Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = PZT thin films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 14906 KiB  
Article
Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS
by Chun-Lin Li and Guo-Hua Feng
Micromachines 2025, 16(8), 879; https://doi.org/10.3390/mi16080879 - 29 Jul 2025
Viewed by 238
Abstract
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature [...] Read more.
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature growth and improve ferroelectric performance for advanced flexible MEMS. Characterizations including XRD, PFM, and P–E loop analysis evaluated crystallinity, piezoelectric coefficient d33, and polarization behavior. The results demonstrate that the multilayered Ti/TiO2/STO/PZT structure significantly enhances performance. XRD confirmed the STO buffer layer effectively reduces lattice mismatch with PZT to ~0.76%, promoting stable morphotropic phase boundary (MPB) composition formation. This optimized film exhibited superior piezoelectric and ferroelectric properties, with a high d33 of 113.42 pm/V, representing an ~8.65% increase over unbuffered Ti/PZT samples, and displayed more uniform domain behavior in PFM imaging. Impedance spectroscopy showed the lowest minimum impedance of 8.96 Ω at 10.19 MHz, indicating strong electromechanical coupling. Furthermore, I–V measurements demonstrated significantly suppressed leakage currents in the STO-buffered samples, with current levels ranging from 10−12 A to 10−9 A over ±3 V. This structure also showed excellent fatigue endurance through one million electrical cycles, confirming its mechanical and electrical stability. These findings highlight the potential of this hydrothermally engineered flexible heterostructure for high-performance actuators and sensors in advanced MEMS applications. Full article
(This article belongs to the Special Issue Manufacturing and Application of Advanced Thin-Film-Based Device)
Show Figures

Figure 1

18 pages, 6277 KiB  
Article
Fabrication and Characterization of a PZT-Based Touch Sensor Using Combined Spin-Coating and Sputtering Methods
by Melih Ozden, Omer Coban and Tevhit Karacali
Sensors 2025, 25(13), 3938; https://doi.org/10.3390/s25133938 - 24 Jun 2025
Viewed by 380
Abstract
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional [...] Read more.
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional layer formed via RF sputtering. The resulting multilayer structure was annealed at 700 °C for 2 h to improve crystallinity. Comprehensive material characterization was conducted using XRD, SEM, cross-sectional SEM, EDX, and UV–VIS absorbance spectroscopy. The analyses confirmed the formation of a well-crystallized perovskite phase, a uniform surface morphology, and an optical band gap of approximately 3.55 eV, supporting its suitability for sensing applications. Building upon these findings, a multilayer PZT-based touch sensor was fabricated and electrically characterized. Low-frequency I–V measurements demonstrated consistent and repeatable polarization behavior under cyclic loading conditions. In addition, |Z|–f measurements were performed to assess the sensor’s dynamic electrical behavior. Although expected dielectric responses were observed, the absence of distinct anti-resonance peaks suggested non-idealities linked to Ag+ ion diffusion from the electrode layers. To account for these effects, the classical Butterworth–Van Dyke (BVD) equivalent circuit model was extended with additional inductive and resistive components representing parasitic pathways. This modified model provided excellent agreement with the measured impedance and phase data, offering deeper insight into the interplay between material degradation and electrical performance. Overall, the developed sensor structure exhibits strong potential for use in piezoelectric sensing applications, particularly for tactile and pressure-based interfaces. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

17 pages, 3084 KiB  
Article
Microstructural Evolution and Domain Engineering in Porous PZT Thin Films
by Evgeny Zhemerov, Arseniy Buryakov, Dmitry Seregin and Maxim Ivanov
Surfaces 2025, 8(2), 37; https://doi.org/10.3390/surfaces8020037 - 1 Jun 2025
Viewed by 2903
Abstract
Porous PZT films offer significant potential due to tunable electromechanical properties, yet the polarization behavior remains insufficiently understood because of discontinuous morphology and domain structures. In this work, we study the impact of porosity on the spontaneous polarization and electromechanical response of PZT [...] Read more.
Porous PZT films offer significant potential due to tunable electromechanical properties, yet the polarization behavior remains insufficiently understood because of discontinuous morphology and domain structures. In this work, we study the impact of porosity on the spontaneous polarization and electromechanical response of PZT thin films fabricated using a multilayer spin-coating technique with various concentrations (0–14%) of polyvinylpyrrolidone (PVP) as a porogen. Atomic force microscopy (AFM) and piezoresponse force microscopy (PFM) were employed to analyze the local topography, domain distribution, and polarization behavior of the films. The results indicate that increasing porosity leads to substantial changes in grain morphology, dielectric permittivity, and polarization response. Films with higher porosity exhibit a more fragmented polarization distribution and reduced piezoresponse, while certain orientations demonstrate enhanced domain mobility. Despite the decrease in overall polarization, the local coercive field remains relatively stable, suggesting structural stability during the local polarization switching. The findings highlight the crucial role of grain boundaries and local charge redistribution in determining local polarization behavior. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

22 pages, 4727 KiB  
Review
Review of Magnetoelectric Effects on Coaxial Fibers of Ferrites and Ferroelectrics
by Sujoy Saha, Sabita Acharya, Ying Liu, Peng Zhou, Michael R. Page and Gopalan Srinivasan
Appl. Sci. 2025, 15(9), 5162; https://doi.org/10.3390/app15095162 - 6 May 2025
Viewed by 560
Abstract
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a [...] Read more.
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a key factor that determines the strength of magneto-electric (ME) coupling, is much higher than for bulk or thin-film composites. Core–shell nano- and microcomposites of the ferroic phases are the preferred structures, since they are free of any clamping due to substrates that are present in nanobilayers or nanopillars on a substrate. This review concerns recent efforts on ME coupling in coaxial fibers of spinel or hexagonal ferrites for the magnetic phase and PZT or barium titanate for the ferroelectric phase. Several recent studies on the synthesis and ME measurements of fibers with nickel ferrite, nickel zinc ferrite, or cobalt ferrite for the spinel ferrite and M-, Y-, and W-types for the hexagonal ferrites were considered. Fibers synthesized by electrospinning were found to be free of impurity phases and had uniform core and shell structures. Piezo force microscopy (PFM) and scanning microwave microscopy (SMM) measurements of strengths of direct and converse ME effects on individual fibers showed evidence for strong coupling. Results of low-frequency ME voltage coefficient and magneto-dielectric effects on 2D and 3D films of the fibers assembled in a magnetic field, however, were indicative of ME couplings that were weaker than in bulk or thick-film composites. A strong ME interaction was only evident from data on magnetic field-induced variations in the remnant ferroelectric polarization in the discs of the fibers. Follow-up efforts aimed at further enhancement in the strengths of ME coupling in core–shell composites are also discussed in this review. Full article
(This article belongs to the Special Issue Applied Electronics and Functional Materials)
Show Figures

Figure 1

15 pages, 5870 KiB  
Article
High Dielectric Tunability and Figure of Merit at Low Voltage in (001)-Oriented Epitaxial Tetragonal Pb0.52Zr0.48TiO3 Thin Films
by Hongwang Li, Chao Liu and Jun Ouyang
Nanomaterials 2025, 15(9), 695; https://doi.org/10.3390/nano15090695 - 5 May 2025
Viewed by 490
Abstract
Ferroelectric thin films with a high dielectric tunability (η) have great potential in electrically tunable applications, including microwave tunable devices such as phase shifters, filters, delay lines, etc. Using a modified Landau–Devonshire type thermodynamic potential, we show that the dielectric tunability [...] Read more.
Ferroelectric thin films with a high dielectric tunability (η) have great potential in electrically tunable applications, including microwave tunable devices such as phase shifters, filters, delay lines, etc. Using a modified Landau–Devonshire type thermodynamic potential, we show that the dielectric tunability η of a (001) tetragonal ferroelectric film can be analytically solved. After a survey of materials, a large η value above 60% was predicted to be achievable in a (001)-oriented tetragonal Pb(Zr0.52Ti0.48)O3 (PZT) film. Experimentally, (001)-oriented PZT thin films were prepared on LaNiO3-coated (100) SrTiO3 substrates by using pulsed laser deposition (PLD). These films exhibited good dielectric tunability (η ~ 67.6%) measured at a small electric field E of ~250 kV/cm (corresponding to 5 volts for a 200 nm thick film). It only dropped down to ~54.2% when E was further reduced to 125 kV/cm (2.5 volts for 200 nm film). The measured dielectric tunability η as functions of the applied electric field E and measuring frequency f are discussed for a 500 nm thick PZT film, with the former well described by the theoretical η(E) curves and the latter showing a weak frequency dependence. These observations validate our integrated approach rooted in a theoretical understanding. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 4676 KiB  
Article
Enhancement of (100) Orientation and Dielectricity in PZT Thin Films Prepared by Radio Frequency Magnetron Sputtering Method
by Xing Wang and Helin Zou
Coatings 2025, 15(3), 336; https://doi.org/10.3390/coatings15030336 - 14 Mar 2025
Viewed by 695
Abstract
PZT thin films with a sol–gel-derived seed layer of Pb1.2(Zr0.3, Ti0.7)O3 were deposited on Pt/Ti/SiO2/Si substrates via the magnetron sputtering process. The purpose of this present study was to investigate the influence of sputtering [...] Read more.
PZT thin films with a sol–gel-derived seed layer of Pb1.2(Zr0.3, Ti0.7)O3 were deposited on Pt/Ti/SiO2/Si substrates via the magnetron sputtering process. The purpose of this present study was to investigate the influence of sputtering process parameters and heat treatment parameters on the crystal orientation, microstructure, and dielectric behaviors of PZT films. X-ray diffraction (XRD) analysis shows that the (100) orientation degree of the PZT films first increases and then decreases with the increase in oxygen partial pressure during sputtering. The PZT film annealed at a temperature of 550 °C exhibits a pure (100) perovskite phase. There are no significant changes in crystal orientation and the (100) orientation degree with increasing annealing time. An improved surface density, more uniform grains, and clear grain boundaries were detected by scanning electron microscope (SEM) characterization as the annealing time increased to 30 min. Optimal dielectricity was obtained in the film deposited on an O2/Ar composition of 10/90 with a sputtering pressure of 2 Pa and annealed at 600 °C for 30 min, which presents a permittivity of 852 and a loss factor of 0.026 at a frequency of 1 kHz and a remanent polarization of 18.5 μC/cm2. Full article
Show Figures

Figure 1

15 pages, 6315 KiB  
Article
Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film
by Sangkwon Park and Hafiz Muhammad Abid Yaseen
Nanomaterials 2025, 15(5), 403; https://doi.org/10.3390/nano15050403 - 6 Mar 2025
Viewed by 986
Abstract
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low [...] Read more.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO2), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix. The nanocomposite films were prepared by depositing molecularly thin films of P(VDF-TrFE) and nanofiller nanoparticles (NPs) spread at the air/water interface onto the indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrate, and they were characterized by measuring their microstructures, crystallinity, β-phase contents, and piezoelectric coefficients (d33) using SEM, FT-IR, XRD, and quasi-static meter, respectively. Multiple PENGs incorporating various nanofillers within the polymer matrix were developed by assembling thin film-coated substrates into a sandwich-like structure. Their piezoelectric properties, such as open-circuit output voltage (VOC) and short-circuit current (ISC), were analyzed. As a result, the PENG containing 4 wt% PZT, which was named P-PZT-4, showed the best performance of VOC of 68.5 V with the d33 value of 78.2 pC/N and β-phase content of 97%. The order of the maximum VOC values for the PENGs of nanocomposite thin films containing various nanofillers was PZT (68.5 V) > rGO (64.0 V) > ZnO (50.9 V) > TiO2 (48.1 V). When the best optimum PENG was integrated into a simple circuit comprising rectifiers and a capacitor, it demonstrated an excellent two-dimensional power density of 20.6 μW/cm2 and an energy storage capacity of 531.4 μJ within 3 min. This piezoelectric performance of PENG with the optimized nanofiller type and content was found to be superior when it was compared with those in the literature. This PENG comprising nanocomposite thin film with optimized nanofiller type and content shows a potential application for a power source for low-powered electronics such as wearable devices. Full article
Show Figures

Figure 1

9 pages, 4802 KiB  
Communication
Measuring the Effective Electro-Optic Coefficient of Low-Temperature-Prepared Lead Zirconate Titanate Thin Films
by Bin Li, Hongyan Yu, Chen Yang, Jungan Wang, Yu Han and Feng Qiu
Materials 2025, 18(4), 837; https://doi.org/10.3390/ma18040837 - 14 Feb 2025
Cited by 2 | Viewed by 616
Abstract
Developing lead zirconate titanate (PZT)-based electro-optic (EO) modulators is vital for integrated photonics. The high annealing temperature required for the processing of PZT thin films restricts their compatibility with modern complementary metal–oxide–semiconductor (CMOS) technology. In this work, high-quality PZT films were fabricated on [...] Read more.
Developing lead zirconate titanate (PZT)-based electro-optic (EO) modulators is vital for integrated photonics. The high annealing temperature required for the processing of PZT thin films restricts their compatibility with modern complementary metal–oxide–semiconductor (CMOS) technology. In this work, high-quality PZT films were fabricated on SiO2/Si substrates at a low annealing temperature of 450 °C. The PZT films demonstrated a preferential (100) orientation and were uniform and crack-free. Based on the low-temperature PZT films, we subsequently designed and fabricated a Mach–Zehnder Interferometer (MZI) waveguide modulator. The measured half-wave voltage (Vπ) was 4.8 V at a wavelength of 1550 nm, corresponding to an in-device EO coefficient as high as 66 pm/V, which shows potential use in optical devices. The results reported in this work show great promise for the integration of PZT thin films with other complex systems. Full article
Show Figures

Figure 1

10 pages, 3059 KiB  
Article
Effect of the Current-Collecting Carbon Nanotubes Layer on the Properties of the Lead Zirconate Titanate Film for Vibration Sensors
by Victor V. Petrov, Victor V. Sysoev, Nikolay N. Rudyk, Yuri N. Varzarev and Andrey V. Nesterenko
Sensors 2025, 25(2), 401; https://doi.org/10.3390/s25020401 - 11 Jan 2025
Viewed by 768
Abstract
One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve [...] Read more.
One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters. For the experiments, a vibration sensor mock-up was created with the PZT-CNT-Ni-V-SiO2-Si and PZT-CNT-Ni-V-Si structures where an array of vertically oriented CNTs was grown over an oxidized or high-alloyed silicon substrates by plasma chemical deposition from a gas phase. Then, a thin film of PZT was applied to the CNT layer with a high-frequency reactive plasma spraying. For comparison, the PZT film was applied to silicon without a CNT layer (PZT-Si structure). The calculated average value of the piezoelectric module is 112 pm/V for the Ni-PZT-PT-Ni-Si-SiO2 sample, and 35 pm/V for PZT-Ni-SiO2-Si. It can be seen that the contact realized with the help of CNT ensures more than three times the best efficiency in terms of the piezoelectric module. The value of the piezoelectric module of the vibration sensor with the PZT-CNT-Ni-V-Si structure was 186 pm/V, and the value of the residual polarization was 23.2 µC/cm2, which is more than eight and three times, respectively, higher than the values of these properties for the vibration sensor with the PZT-Si structure. It is shown that the vibration sensor can operate in the frequency range of 0.1–10 kHz. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

15 pages, 5803 KiB  
Article
Synthesis of 0.75Pb(Zr0.52Ti0.48)O3-0.25BiFeO3 Thin Film Capacitors with Excellent Efficiency and Thermal Stability
by Li Wu, Feifei Han, Kaiyuan Chen, Jianming Deng, Laijun Liu and Biaolin Peng
Molecules 2025, 30(1), 8; https://doi.org/10.3390/molecules30010008 - 24 Dec 2024
Cited by 1 | Viewed by 569
Abstract
The advancement of miniaturizing electronic information technology draws growing interest in dielectric capacitors due to their high-power density and rapid charge/discharge capabilities. The sol-gel method was utilized to fabricate the 0.75Pb(Zr0.52Ti0.48)O3-0.25BiFeO3 (PZT-25BFO) thin film. Excitingly, PZT-25BFO [...] Read more.
The advancement of miniaturizing electronic information technology draws growing interest in dielectric capacitors due to their high-power density and rapid charge/discharge capabilities. The sol-gel method was utilized to fabricate the 0.75Pb(Zr0.52Ti0.48)O3-0.25BiFeO3 (PZT-25BFO) thin film. Excitingly, PZT-25BFO thin film exhibits an exceptional capacitive energy storage density (Wrec = 24.61–39.76 J/cm3) and a high efficiency (η = 53.78–72.74%). Furthermore, the dielectric energy storage density and efficiency enhance simultaneously with increasing thickness of the thin film. However, the loss factor shows the opposite trend. Specifically, the 12-layer PZT-25BFO thin film demonstrates the optimal properties, boasting a significant energy storage density (15.73 J/cm3), a high efficiency (77.65%), and remarkable thermal stability (±0.55% variation) from 303 K to 383 K at 1000 kV/cm. This excellent thermal stability can be attributed to the residual stress resulting from a phase transition from the rhombohedral to tetragonal phase. The result offers valuable guidance for the development of ferroelectric thin films in high-power capacitive energy storage applications. Full article
Show Figures

Figure 1

12 pages, 4580 KiB  
Article
A Polyimide Composite-Based Electromagnetic Cantilever Structure for Smart Grid Current Sensing
by Zeynel Guler and Nathan Jackson
Micromachines 2024, 15(10), 1189; https://doi.org/10.3390/mi15101189 - 26 Sep 2024
Cited by 1 | Viewed by 4205
Abstract
Polyimides (PIs) have been extensively used in thin film and micro-electromechanical system (MEMS) processes based on their excellent thermal and mechanical stability and high glass transition temperature. This research explores the development of a novel multilayer and multifunctional polymer composite electro-piezomagnetic device that [...] Read more.
Polyimides (PIs) have been extensively used in thin film and micro-electromechanical system (MEMS) processes based on their excellent thermal and mechanical stability and high glass transition temperature. This research explores the development of a novel multilayer and multifunctional polymer composite electro-piezomagnetic device that can function as an energy harvester or sensor for current-carrying wires or magnetic field sensing. The devices consist of four layers of composite materials with a polyimide matrix. The composites have various nanoparticles to alter the functionality of each layer. Nanoparticles of Ag were used to increase the electrical conductivity of polyimide and act as electrodes; lead zirconate titanate was used to make the piezoelectric composite layer; and either neodymium iron boron (NdFeB) or Terfenol-D was used to make the magnetic and magnetostrictive composite layer, which was used as the proof mass. A novel all-polymer multifunctional polyimide composite cantilever was developed to operate at low frequencies. This paper compares the performance of the different magnetic masses, shapes, and concentrations, as well as the development of an all-magnetostrictive device to detect voltage or current changes when coupled to the magnetic field from a current-carrying wire. The PI/PZT cantilever with the PI/NdFeB proof mass demonstrated higher voltage output compared to the PI/Terfenol-D proof mass device. However, the magnetostrictive composite film could be operated without a piezoelectric film based on the Villari effect, which consisted of a single PI-Terfenol-D film. The paper illustrates the potential to develop an all-polymer composite MEMS device capable of acting as a magnetic field or current sensor. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 1564 KiB  
Review
Piezoelectric Charge Coefficient of Halide Perovskites
by Raja Sekhar Muddam, Joseph Sinclair and Lethy Krishnan Jagadamma
Materials 2024, 17(13), 3083; https://doi.org/10.3390/ma17133083 - 23 Jun 2024
Cited by 3 | Viewed by 1951
Abstract
Halide perovskites are an emerging family of piezoelectric and ferroelectric materials. These materials can exist in bulk, single-crystal, and thin-film forms. In this article, we review the piezoelectric charge coefficient (dij) of single crystals, thin films, and dimension-tuned halide perovskites based [...] Read more.
Halide perovskites are an emerging family of piezoelectric and ferroelectric materials. These materials can exist in bulk, single-crystal, and thin-film forms. In this article, we review the piezoelectric charge coefficient (dij) of single crystals, thin films, and dimension-tuned halide perovskites based on different measurement methods. Our study finds that the (dij) coefficient of the bulk and single-crystal samples is mainly measured using the quasi-static (Berlincourt) method, though the piezoforce microscopy (PFM) method is also heavily used. In the case of thin-film samples, the (dij) coefficient is dominantly measured by the PFM technique. The reported values of dij coefficients of halide perovskites are comparable and even better in some cases compared to existing materials such as PZT and PVDF. Finally, we discuss the promising emergence of quasi-static methods for thin-film samples as well. Full article
(This article belongs to the Special Issue Piezoelectrics and Ferroelectrics for End Users)
Show Figures

Figure 1

3 pages, 1258 KiB  
Abstract
A Simple Method for Extracting Piezoelectric Coefficient d31 by Fitting Experimental Data with an Analytical Model
by Yangyang Guan, Mustafa Mert Torunbalci, Sanjog Vilas Joshi, Sina Sadeghpour, Aojie Quan, Chen Wang and Michael Kraft
Proceedings 2024, 97(1), 202; https://doi.org/10.3390/proceedings2024097202 - 16 Apr 2024
Viewed by 2495
Abstract
This work presents a simple method to extract the piezoelectric coefficient d31 based on analytical model fitting. A theoretical circuit model is developed for a piezoelectric circular membrane actuator based on PZT thin film. The circular diaphragm consists of a 12 µm [...] Read more.
This work presents a simple method to extract the piezoelectric coefficient d31 based on analytical model fitting. A theoretical circuit model is developed for a piezoelectric circular membrane actuator based on PZT thin film. The circular diaphragm consists of a 12 µm silicon layer, an 800 nm thick PZT layer, and a 200 nm Ti/Pt layer, featuring a single 50% inner top electrode coverage. The proposed model is validated by the finite element method with a 2D axisymmetric model of a PZT piezoelectric membrane. Further, piezoelectric coefficient d31 is extracted by fitting the Laser Doppler Vibrometer (LDV) experimental result with the analytical model. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

18 pages, 4773 KiB  
Article
Design and Implementation of a Four-Unit Array Piezoelectric Bionic MEMS Vector Hydrophone
by Shuzheng Shi, Xiaoyong Zhang, Zhanying Wang, Liyong Ma, Kai Kang, Yongjun Pang, Hong Ma and Jinjiang Hu
Micromachines 2024, 15(4), 524; https://doi.org/10.3390/mi15040524 - 14 Apr 2024
Cited by 3 | Viewed by 4242
Abstract
High-performance vector hydrophones have been gaining attention for underwater target-monitoring applications. Nevertheless, there exists the mutual constraint between sensitivity and bandwidth of a single hydrophone. To solve this problem, a four-unit array piezoelectric bionic MEMS vector hydrophone (FPVH) was developed in this paper, [...] Read more.
High-performance vector hydrophones have been gaining attention for underwater target-monitoring applications. Nevertheless, there exists the mutual constraint between sensitivity and bandwidth of a single hydrophone. To solve this problem, a four-unit array piezoelectric bionic MEMS vector hydrophone (FPVH) was developed in this paper, which has a cross-beam and a bionic fish-lateral-line-nerve-cell-cilia unit array structure. Simulation analysis and optimization in the design of the bionic microstructure have been performed by COMSOL 6.1 software to determine the structure dimensions and the lead zirconate titanate (PZT) thin film distribution. The FPVH was manufactured using MEMS technology and tested in a standing wave bucket. The results indicate that the FPVH has a sensitivity of up to −167.93 dB@1000 Hz (0 dB = 1 V/μPa), which is 12 dB higher than that of the one-unit piezoelectric MEMS vector hydrophone (OPVH). Additionally, the working bandwidth of the FPVH reaches 20 Hz~1200 Hz, exhibiting a good cosine curve with an 8-shape. This work paves a new way for the development of multi-unit piezoelectric vector hydrophones for underwater acoustic detectors. Full article
Show Figures

Figure 1

14 pages, 6585 KiB  
Article
Enhancing Manufacturability of SU-8 Piezoelectric Composite Films for Microsystem Applications
by Irma Rocio Vazquez, Zeynel Guler and Nathan Jackson
Micromachines 2024, 15(3), 397; https://doi.org/10.3390/mi15030397 - 14 Mar 2024
Cited by 6 | Viewed by 2440
Abstract
Piezoelectric thin films are extensively used as sensing or actuating layers in various micro-electromechanical systems (MEMS) applications. However, most piezoelectrics are stiff ceramics, and current polymer piezoelectrics are not compatible with microfabrication due to their low Curie Temperature. Recent polymer-composite piezoelectrics have gained [...] Read more.
Piezoelectric thin films are extensively used as sensing or actuating layers in various micro-electromechanical systems (MEMS) applications. However, most piezoelectrics are stiff ceramics, and current polymer piezoelectrics are not compatible with microfabrication due to their low Curie Temperature. Recent polymer-composite piezoelectrics have gained interest but can be difficult to pattern. Photodefinable piezoelectric films could resolve these challenges by reducing the manufacturability steps by eliminating the etching process. But they typically have poor resolution and thickness properties. This study explores methods of enhancing the manufacturability of piezoelectric composite films by optimizing the process parameters and synthesis of SU-8 piezo-composite materials. Piezoelectric ceramic powders (barium titanate (BTO) and lead zirconate titanate (PZT)) were integrated into SU-8, a negative epoxy-based photoresist, to produce high-resolution composites in a non-cleanroom environment. I-line (365 nm) light was used to enhance resolution compared to broadband lithography. Two variations of SU-8 were prepared by thinning down SU-8 3050 and SU-8 3005. Different weight percentages of the piezoelectric powders were investigated: 5, 10, 15 and 20 wt.% along with varied photolithography processing parameters. The composites’ transmittance properties were characterized using UV-Vis spectroscopy and the films’ crystallinity was determined using X-ray diffraction (XRD). The 0–3 SU-8/piezo composites demonstrated resolutions < 2 μm while maintaining bulk piezoelectric coefficients d33 > 5 pm V−1. The films were developed with thicknesses >10 μm. Stacked layers were achieved and demonstrated significantly higher d33 properties. Full article
(This article belongs to the Special Issue Smart Functional Micro/Nano Structured Surfaces)
Show Figures

Figure 1

Back to TopTop