | 225 | 610 | 273 | 262 |

Power (mW) | 6 | 1.8 | 18 | 34 | 2.85 | 12.8 | 13.2 | 13 |

FoM ${}^{\S}$ (dBc/Hz) | −171 | −188.7 | - | −180 | −171.4 | −176 | −176.4 | −172.2 |

Frequency Change (%) | 3.5 | - | - | 3.2 | 2.54 | 1.4 | 0.7 | |

TID Tolerance | 600 | - | 250 | 350 | 1000 | 0.5 | 100 |

^{§}FoM = Phase [email protected]Δf − 20log($\frac{{f}_{0}}{\Delta f}$) + 10log($\frac{Power}{1\mathrm{mW}}$).

^{†}SQVCO,

^{‡}PQVCO.

^{§§}Open-loop phase noise, ** Varactors and digitally-controlled capacitor-banks used.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Karmakar, A.; De Smedt, V.; Leroux, P. TID Sensitivity Assessment of Quadrature LC-Tank VCOs Implemented in 65-nm CMOS Technology. *Electronics* **2022**, *11*, 1399.
https://doi.org/10.3390/electronics11091399

**AMA Style**

Karmakar A, De Smedt V, Leroux P. TID Sensitivity Assessment of Quadrature LC-Tank VCOs Implemented in 65-nm CMOS Technology. *Electronics*. 2022; 11(9):1399.
https://doi.org/10.3390/electronics11091399

**Chicago/Turabian Style**

Karmakar, Arijit, Valentijn De Smedt, and Paul Leroux. 2022. "TID Sensitivity Assessment of Quadrature LC-Tank VCOs Implemented in 65-nm CMOS Technology" *Electronics* 11, no. 9: 1399.
https://doi.org/10.3390/electronics11091399