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Abstract: The total ionizing dose (TID) effects on single-event upset (SEU) hardness are investigated
for two silicon-on-insulator (SOI) static random access memories (SRAMs) with different layout
structures in this paper. The contrary changing trends of TID on SEU sensitivity for 6T and 7T SOI
SRAMs are observed in our experiment. After 800 krad(Si) irradiation, the SEU cross-sections of 6T
SRAMs increases by 15%, while 7T SRAMs decreases by 60%. Experimental results show that the
SEU cross-sections are not only affected by TID irradiation, but also strongly correlate with the layout
structure of the memory cells. Theoretical analysis shows that the decrease of SEU cross-section of
7T SRAM is caused by a raised OFF-state equivalent resistance of the delay transistor N5 after TID
exposure, which is because the radiation-induced charges are trapped in the shallow trench, and
isolation oxide (STI) and buried oxide (BOX) enhance the carrier scattering rate of delay transistor N5.

Keywords: single event upset (SEU); total ionizing dose (TID); silicon-on-insulator (SOI); synergistic
effect; radiation-hardened by design (RHBD)

1. Introduction

In the space environment, there are many high-energy radiation particles, such as elec-
trons, protons, heavy ions, and so on [1,2]. These high-energy radiation particles will cause
the macroscopic electrical properties of devices to change, degrade, or even fail. The single-
event effect (SEE) and effect of total ionizing dose (TID) are the main causes of the failure of
spacecrafts and satellites [3–11]. The radiation hardening technology of integrated circuits
mainly include radiation-hardened by design (RHBD) storage cells (heavy ion tolerant
cell, dual interlocked storage cell, etc.) [12–14] and radiation-hardened-by-process (RHBP)
front-end-of-line (guard-band, silicon-on-insulation, etc.) [15–17]. The silicon-on-insulation
(SOI) process, realized physically, isolates the channel region from the substrate region,
which not only significantly reduces the effective collection region, but also eliminates
the single event latch-up (SEL) [18,19] and tunneling [20] effects commonly found in bulk
silicon devices. Therefore, the SOI process is naturally resistant to irradiation [21–23] and
has important applications in the field of radiation-hardened integrated circuits (ICs).

The SEE, TID effect, and synergy between the TID and SEE in electronic devices have
been extensively studied. The effect of ion parameters on the multi-bit upset effect in 45 and
28 nm SOI static random access memories (SRAMs) has been investigated by Raine et al., in
which the 4-bit upsets phenomenon was observed under oblique incidence conditions [24],
and the multi-bit upsets phenomenon caused by the non-charge sharing effect was observed
under positive incidence conditions [25]. Moreover, Liu et al. have carried out proton
and heavy ion irradiation experiments on radiation-hardened SOI SRAMs. The results
showed that single-event upset (SEU) can be triggered only when secondary ions hit both
the delay transistor and OFF-state NMOS transistor [26]. Schwank et al. have irradiated
many kinds of SRAM devices with various radiation sources, such as γ, X-ray, and proton,
and then measured the SEU cross-section of the devices. The experimental results showed
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that the TID irradiation has a significant effect on the SEU cross-section of the device, and
the SEU cross-section increases with increasing irradiation dose. Meanwhile, the SEU
cross-section had a certain dependence on parameters such as test data patterns, irradiation
test temperature, etc. [27–32].

Previous studies have shown that TID significantly affects the SEU cross-section of the
electron device, and numerous studies have been conducted on the irradiation doses, data
patterns, and experimental temperature. However, the effect of the layout structure on the
SEU cross-section after TID irradiation has had relatively few studies, and the physical
mechanism is not yet fully understood. Therefore, in this paper, we design two SOI SRAM
devices with different layout structures and investigate the mechanism of the effect of the
layout structure on SEU cross-section of SOI SRAMs. This paper is organized as follows.
In Section 2, the test circuits and experimental methods are presented. The experimental
results for TID effects on SEU hardness of SOI SRAMs with 6T and 7T cell designs are
described in Section 3. In Section 4, the experimental results are discussed. In Section 5,
conclusions are drawn.

2. Test Circuit and Experimental Setup
2.1. Test Circuit

We design two SOI SRAMs with different layout structures, based on the 130 nm SOI
CMOS process. The memory capacity is 64 kbit and organized by 8 k × 8 bits. Device
operates using a dual power supply for the input–output (I/O) circuitry (higher voltage)
and memory array (lower voltage). The nominal supply voltages (Vdd) are 1.5 and 3.3 V for
the core blocks and I/O, respectively. Figure 1a shows a schematic diagram of the layout
structure and size of the 6T SRAM cell with dimensions 3.7× 3.2 µm. The access transistors
N3 and N4 share drain electrodes with the pull-down transistors N1 and N2, respectively.
Figure 1b shows the layout structure and size of the 7T SRAM memory cell after hardened
design by the delay transistor N5. The cell size of the 7T SRAM is 3.9 × 3.4 µm. The
gate electrode of the delay transistor N5 is connected to the gate electrode of the access
transistors N3 and N4. During the read/write operation, the delay transistor N5 will be in
the ON-state, which has a very low resistance. While the delay transistor N5 will be in the
OFF-state when the data hold state is entered, and the resistance of OFF-state N5 is very
high, which can effectively suppress the single-event transient disturbance and significantly
improve the stability of the 7T memory cell. As shown in Figure 1c, the structures of N1,
N2, N3, N4, P1, and P2 were designed via body under source FET (BUSFET) [33]. Figure 1d
shows a schematic diagram of the device structure of the delay transistor N5, which is
equivalent to a resistor and transistor in parallel.Electronics 2022, 11, x FOR PEER REVIEW 3 of 11 
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2.2. TID Experiment

As shown in Figure 2, TID exposures were carried out with 60 Co-γ ray at The Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, with dose
rate of 200 rad(Si)/s. A data pattern of 55 h was written into SRAM before irradiation,
and it was then set to data hold operation during irradiation. Different devices from the
same wafer were chosen for two times of SEU tests. For Kr ion, we chose nine devices
and divided them into three groups, with one group irradiated to 200 krad(Si), another
group irradiated to 400 krad(Si), and the last group being the reference sample without
TID irradiation. Additionally, six devices were divided into two groups for Bi ion SEU test:
800 krad(Si) and reference sample without TID irradiation.
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2.3. Heavy Ion Irradiation

As shown in Figure 3, the heavy ion irradiation experiments were performed at the
heavy ion research facility in Lanzhou (HIRFL) in the Institute of Modern Physics, Chinese
Academy of Sciences. The ion species, energy, LET, and range are shown in Table 1. The
LET values calculated by SRIM2013 [34] varied from 20.5 to 99.8 MeV·cm2/mg. In the
following experiments, the LET values were at the device surface. The ion ranges in silicon
were always greater than 50 µm. Three levels of metal were applied to the SOI SRAM
studied in this paper, and the thickness of the overlayer was measured at 7.2 µm. The range
of Kr and Bi ion was enough to punch through the silicon film of our 130-nm SOI SRAM
because the thickness of silicon film was only 260 nm. The SEU cross-sections of SRAMs
were characterized in a dynamic mode, i.e., the SRAMs were written with a specific pattern
to the memory array, and the read repeatedly and errors were counted until 200 errors
were recorded. To evaluate the effect of the data pattern applied during TID exposure on
SEU hardness, the SEU characterizations were performed with TID data pattern 55h and
its complement data pattern AAh.
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Table 1. Ion spices, energy, LET, and range in silicon.

Ion Species Air/Al-Foil
(mm)/(µm)

Energy at
Device Surface

(MeV)

LET at Device
Surface

(MeV·cm2/mg)

Ion Range
(µm)

86Kr
30/0 1841 20.5 274

50/100 1154 27.2 150
50/180 480 37.6 59

209Bi 30/0 923 99.8 54

3. Experimental Results
3.1. Effect of TID on the 6T SRAM SEU cross-section

Figure 4 provides the results for the SEU cross-sections of 6T SRAM characterized by
Kr ion of devices in three different groups: (1) fresh; (2) after deposition of 200 krad(Si); and
(3) 400 krad(Si). The mean value of SEU data with an error bar at each dose level is depicted
in Figure 4. As shown in Figure 4, SEU cross-section of 6T SRAM increased by a factor of
0.1% (20.5 MeV·cm2/mg), 12.9% (27.2 MeV·cm2/mg), and 5.2% (37.6 MeV·cm2/mg) of
after deposition of 200 krad(Si), with respect to the fresh condition, and increased by a factor
of 3.7% (20.5 MeV·cm2/mg), 4.0% (27.2 MeV·cm2/mg), and 13.7% (37.6 MeV·cm2/mg)
of after deposition 400 krad(Si). It can be clearly observed that the SEU cross-section of
6T SRAMs shows an increasing trend after TID irradiation, and the maximum increase
is 13.7%.
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Zheng et al. investigated the effect of the total dose effect on the SEU cross-section
of the SRAMs. The experimental results show that the SEU cross-section of the SRAMs
gradually increases after the TID irradiation, and the main oxide trap charge regions
of the nanoscale feature device are the buried oxide and shallow trench isolation oxide
regions [27,31,35–37]. For the test chip we designed, the SEU cross-section of the 6T SRAM
increases slightly after TID irradiation, due to two main reasons: (1) the gate oxide layer
thickness of our test chip is only 1.5 nm, so the gate oxide layer cannot trap enough trap
charges; (2) the transistor used in the test chip adopts the structure of body under source
FET (BUSFET), which eliminates the formation of parasitic leakage channels between the
source and drain electrodes caused by the radiation-induced charges trapped in buried
oxide (BOX). Therefore, the radiation-induced charges trapped in the shallow trench
isolation oxide (STI), rather than in the BOX, were responsible for the increase of the SEU
cross-section of the 6T SRAM.
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3.2. Effect of Data Pattern on the 6T SRAM SEU cross-section

Figure 5 provides the results for the SEU cross-sections characterized by the Kr ion
(20.5 MeV·cm2/mg) of devices in three different groups: (1) fresh; (2) after deposition of
200 krad(Si); and (3) 400 krad(Si). The mean value of SEU data with error bar at each
dose level is depicted in Figure 5. As shown in Figure 5, the mean SEU cross-section of
6T SRAM increases by a factor of 0.1% (55 h), 2.8% (AAh) after deposition 200 krad(Si),
with respect to the fresh condition, and it increases by a factor of 3.7% (55h), 6.8% (AAh)
after deposition 400 krad(Si). It was observed that the data patterns have little effect on
the SEU cross-section of the 6T SRAM after TID irradiation. There are two main reasons
for these experimental results. First, the degree of ionization damage of the ultrathin gate
oxide layer at 1.5 V was basically the same as the case without voltage addition; second, the
main sensitive area of TID of the nanodevice shifted from the gate oxide region to the STI
and BOX regions. Therefore, the SEU cross-section of the 6T SRAM after TID irradiation
dose had no dependence on the data pattern that was applied during TID exposure.
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3.3. Effect of TID on the 7T SRAM SEU cross-section

Figure 6 shows the SEU cross-sections of 6T SRAM and 7T SRAM characterized by the
Bi (99.8 MeV·cm2/mg) ion as a function of TID. The SEU cross-sections of 6T SOI SRAM
characterized by Bi ion are also increased by TID. As shown in Figure 6, the SEU cross-
section of 6T SRAM increased by a factor 9.1% (55 h) and 4.0% (AAh) of after deposition
800 krad(Si), with respect to the fresh condition. Similarly, we did not observe a significant
correlation between the SEU cross-section and data pattern applied during TID exposure
for 7T SRAM. However, it is interesting to note that the SEU cross-section of the 7T SRAM
showed an opposite changing trend to the 6T SRAM. As shown in Figure 6, SEU cross-
section of 7T SRAM decreased by factors of 42.9% (55 h) and 56.6% (AAh) after deposition
800 krad(Si), with respect to the fresh condition. Because the 6T SRAM and 7T SRAM were
fabricated in the same wafer, the physical dimensions and electrical characteristics of all
transistors (N1, N2, N3, N4, P1, and P2) in the memory cell are very similar, except for the
delay-hardened transistor, N5. Therefore, we can conclude that the change in the electrical
characteristics of the N5 was responsible for the reduction in the SEU cross-section of the
7T SRAM after TID irradiation.
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Figure 6. SEU cross-sections characterized by Bi ion versus layout structure for SOI SRAMs. The
vertical column represents data for TID = 0 rad(Si), and the horizontal column represents data for
TID = 800 krad(Si). The data pattern applied during SEU testing was (a) 55h and (b) AAh.

Furthermore, we investigated the TID effect on the “1→0” upset and “0→1” upset
for 7T SRAM SEU types. As shown in Figure 7, the mean “1→0” upset cross-section of 7T
SRAM decreased by a factor of 3.1% (55 h), 37.9% (AAh) of after deposition 800 krad(Si),
with respect to the fresh condition, and the mean “0→1” upset cross-section decreased by a
factor of 37.9% (55 h), 66.7% (AAh) after deposition 800 krad(Si). Therefore, the decrease of
the cross-section of “0→1” upset was mainly responsible for the decrease of 7T SRAM SEU
cross-section.
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4. Discussion
4.1. Transient Propagation Circuit Analysis for 7T SRAM

It is generally believed that, in silicon, electrons have much higher mobility than holes,
resulting in the electrons are quickly collected at the drain contacts. Thus, the pull-down
nMOSFET biased OFF-state determines the SEU resistance of the 7T SRAM. The equivalent
circuits of transient pulse propagation, corresponding to two different SEU types in the 7T
SRAM, are shown in Figure 8.
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Figure 8. The equivalent circuits of transient pulse propagation corresponding to the (a) “0→1” upset
type and (b) “1→0” upset type in the 7T SRAM.

As shown in Figure 8a, when the Q node is set to low potential, the pull-down
nMOSFET N1 in the inverter 1 is turned OFF. Normally, incident heavy ions hitting the
N1 will produce a transient pulse, caused by charge collection in the drain. After that,
the transient pulse acts on the gate of inverter 2 to gradually increase the potential of the
Q node. The potential perturbation in the Q node well further feeds back to the gate of

inverter 1 through the delay transistor N5 to gradually decrease the potential of the
–
Q

node. Finally, the single event transient pulse signal is latched to the memory cell of the 7T
SRAM. In this case, the delay transistor N5 indirectly delayed and suppressed the feedback
signal of the single event transient pulse, so that the delay-efficiency was lower; thus, the
cross-section of “0→1” upset was higher.

As shown in Figure 8b, when the Q node was set to the high potential, the pull-down
nMOSFET N2 in the inverter 2 was turned OFF, when the incident heavy ions hitting the N2
produced a transient pulse, caused by charge collection in the drain. After that, the transient
pulse through the delay transistor N5 acted on the gate of inverter 1 to gradually increase

the potential of the
–
Q node. The potential perturbation in the

–
Q node well further fed back

to the gate of inverter 1 to gradually decrease the potential of the Q node. Finally, the single
event transient pulse signal was latched to the memory cell of the 7T SRAM. In this case,
the delay transistor N5 directly delayed and suppressed the single event transient pulse, so
that the delay-efficiency was higher; thus, the cross-section of “1→0” upset was lower.

4.2. Effect of TID on the OFF-State Equivalent Resistance of Delay Transistor N5

According to previous studies, TID irradiation significantly affects the device’s carrier
mobility [37–40]. As shown in the equation 1, the carrier mobility of the transistors was
mainly affected by three scatterings: phonon scattering, surface scattering, and charged
impurity scattering. It has been found that the scattering rate of charged impurities is
mainly determined by the semiconductor process, and it is rarely affected by TID. However,
phonon and surface scattering are proportional to the electric field intensity perpendicular
to the channel direction; the higher the density of oxide trap charge is, the stronger the
vertical electric field component is. Therefore, the effect of the TID on the carrier scattering
rate was mainly to increase the phonon and surface scattering rates.

1
µn

=
1

µ1

(
Ee f f

)|α1|
+

1
µ2

(
Ee f f

)|α2|
+

1
µ3

Qot

(
1
Ni

)α3

(1)

where αi and µi are the fitting parameters, Ni is the charge density of inversion layer, Ee f f
is effective vertical electric field intensity, and Qot is the oxide trap charge density.
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As shown in Figure 9, a substantial amount of radiation-induced charge was trapped
in the STI and BOX of the delay transistor N5 after TID radiation. As a result, the oxide
trapped charge generated a vertical electric field in the channel region of the transistor N5.
This results in an increase in phonon and surface scattering. Finally, the carrier mobility
rate of the delay transistor N5 decreased, and the equivalent OFF-state resistance increased,
thus leading to a decrease in the SEU cross-section of the 7T SRAM.
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4.3. The Advantages of Suppressing SEU with TID

In the natural space radiation environment, there are protons and electrons that can
cause TID effects, as well as heavy ions that can cause transient SEE. When the integrated
circuit is on-orbit, it will be affected by a variety of radiation effects; that is, there is
electrical performance degradation caused by TID, and there is also the transient voltage
pulse caused by SEE. Hence, TIDs and SEEs have a natural synergy in the space radiation
environment. We found that, when delay transistors are used for hardened circuit design,
the TID can cause degradation in the performance of delay transistors, thus suppressing
the SEU. Therefore, not only does using delay-hardened transistors for hardened circuit
design not affect the operating speed of nano-devices, it also improves the stability of
memory cells. Furthermore, the TID effect can be used to suppress the transient SEE and
achieve self-optimizing design in natural radiation space radiation environments. Our
study provides new insight into radiation-hardened by design (RHBD) technology for
nano-integrated circuits.

5. Conclusions

The total ionizing dose (TID) effects on single-event upset (SEU) hardness of silicon-
on-insulator (SOI) static random access memories (SRAMs) with 6T and 7T cell designs
were explored in this paper. Experimental results show that the SEU cross-section of 6T
SOI SRAM is increased by TID and has no dependence on the data pattern applied during
TID exposure. However, it is interesting to note that the SEU cross-section of 7T SRAM
decreases significantly after TID exposure. Furthermore, in our experiment, opposite
changes intendencies of SEU cross-section for 6T and 7T SOI SRAMs were observed
after TID irradiation. The mechanism behind the experimental results of 6T SRAM is
that OFF-state leakage of pull-down nMOSEFTs increases after TID irradiation, since the
parasitic transistor is turned ON by radiation in the shallow trench isolation oxide (STI)
region. However, the radiation-induced decrease in carrier mobility in delay transistor
N5 of the 7T SRAM is responsible for the decrease of the SEU cross-section. Because
radiation-induced charges trapped in the STI and buried oxide (BOX) improve the carrier
scattering rate, the OFF-state equivalent resistance of delay transistor N5 increases, causing
the stronger suppression of transient pulses and feedback signals, ultimately leading to
SEU cross-section decreases. Our experimental results provide a new insight into the
radiation-hardened by design (RHBD) used in nano ICs.
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