Synthesis of 0.75Pb(Zr0.52Ti0.48)O3-0.25BiFeO3 Thin Film Capacitors with Excellent Efficiency and Thermal Stability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure
2.2. Energy Storage Density
3. Characterization
4. Materials and Methods
Preparation of PZT-25BFO Thin Films
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, B.L.; Zhang, Q.; Li, X.; Sun, T.Y.; Fan, H.Q.; Ke, S.M.; Ye, M.; Wang, Y.; Lu, W.; Niu, H.B.; et al. Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases. ACS Appl. Mater. Interfaces 2015, 27, 13512–13517. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Kim, K.D.; Hwang, C.S. Thin HfxZr1−xO2 Films: A New Lead-Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability. Adv. Energy Mater. 2014, 4, 1400610. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, T.; Zhao, L.; Jin, L.; Xu, Z.; Wei, X. Dielectric and energy storage properties of BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramic: Influence of glass addition and biasing electric field. Ceram. Int. 2017, 43, 35–39. [Google Scholar] [CrossRef]
- Li, F.; Zhai, J.; Shen, B.; Liu, X.; Yang, K.; Zhang, Y.; Li, P.; Liu, B.H.; Zheng, H.R. Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J. Appl. Phys. 2017, 121, 054103. [Google Scholar] [CrossRef]
- Qi, P. Dielectric tunability properties of the Pb[(Mg1/3Nb2/3)1−xZrx]O3 ceramics. J. Alloys Compd. 2013, 549, 283–287. [Google Scholar]
- Luo, N.N.; Han, K.; Zhuo, F.P.; Chao, X.; Zhang, G.Z.; Liu, L.J.; Chen, X.Y.; Hu, C.Z.; Zhou, H.F.; Wei, Y.Z. Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 2019, 7, 14118–14128. [Google Scholar] [CrossRef]
- Luo, N.N.; Han, K.; Zhuo, F.P.; Liu, L.J.; Chen, X.Y.; Peng, B.L.; Wang, X.P.; Feng, Q.; Wei, Y.Z. Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics. J. Mater. Chem. C 2019, 7, 4999–5008. [Google Scholar] [CrossRef]
- Panda, P.K.; Sahoo, B. PZT to Lead Free Piezo Ceramics: A Review. Ferroelectrics 2015, 474, 128–143. [Google Scholar] [CrossRef]
- Park, K.I.; Son, J.H.; Hwang, G.T.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L. Highly-Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Adv Mater. 2014, 26, 2514–2520. [Google Scholar] [CrossRef]
- Ang, C.; Yu, Z. dc electric-field dependence of the dielectric constant in polar dielectrics: Multiploidization mechanism model. Phys. Rev. B 2004, 69, 219904. [Google Scholar] [CrossRef]
- Choi, S.G.; Palmstrøm, C.J.; Kim, Y.D.; Cooper, S.L.; Aspens, D.E. Dielectric functions of AlxGa1-xSb (0.00 ≤ x ≤ 0.39) alloys from 1.5 to 6.0 eV. J. Appl. Phys. 2005, 98, 5821. [Google Scholar] [CrossRef]
- Zhang, T.D.; Li, W.L.; Cao, W.P.; Hou, Y.; Yu, Y.; Fei, W.L. Giant electrocaloric effect in PZT bilayer thin films by utilizing the electric field engineering. Appl. Phys. Lett. 2016, 108, 162902. [Google Scholar] [CrossRef]
- Li, M.J.; Xu, L.P.; Shi, K. Interband electronic transitions and phase diagram of PbZr1-xTixO3 (0.05 ≤ x ≤ 0.70) ceramics: Ellipsometric experiment and first-principles theory. J. Phy. D Appl. Phys. 2016, 49, 275305. [Google Scholar] [CrossRef]
- Mukherjee, D.; Hyde, R.; Hordagoda, M. Challenges in the stoichiometric growth of polycrystalline and epitaxial PbZr0.52Ti0.48O3/La0.7Sr0.3MnO3 multiferroic heterostructures using pulsed laser deposition. J. Appl. Phys. 2012, 112, 064101. [Google Scholar] [CrossRef]
- Aggarwal, S.; Madhukar, S.; Nagaraj, B. Can lead nonstoichiometry influence ferroelectric properties of Pb(Zr,Ti)O3 thin films. Appl. Phys. Lett. 1999, 75, 716–718. [Google Scholar] [CrossRef]
- Wu, Y.J.; Wan, J.G.; Huang, C.F.; Weng, Y.Y.; Zhao, S.F.; Liu, J.M.; Wang, G.H. Strong magnetoelectric coupling in multiferroic BiFeO3-Pb(Zr0.52Ti0.48)O3 composite films derived from electrophoretic deposition. Appl. Phys. Lett. 2008, 93, 192915. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Liu, Y.; Zhang, L.; Hao, X. The coexisting negative and positive electrocaloric effect in (Pb0.97La0.02)(Zr,Sn,Ti)O3 antiferroelectric thick films optimized via phase transition procedure. J. Mater. Sci. Mater. Electron. 2018, 29, 14528–14534. [Google Scholar] [CrossRef]
- Gao, H.; Hao, X.; Zhang, Q.; An, S.; Kong, L.B. Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films. J. Mater. Sci. Mater. Electron. 2016, 27, 10309–10319. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, X.H.; Zhang, Q. A giant electrocaloric effect of a Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature. J. Mater. Chem. C 2015, 3, 1694–1699. [Google Scholar] [CrossRef]
- Ge, J.; Pan, G.; Remiens, D. Effect of electrode materials on the scaling behavior of energy density in Pb(Zr0.96Ti0.03)Nb0.01O3 antiferroelectric films. Appl. Phys. Lett. 2012, 101, 112905. [Google Scholar] [CrossRef]
- Lebeugle, D.; Colson, D.; Forget, A.; Viret, M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 2007, 91, 022907. [Google Scholar] [CrossRef]
- Rödel, J.; Jo, W.; Seifert, K.T.P.; Anton, E.M.; Granzow, T.; Damjanovic, D. Perspective on the Development of Lead-free Piezoceramics. J. Am. Chem. Soc. 2009, 92, 1153–1177. [Google Scholar] [CrossRef]
- Deluca, M.; Fukumura, H.; Tonari, N.; Capiani, C.; Hasuike, N.; Kisoda, K.; Galassi, C.; Harima, H. Raman spectroscopic study of phase transitions in undoped morphotropic PbZr1−xTixO3. J. Raman Spectrosc. 2011, 42, 488–495. [Google Scholar] [CrossRef]
- Smith, R.T.; Achenbach, G.D.; Gerson, R.; James, W.J. Dielectric Properties of Solid Solutions of BiFeO3 with Pb(Ti, Zr)O3 at High Temperature and High Frequency. J. Appl. Phys. 1968, 39, 70–74. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, V.; Kotnala, R.K.; Ranjan, R.; Dwivedi, R.K. Co-existence of tetragonal and monoclinic phases and multiferroic properties for x ≤ 0.30 in the (1−x)Pb(Zr0.52Ti0.48)O3–(x)BiFeO3 system. J. Alloys Compd. 2014, 614, 165–172. [Google Scholar] [CrossRef]
- Lappalainen, J.; Frantti, J.; Lantto, V. Electrical and mechanical properties of ferroelectric thin films laser ablated from a Pb0.97Nd0.02(Zr0.55Ti0.45)O3 target. J. Appl. Phys. 1997, 82, 3469–3477. [Google Scholar] [CrossRef]
- Spierings, G.A.C.M.; Dormans, G.J.M.; Moors, W.G.J.; Ulenaers, M.J.E.; Larsen, P.K. Stresses in Pt/Pb(Zr,Ti)O3/Pt thin-film stacks for integrated ferroelectric capacitors. J. Appl. Phys. 1995, 78, 1926–1933. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, Y.C.; Peng, B.L.; Deng, J.Y.; Yang, Y.; Sun, W.H.; Wang, Z.L. Thickness dependence of PbZr0.52Ti0.48O3 thin film ferroelectric parameters. Nano Energy 2023, 107, 108161. [Google Scholar] [CrossRef]
- Abdessalem, L.B.; Aydi, S.; Aydi, A.; Sassi, Z.; Maalej, A.; Khemakhem, H. X-ray diffraction; dielectric, and Raman spectroscopy studies of BaSrTiO3-NaNbO3 ceramic. Appl. Phys. A 2017, 123, 305. [Google Scholar] [CrossRef]
- Dobal, P.S.; Katiyar, R.S. Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy. J. Raman Spectrosc. 2002, 33, 405–423. [Google Scholar] [CrossRef]
- Peng, B.L.; Zhang, Q.; Bai, G.; Leighton, J.T.; Glenn, S.; Christopher, M.; Steven, J.; Zou, B.S.; Sun, W.H.; Huang, H.T.; et al. Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film. Energy Environ. Sci. 2019, 12, 1708–1717. [Google Scholar] [CrossRef]
- Xu, W.H.; Lu, D.; Zhang, T.Y. Determination of residual stresses in Pb(Zr0.53Ti0.47)O3 thin films with Raman spectroscopy. Appl. Phys. Lett. 2001, 79, 4112–4114. [Google Scholar] [CrossRef]
- Zhu, J.J.; Jiang, K.; Xu, G.S.; Hu, Z.G.; Li, Y.W.; Zhu, Z.Q.; Chu, J.H. Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. J. Appl. Phys. 2013, 114, 153508. [Google Scholar] [CrossRef]
- Buixaderas, E.; Berta, M.; Kozielski, L. Raman spectroscopy of Pb(Zr1-xZxTix)O3 graded ceramics around the morphotropic phase boundary. Phase Transit. 2011, 84, 528–541. [Google Scholar] [CrossRef]
- Peng, B.L.; Tang, S.L.; Lu, L.; Zhang, Q.; Huang, H.T.; Bai, G.; Miao, L.; Zhou, B.S.; Liu, L.J.; Sun, W.H.; et al. Low-temperature-poling awakened high dielectric breakdown strength and outstanding improvement of discharge energy density of (Pb, La)(Zr, Sn, Ti)O3 relaxor thin film. Nano Energy 2020, 77, 105132. [Google Scholar] [CrossRef]
- Peng, B.L.; Wang, T.T.; Liu, L.J.; Chen, X.; Li, J.F.; Zhang, Q.; Yang, R.S.; Sun, W.H.; Wang, Z.L. P-GaN-substrate sprouted giant pure negative electrocaloric effect in Mn-doped Pb(Zr0.3Ti0.7)O3 thin film with a super-broad operational temperature range. Nano Energy 2021, 86, 106059. [Google Scholar] [CrossRef]
- Chaves, A.; Katiyar, R.S.; Porto, S. Coupled modes with A1 symmetry in tetragonal BaTiO3. Phys. Rev. B. 1974, 10, 3522–3533. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, K.S.; Kim, T.S. Microstress relaxation effect of Pb(Zr0.52Ti0.48)O3 films with thicknesses for micro/nano piezoelectric device. Appl. Phys. Lett. 2010, 96, 092904. [Google Scholar] [CrossRef]
- Rodrigues, S.; Rolo, A.G.; Khodorov, A.; Pereira, M.; Gomes, M. Determination of residual stress in PZT films produced by laser ablation with X-ray diffraction and Raman spectroscopy. J. Eur. Chem. Soc. 2010, 30, 521–524. [Google Scholar] [CrossRef]
- Rouquette, J.; Haines, J.; Bornand, V.; Pintard, M.; Papet, P.; Bonnet, B.; Gorelli, F.A. P-T phase diagram of PbZr0.52Ti0.48O3 (PZT). Solid State Sci. 2003, 5, 451–457. [Google Scholar] [CrossRef]
- Beshenkov, V.G.; Znamenskii, A.G.; Irzhak, A.V.; Marchenko, V.A. Method of phase composition diagnostics of lead zirconate titanate films based on Raman spectra. Appl. Surf. Sci. 2021, 562, 149937. [Google Scholar] [CrossRef]
- Begg, B.D.; Finnie, K.S.; Vance, E.R. Raman Study of the Relationship between Room-Temperature Tetragonality and the Curie Point of Bariam Titanate. J. Am. Chem. Soc. 1996, 79, 2666–2672. [Google Scholar]
- Ohno, T.; Matsuda, T.; Ishikawa, K.; Suzuki, H. Thickness Dependence of Residual Stress in Alkoxide-Derived Pb(Zr0.3Ti0.7)O3 Thin Film by Chemical Solution Deposition. Jpn. J. Appl. Phys. 2006, 45, 7265–7269. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, J.; Chen, W.; Shen, J.; Lv, C. Effects of residual stress on the electrical properties in PbZr0.52Ti0.48O3 thin films. J. Sol-Gel Sci. Technol. 2015, 75, 551–556. [Google Scholar] [CrossRef]
- Berfield, T.A.; Ong, R.J.; Payne, D.A.; Sottos, N.R. Residual stress effects on piezoelectric response of sol-gel derived lead zirconate titanate thin films. J. Appl. Phys. 2007, 101, 024102. [Google Scholar] [CrossRef]
- Hao, X.; Wang, P.; Zhang, X.; Xu, J. Microstructure and energystorage performance of PbO–B2O3–SiO2–ZnO glass added (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thick films. Mater. Res. Bull. 2013, 48, 84–88. [Google Scholar] [CrossRef]
- Li, P.; Zhai, J.W.; Zeng, H.R.; Zhao, K.Y.; Shen, B.; Chen, H. Effects of LaNiO3 seeding layers on the crystal structure and electrical properties in 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 thin films. Ceram. Int. 2015, 41, 12980–12987. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, W.L.; Cao, W.P.; Yu, F.; Qiao, Y.L.; Zhang, T.D.; Fei, W.D. Mn doping to enhance energy storage performance of lead-free 0.7NBT-0.3ST thin films with weak oxygen vacancies. Appl. Phys. Lett. 2017, 110, 243901. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, L.W.; Hao, X.H.; An, S.L.; Song, B. Dielectric properties and energy-storage performances of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 relaxor ferroelectric thin films. J. Mater. Sci. Mater. Electron. 2015, 26, 9583–9590. [Google Scholar] [CrossRef]
- Xu, Z.; Hao, X.H.; An, S.L. Dielectric propertie and energy-storage performance of (Na0.5Bi0.5)TiO3-SrTiO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. J. Alloys Compd. 2015, 639, 387–392. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, H.; Hao, X.H.; Zhang, Q. Orientation-dependent energy-storage performance and electrocaloric effect in PLZST antiferroelectric thick films. Mater. Res. Bull. 2016, 84, 177–184. [Google Scholar] [CrossRef]
- Xie, Z.K.; Yue, Z.X.; Ruehl, G.; Peng, B.L.; Zhang, J.; Qi, Y.; Zhang, X.H.; Li, L.T. Bi(Ni1/2Zr1/2)O3-PbTiO3 relaxor-ferroelectric films for piezoelectric energy harvesting and electrostatic storage. Appl. Phys. Lett. 2014, 104, 243902. [Google Scholar] [CrossRef]
- Cao, W.P.; Li, W.L.; Feng, Y.; Bai, T.; Qiao, Y.L.; Hou, Y.F.; Zhang, T.D.; Yu, F.; Fei, W.D. Defect dipole induced large recoverable strain and high energy-storage density in leadfree Na0.5Bi0.5TiO3-based systems. Appl. Phys. Lett. 2016, 108, 202902. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, J.; Liu, Q.; Zhang, S.; Li, J.F. Silver Niobate Lead-Free Antiferroelectric Ceramics: Enhancing Energy Storage Density by B-Site Doping. ACS Appl. Mater. Interfaces 2018, 10, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Shen, Y.; Zhang, S.H.; Zhang, Q.M.; Clarke, D.R. Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 2015, 45, 433–458. [Google Scholar] [CrossRef]
- Müller, J.; Böscke, T.S.; Schröder, U.; Mueller, S.; Bräuhaus, D.; Böttger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318–4323. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.X.; Peng, B.L.; Zhu, J.G.; Liu, L.J.; Sun, W.H.; Leighton, G.; Shaw, C.; Lou, N.N.; Zhang, Q. Enhanced energy storage performance of (1-x)(BCT-BMT)-xBFO lead-free relaxor ferroelectric ceramics in a broad temperature range. J. Alloys Compd. 2019, 789, 303–312. [Google Scholar] [CrossRef]
- He, S.K.; Peng, B.L.; Leighton, G.; Shaw, C.; Wang, N.Z.; Sun, W.H.; Liu, L.J.; Zhang, Q. High-performance La-doped BCZT thin film capacitors on LaNiO3/Pt composite bottom electrodes with ultra-high efficiency and high thermal stability. Ceram. Int. 2019, 45, 11749–11755. [Google Scholar] [CrossRef]
- Li, L.C.; Xu, M.X.; Zhang, Q.; Chen, P.; Wang, N.Z.; Xiong, D.K.; Peng, B.L.; Liu, L.J. Electrocaloric effect in La-doped BNT-6BT relaxor ferroelectric ceramics. Ceram. Int. 2018, 44, 343–350. [Google Scholar] [CrossRef]
- Ren, P.R.; Liu, Z.C.; Wang, Q.; Peng, B.L.; Ke, S.M.; Fan, H.Q.; Zhao, G.Y. Large nonlinear dielectric behavior in BaTi(1-x)SnxO3. Sci. Rep. 2017, 7, 6693. [Google Scholar]
- Wang, J.; Sun, N.; Li, Y.; Zhang, Q.; Hao, X.; Chou, X. Effects of Mn doping on dielectric properties and energy-storage performance of Na0.5Bi0.5TiO3 thick films. Ceram. Int. 2017, 43, 7804–7809. [Google Scholar] [CrossRef]
- Liu, X.H.; Li, Y.; Hao, X.H. Ultra-high energy-storage density and fast discharge speed of (Pb0.98−xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via tape-casting method. J. Mater. Chem. A 2019, 19, 11858–11866. [Google Scholar] [CrossRef]
Materials | Wmax (J/cm3) | η (%) | E (kV/cm) | References |
---|---|---|---|---|
4-layers | 39.76 | 53.78 | 2157 | This work |
6-layers | 37.37 | 56.47 | 2285 | This work |
8-layers | 34.67 | 66.67 | 2000 | This work |
12-layers | 24.61 | 72.74 | 1584 | This work |
0.8PMN-0.2PT | 31 | 64 | 2000 | [49] |
BNT-ST | 36.1 | 40.8 | 1965 | [50] |
PLZST | 13.5 | 73 | 900 | [51] |
0.7NBT-0.3ST | 27 | 45.2 | 1903 | [48] |
0.4BNZ-0.6PT | 39.8 | 56.5 | 2167 | [52] |
Samples | Pmax − Pr (μC/cm2) | Pr (μC/cm2) | W (J/cm3) | η (%) |
---|---|---|---|---|
4-layers | 40.71 | 11.89 | 15.29 | 65.37 |
6-layers | 41.83 | 9.50 | 15.43 | 68.20 |
8-layers | 44.07 | 8.45 | 15.68 | 71.64 |
12-layers | 46.69 | 7.10 | 15.73 | 77.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Han, F.; Chen, K.; Deng, J.; Liu, L.; Peng, B. Synthesis of 0.75Pb(Zr0.52Ti0.48)O3-0.25BiFeO3 Thin Film Capacitors with Excellent Efficiency and Thermal Stability. Molecules 2025, 30, 8. https://doi.org/10.3390/molecules30010008
Wu L, Han F, Chen K, Deng J, Liu L, Peng B. Synthesis of 0.75Pb(Zr0.52Ti0.48)O3-0.25BiFeO3 Thin Film Capacitors with Excellent Efficiency and Thermal Stability. Molecules. 2025; 30(1):8. https://doi.org/10.3390/molecules30010008
Chicago/Turabian StyleWu, Li, Feifei Han, Kaiyuan Chen, Jianming Deng, Laijun Liu, and Biaolin Peng. 2025. "Synthesis of 0.75Pb(Zr0.52Ti0.48)O3-0.25BiFeO3 Thin Film Capacitors with Excellent Efficiency and Thermal Stability" Molecules 30, no. 1: 8. https://doi.org/10.3390/molecules30010008
APA StyleWu, L., Han, F., Chen, K., Deng, J., Liu, L., & Peng, B. (2025). Synthesis of 0.75Pb(Zr0.52Ti0.48)O3-0.25BiFeO3 Thin Film Capacitors with Excellent Efficiency and Thermal Stability. Molecules, 30(1), 8. https://doi.org/10.3390/molecules30010008