Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (459)

Search Parameters:
Keywords = PDMS composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3205 KB  
Article
Graphene/Chalcogenide Heterojunctions for Enhanced Electric-Field-Sensitive Dielectric Performance: Combining DFT and Experimental Study
by Bo Li, Nanhui Zhang, Yuxing Lei, Mengmeng Zhu and Haitao Yang
Nanomaterials 2026, 16(2), 128; https://doi.org/10.3390/nano16020128 - 18 Jan 2026
Abstract
Electric-field-sensitive dielectrics play a crucial role in electric field induction sensing and related capacitive conversion, with interfacial polarization and charge accumulation largely determining the signal output. This paper introduces graphene/transition metal dichalcogenide (TMD) (MoSe2, MoS2, and WS2) [...] Read more.
Electric-field-sensitive dielectrics play a crucial role in electric field induction sensing and related capacitive conversion, with interfacial polarization and charge accumulation largely determining the signal output. This paper introduces graphene/transition metal dichalcogenide (TMD) (MoSe2, MoS2, and WS2) heterojunctions as functional fillers to enhance the dielectric response and electric-field-induced voltage output of flexible polydimethylsiloxane (PDMS) composites. Density functional theory (DFT) calculations were used to evaluate the stability of the heterojunctions and interfacial electronic modulation, including binding behavior, charge redistribution, and Fermi level-referenced band structure/total density of states (TDOS) characteristics. The calculations show that the graphene/TMD interface is primarily controlled by van der Waals forces, exhibiting negative binding energy and significant interfacial charge rearrangement. Based on these theoretical results, graphene/TMD heterojunction powders were synthesized and incorporated into polydimethylsiloxane (PDMS). Structural characterization confirmed the presence of face-to-face interfacial contacts and consistent elemental co-localization within the heterojunction filler. Dielectric spectroscopy analysis revealed an overall improvement in the dielectric constant of the composite materials while maintaining a stable loss trend within the studied frequency range. More importantly, calibrated electric field induction tests (based on pure PDMS) showed a significant enhancement in the voltage response of all heterojunction composite materials, with the WS2-G/PDMS system exhibiting the best performance, exhibiting an electric-field-induced voltage amplitude 7.607% higher than that of pure PDMS. This work establishes a microscopic-to-macroscopic correlation between interfacial electronic modulation and electric-field-sensitive dielectric properties, providing a feasible interface engineering strategy for high-performance flexible dielectric sensing materials. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
13 pages, 3153 KB  
Article
Fabrication of a Superhydrophobic Surface via Wet Etching of a Polydimethylsiloxane Micropillar Array
by Wu-Hsuan Pei, Chuan-Chieh Hung and Yi-Je Juang
Polymers 2026, 18(1), 132; https://doi.org/10.3390/polym18010132 - 31 Dec 2025
Viewed by 444
Abstract
Superhydrophobic surfaces have gained considerable attention due to their ability to repel water and reduce surface adhesion, and they are now widely applied for self-cleaning, anti-fouling, anti-icing, and corrosion resistance purposes. In this study, either a computer numerical control (CNC) machine or photolithographic [...] Read more.
Superhydrophobic surfaces have gained considerable attention due to their ability to repel water and reduce surface adhesion, and they are now widely applied for self-cleaning, anti-fouling, anti-icing, and corrosion resistance purposes. In this study, either a computer numerical control (CNC) machine or photolithographic techniques were employed to fabricate molds with microwells, followed by soft lithography to obtain a polydimethylsiloxane (PDMS) micropillar array. An etching process was then carried out. It was found that, as etching time increased, the diameters of micropillars decreased, leading to a decrease in the solid fraction of the composite surface and increases in contact angles. When the ratios of spacing to diameter (W/D) and of height to diameter (H/D) both exceeded 1.5, the contact angle was found to exceed 150° and the original PDMS micropillar surface with a contact angle of around 135° became superhydrophobic. A drastic decrease in sliding angle was also observed at this threshold. Changes in contact angles with different W/D values were in good agreement with values calculated using the Cassie–Baxter equation, and the droplet state was verified by a pressure balance model. Meanwhile, the PDMS etching rate when using acetone as the solvent was approximately 6–8 times faster than that when using 1-Methyl-2-pyrrolidone (NMP), a result which is comparable to data in the literature. Full article
(This article belongs to the Special Issue Polymer Microfabrication and 3D/4D Printing)
Show Figures

Figure 1

15 pages, 10072 KB  
Article
Highly Sensitive Capacitive Pressure Sensor Based on MWCNTs/TiO2/PDMS with a Microhemispherical Array and APTES-Modified Interface
by Yijin Ouyang, Jianyong Lei, Shuge Li, Guotian He and Songxiying He
Polymers 2026, 18(1), 12; https://doi.org/10.3390/polym18010012 - 20 Dec 2025
Viewed by 410
Abstract
The rapid advancement of humanoid robotics has spurred researchers’ interest in flexible sensors for wide linear range detection. In response, we report a capacitive flexible pressure sensor based on a multi-walled carbon nanotubes/titanium dioxide/polydimethylsiloxane (MWCNTs/TiO2/PDMS) composite. A micro-hemispherical structure array formed [...] Read more.
The rapid advancement of humanoid robotics has spurred researchers’ interest in flexible sensors for wide linear range detection. In response, we report a capacitive flexible pressure sensor based on a multi-walled carbon nanotubes/titanium dioxide/polydimethylsiloxane (MWCNTs/TiO2/PDMS) composite. A micro-hemispherical structure array formed on the composite surface via a templating method reduces the initial capacitance value. Modified carbon nanotubes (F-MWCNTs) were prepared using 2 wt%, 5 wt% and 10 wt% γ-aminopropyltriethoxysilane (APTES), significantly enhancing dispersion and interfacial bonding strength. The synergistic effect of microstructures and MWCNTs surface functionalization further enhances sensing performance. The F-MWCNTs/TiO2/PDMS pressure sensor modified with 2 wt% APTES exhibits outstanding sensing capabilities: it demonstrates dual-stage sensitivity across a broad linear range of 0–95 kPa (0–13 kPa segment: 1.89 ± 0.49 kPa−1; 13–95 kPa segment: 7.08 ± 0.63 kPa−1), with a response time of 200 milliseconds, maintaining stability over 2500 cyclic loadings. In practical application exploration, this sensor has demonstrated strong adaptability, confirming its significant potential in micro-pressure detection, wearable electronics, and array sensing applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 11849 KB  
Article
Balloon-Shaped Optical Fiber Humidity Sensor Based on PVA Coating for Respiratory Monitoring
by Qingfeng Shi, Yunkun Cui, Wenyan Xu, Yu Zhang and Feng Peng
Photonics 2026, 13(1), 2; https://doi.org/10.3390/photonics13010002 - 19 Dec 2025
Viewed by 282
Abstract
A polyvinyl alcohol (PVA)-coated optical fiber humidity sensor for respiratory monitoring is proposed. The humidity sensor forms a fiber Mach–Zehnder interferometer (MZI) by bending the single-mode fiber (SMF) coated with PVA. The refractive index of PVA coatings varies with changes in relative humidity [...] Read more.
A polyvinyl alcohol (PVA)-coated optical fiber humidity sensor for respiratory monitoring is proposed. The humidity sensor forms a fiber Mach–Zehnder interferometer (MZI) by bending the single-mode fiber (SMF) coated with PVA. The refractive index of PVA coatings varies with changes in relative humidity (RH), causing phase changes in higher-order modes and resulting in shifts in the transmission spectrum. The sensor exhibits excellent dynamic humidity response performance (92.8 ms for response time and 63.6 ms for recovery time), realizing a humidity sensitivity of −1.927 nm/%RH within the humidity range of 86.1% to 92.2%. Compared to the balloon-shaped fiber optic sensor based on polydimethylsiloxane (PDMS) coating previously proposed by our research group, the PVA coating facilitates easier surface composite on the fiber, exhibits faster response speed, and its humidity response range is more suitable for respiratory monitoring. Ultimately, the sensor was encapsulated within a mask to enable human respiration monitoring functionality. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

16 pages, 4617 KB  
Article
Enhancing the Electric Field-Induced Response of Graphene with Metal Oxides: Experimental and DFT Study
by Yuxing Lei, Bo Li, Mengyao Zhu, Jiao Sun and Haitao Yang
Crystals 2025, 15(12), 1064; https://doi.org/10.3390/cryst15121064 - 18 Dec 2025
Viewed by 289
Abstract
The potential of graphene for electric field sensing is limited by its zero bandgap. This study employs a combined first-principles and experimental approach to enhance its response via heterojunctions with ZnO, SnO2, and Al2O3. Calculations reveal spontaneous [...] Read more.
The potential of graphene for electric field sensing is limited by its zero bandgap. This study employs a combined first-principles and experimental approach to enhance its response via heterojunctions with ZnO, SnO2, and Al2O3. Calculations reveal spontaneous formation and interfacial charge transfer in all systems, with SnO2/graphene exhibiting the most significant charge transfer (0.3636 e) and inducing a finite bandgap (0.017–0.064 eV). Experimentally, SnO2-graphene/PDMS composites demonstrated the highest relative permittivity (3.19) and a 7.76% increase in normalized induced voltage over pure PDMS within 50 Hz–50 kHz. This work establishes a direct correlation between interfacial charge transfer, bandgap opening, and macroscopic dielectric enhancement, identifying SnO2/graphene as the optimal heterojunction. The integrated multi-scale methodology provides a clear design principle for high-performance, graphene-based field-sensitive materials. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 1899 KB  
Article
A Highly Hydrophobic and Flame-Retardant Melamine Sponge for Emergency Oil Spill Response
by Chengyong Zheng, Bo Wang, Wei Xie and Shuilai Qiu
Nanomaterials 2025, 15(24), 1897; https://doi.org/10.3390/nano15241897 - 17 Dec 2025
Viewed by 306
Abstract
Frequent crude oil spills during offshore oil and gas production and transportation have inflicted irreversible detrimental effects on both human activities and marine ecosystems; with particular risks of secondary disasters such as combustion and explosions. To address these challenges; advanced oil sorption technologies [...] Read more.
Frequent crude oil spills during offshore oil and gas production and transportation have inflicted irreversible detrimental effects on both human activities and marine ecosystems; with particular risks of secondary disasters such as combustion and explosions. To address these challenges; advanced oil sorption technologies have been developed to overcome the inherent limitations of conventional remediation methods. In this study, a flame-retardant protective coating was fabricated on melamine sponge (MS) through precipitation polymerization of octa-aminopropyl polyhedral oligomeric silsesquioxane (POSS) and hexachlorocyclotriphosphazene (HCCP), endowing the MS@PPOS-PDMS-Si composite with exceptional char-forming capability. Secondary functional layer: By coupling the complementary physicochemical properties of polydimethylsiloxane (PDMS) and SiO2 nanofibers, we enabled them to function jointly, achieving superior performance in the material systems; this conferred enhanced hydrophobicity and structural stability to the MS matrix. Characterization results demonstrated a progressive reduction in peak heat release rate (PHRR) from 137.66 kW/m2 to118.35 kW/m2, 91.92 kW/m2, and ultimately 46.23 kW/m2, accompanied by a decrease in total smoke production (TSP) from 1.62 m2 to 0.76 m2, indicating significant smoke suppression. Furthermore, the water contact angle (WCA) exhibited substantial improvement from 0° (superhydrophilic) to 140.7° (highly hydrophobic). Cyclic sorption–desorption testing revealed maintained oil–water separation efficiency exceeding 95% after 10 operational cycles. These findings position the MS@PPOS-PDMS-Si composite as a promising candidate for emergency oil spill response and marine pollution remediation applications, demonstrating superior performance in fire safety, environmental durability, and operational reusability. Full article
Show Figures

Graphical abstract

17 pages, 2105 KB  
Article
Enhancing Polydimethylsiloxane with Silver Nanoparticles for Biomedical Coatings
by Axel Bachoux, Cédric Desroches, Laurence Bois, Catherine Journet, Aurore Berthier, Frédérique Bessueille-Barbier, Bérangère Toury and Nina Attik
Biomimetics 2025, 10(12), 846; https://doi.org/10.3390/biomimetics10120846 - 17 Dec 2025
Viewed by 469
Abstract
Silver nanoparticles (AgNPs) are widely used as antibacterial agents either as colloidal solutions or deposited on surfaces. However, the high concentration of AgNPs can lead to cytotoxicity, posing a hazard to healthy cells and tissues. Achieving a balance between antibacterial efficacy and cytocompatibility [...] Read more.
Silver nanoparticles (AgNPs) are widely used as antibacterial agents either as colloidal solutions or deposited on surfaces. However, the high concentration of AgNPs can lead to cytotoxicity, posing a hazard to healthy cells and tissues. Achieving a balance between antibacterial efficacy and cytocompatibility is crucial for biomedical applications. Polymeric coatings, especially those made from polydimethylsiloxane (PDMS) like Sylgard 184, are popular in biomedical applications due to their user-friendliness. We have developed a cost-effective method to reduce silver ions using the Si-H silane functions of PDMS in situ. Tetrahydrofuran (THF) acts as a solvent, inducing a swelling effect in PDMS, allowing silver ions from silver tetrafluoroborate (AgBF4) dissolved in THF to diffuse into the polymer and undergo reduction. This process results in PDMS functionalized with well-distributed 10 nm silver AgNPs. The resulting metal–polymer nanocomposites (MPNs) exhibit yellow shades and, based on qualitative Live/Dead staining observations, show no apparent cytotoxicity on human gingival fibroblasts. In addition, SEM analyses indicate a qualitative reduction in E. coli adhesion, suggesting an antibacterial anti-adhesive potential against this bacterial strain. Further studies should investigate the release profile of AgNPs in these composites, which could guide the development of new biocompatible coatings for phototherapy devices and enhance their long-term clinical performance. Full article
Show Figures

Figure 1

12 pages, 1913 KB  
Article
Characterization of PEG-Modified Composite Membranes for Microfluidic Oxygenator Applications
by Nicholas C. Higgins, David G. Blauvelt and Shuvo Roy
Micromachines 2025, 16(12), 1383; https://doi.org/10.3390/mi16121383 - 6 Dec 2025
Viewed by 415
Abstract
Microfluidic oxygenators promise to advance extracorporeal membrane oxygenation (ECMO) devices with enhanced hemodynamics and low prime volume. We are developing a silicon-based membrane oxygenator that will offer improved gas transfer and fluid flow control. Polyethylene glycol (PEG) has been used to improve hemocompatibility [...] Read more.
Microfluidic oxygenators promise to advance extracorporeal membrane oxygenation (ECMO) devices with enhanced hemodynamics and low prime volume. We are developing a silicon-based membrane oxygenator that will offer improved gas transfer and fluid flow control. Polyethylene glycol (PEG) has been used to improve hemocompatibility by providing excellent resistance to protein adsorption. Here, we characterized a polyethylene glycol surface modification of composite silicon–PDMS membranes to evaluate their effects on microfluidic oxygenator properties. X-ray photoelectron spectroscopy (XPS) and water contact angle goniometry confirmed successful PEG attachment, evidenced by the presence of characteristic C-O bonds and increased hydrophilicity, which was stable for 2 weeks. Oxygen flux tests demonstrated gas transfer rates as high as 89.6 ± 17.9 mL/min/m2 and 50.8 ± 11.7 mL/min/m2 for unmodified and PEG-coated membranes, respectively. Protein adsorption studies with human serum albumin (HSA) demonstrated a significant reduction in nonspecific protein binding on PEG-coated membranes with values as low as 14 ± 6 μg/cm2. These studies expand on the characterization of our engineered oxygenator membranes and provide insight for the development of future surface optimization strategies to enhance hemocompatibility. Full article
Show Figures

Graphical abstract

9 pages, 2766 KB  
Article
Simple Process for Flexible Light-Extracting QD Film and White OLED
by Eun Jeong Bae, Tae Jeong Hwang, Geun Su Choi, Yong-Min Lee, Byeong-Kwon Ju, Young Wook Park and Dong-Hyun Baek
Micromachines 2025, 16(12), 1367; https://doi.org/10.3390/mi16121367 - 30 Nov 2025
Viewed by 513
Abstract
Quantum dots (QDs) have tremendous potential for next-generation displays due to their high color purity, photoluminescence efficiency, and power efficiency. In this work, we present a simple and cost-effective method for fabricating flexible single- and multiple-layer films, and they can be detached and [...] Read more.
Quantum dots (QDs) have tremendous potential for next-generation displays due to their high color purity, photoluminescence efficiency, and power efficiency. In this work, we present a simple and cost-effective method for fabricating flexible single- and multiple-layer films, and they can be detached and attached to the outside of OLEDs as a light-scattering and color-conversion layer. Light extraction efficiency is enhanced by forming low-density structures by using the reactive ion etching (RIE) process. As a result, the QD/PDMS composite film allowed for color conversion and achieved an excellent light extraction efficiency of up to 9.2%. Furthermore, the QD/PDMS composite film and greenish-blue OLED produced white light (CIEx,y = 0.28, 0.41), demonstrating the potential for application in broad areas, from flexible displays to lighting. The method provides a simple and cost-effective alternative to conventional processes. Full article
Show Figures

Figure 1

14 pages, 3323 KB  
Article
Design and Fabrication of Low-Temperature 3D-Printed Bioactive Polyurethane/MnO2 Scaffolds for Bone Repair
by Long Li, Along Guo, Yangyi Nie, Zili Xu, Junjie Deng, Yuyang Zhang, Zhenyu Yao, Wei Zhang, Yuxiao Lai and Yuanchi Zhang
Polymers 2025, 17(23), 3101; https://doi.org/10.3390/polym17233101 - 22 Nov 2025
Viewed by 741
Abstract
Bone defect repair presents a significant clinical challenge, especially for critical-sized defects, due to the limitation of conventional 3D-printed scaffolds to provide simultaneous mechanical support and bioactivity. Herein, this study developed a bioactive composite scaffold through a low-temperature rapid prototyping (LT-RP) 3D printing [...] Read more.
Bone defect repair presents a significant clinical challenge, especially for critical-sized defects, due to the limitation of conventional 3D-printed scaffolds to provide simultaneous mechanical support and bioactivity. Herein, this study developed a bioactive composite scaffold through a low-temperature rapid prototyping (LT-RP) 3D printing technology. The scaffold comprises a polyurethane (PU) matrix enhanced with bioactive manganese dioxide (MnO2) nanoparticles, combining structural integrity with versatile bioactivity for bone repair. By incorporating 2, 6-pyridinedimethanol (PDM) into the PU molecular network, a coordination system is formed, enabling homogeneous distribution and structural integration of MnO2 nanoparticles. As designed, the bioactive scaffolds are fabricated through LT-RP 3D printing technology with a regular porous architecture for improving cell growth. With 10 wt% MnO2, the scaffolds (PPM10) have optimal comprehensive properties, with a modulus of ~14.1 MPa, improved thermal stability, good cytocompatibility, and enhanced osteogenic differentiation. Furthermore, in vitro degradation tests revealed the responsive release of Mn2+ from the PPM10 scaffolds in a glutathione-rich microenvironment. This functionality indicates the potential of the scaffolds to modify the tumor microenvironment for ultimate bone regeneration after bone tumor surgery. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

19 pages, 7348 KB  
Article
A Novel Approach to Pattern Dermal Papilla Spheroids in Dermal–Epidermal Composites Using Non-Adherent Microwell Arrays
by E. Cate Wisdom, Donald C. Aduba, Owen Lewis, Sandhya Xavier, Ernest O. N. Phillips, Kristin H. Gilchrist, Ira M. Herman, Vincent B. Ho, Thomas N. Darling and George J. Klarmann
Bioengineering 2025, 12(12), 1281; https://doi.org/10.3390/bioengineering12121281 - 21 Nov 2025
Viewed by 928
Abstract
Bioengineered dermal–epidermal composites (DECs) have demonstrated promise initiating skin regeneration and hair follicle neogenesis after injury. DECs in our work comprise a collagen matrix embedded with human dermal papilla cells (HDPCs) overlaid with human keratinocytes. HDPCs, as three-dimensional spheroids, enhance hair follicle formation, [...] Read more.
Bioengineered dermal–epidermal composites (DECs) have demonstrated promise initiating skin regeneration and hair follicle neogenesis after injury. DECs in our work comprise a collagen matrix embedded with human dermal papilla cells (HDPCs) overlaid with human keratinocytes. HDPCs, as three-dimensional spheroids, enhance hair follicle formation, working in tandem with keratinocytes. Herein, 3D printed stamped PDMS microwell arrays were used as a strategy for spatially patterning dermal papilla spheroids in the dermal components of the DEC. DECs were transferred to cell culture media for 5 days followed by air–liquid interface culture for 2 days. Spheroid diameter, cell viability, and qPCR gene expression analyses were conducted. DECs were surgically grafted on immunocompromised mice, and healing was followed for 10 weeks. HDPCs cultured in the microwell arrays formed patterned viable spheroids and successfully transferred to the collagen dermal matrix. RNA analysis using qPCR showed upregulation of key HDPC markers (VCAN and BMP6) in DC microwell patterned HDPC spheroids compared to monolayers. This work represents a novel 3D printing strategy optimizing designing patterned HDPC spheroids in the extracellular matrix to regenerate functional human skin instead of scar tissue after injury. Full article
(This article belongs to the Special Issue Advances and Innovations in Wound Repair and Regeneration)
Show Figures

Graphical abstract

18 pages, 5508 KB  
Article
The Concept of a 3D-Printed Microfluidic Device on Oxyfluorinated PDMS Substrates
by Fedor Doronin, Georgy Rytikov, Andrey Evdokimov, Mikhail Savel’ev, Anna Rudakova, Yuriy Rudyak and Victor Nazarov
Polymers 2025, 17(22), 3044; https://doi.org/10.3390/polym17223044 - 17 Nov 2025
Viewed by 737
Abstract
We present the concept of a microfluidic device manufactured using 3D printing and oxyfluorination techniques. During prototype testing, it was found that a larger number of cells adhered to the oxyfluorinated surface compared to the original one. It has also been shown that [...] Read more.
We present the concept of a microfluidic device manufactured using 3D printing and oxyfluorination techniques. During prototype testing, it was found that a larger number of cells adhered to the oxyfluorinated surface compared to the original one. It has also been shown that longer gas-phase treatments correspond to a higher level of cell growth. These items can be used in experiments with reagents and/or microorganisms that cause glass surface corrosion. This increases the number of production techniques for microfluidics devices, expands the possibilities for their use in biotechnology, and solves the main problem of low interlayer adhesion between components of polymer-made microfluidic devices. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 3rd Edition)
Show Figures

Figure 1

16 pages, 5850 KB  
Article
Bioinspired Multilayer Silicone Composites: Autonomous Healing and Rate-Dependent Mechanics via Dynamic Boron Coordination Networks
by Hongwen Zeng, Yan Peng, Tao Liu, Lijuan Zhao and Fengshun Zhang
Polymers 2025, 17(22), 3040; https://doi.org/10.3390/polym17223040 - 17 Nov 2025
Viewed by 656
Abstract
Inspired by the cutaneous wound healing mechanism observed in human scab formation, we engineered a series of multilayered silicone rubber composites through alternating polydimethylsiloxane (PDMS) and polydiborosiloxane (PDBS) laminates. The dynamic diboron–oxygen coordination bonds within PDBS enabled both autonomous self-healing through bond reconfiguration [...] Read more.
Inspired by the cutaneous wound healing mechanism observed in human scab formation, we engineered a series of multilayered silicone rubber composites through alternating polydimethylsiloxane (PDMS) and polydiborosiloxane (PDBS) laminates. The dynamic diboron–oxygen coordination bonds within PDBS enabled both autonomous self-healing through bond reconfiguration and enhanced impact resistance via energy dissipation. PDMS served dual functions as both a structural reinforcement matrix and a flow-restricting framework for PDBS, thereby improving the viscoelastic creep behavior and irreversible deformation tendencies characteristic of conventional non-Newtonian fluids. Notably, increasing the laminate count from 3 to 9 layers enhanced structural integration, yielding improvement in dimensional stability. All multilayer configurations demonstrated remarkable healing performance, achieving post-24 h self-healing efficiencies exceeding 95% across 3-layer, 5-layer, and 9-layer specimens. Rheological characterization revealed pronounced strain rate sensitivity under multiaxial loading conditions, with storage modulus showing proportional enhancement to applied strain rates in both transverse and longitudinal orientations. Full article
(This article belongs to the Collection Silicon-Containing Polymeric Materials)
Show Figures

Graphical abstract

23 pages, 6936 KB  
Article
Innovative Calcium L-Lactate/PDMS-Based Composite Foams as Core for Sandwich Materials for the Thermopassive Regulation of Buildings
by Mario Ávila-Gutiérrez, Emanuele Previti, María Orfila, Ilenia Acquaro, Luigi Calabrese, Candida Milone and Emanuela Mastronardo
Energies 2025, 18(22), 5940; https://doi.org/10.3390/en18225940 - 12 Nov 2025
Viewed by 477
Abstract
The substantial impact of the heating and cooling of the construction sector on global warming necessitates a focus on effective thermal insulation solutions to mitigate high CO2 emissions. Thus, the development of efficient low-temperature thermochemical energy storage (TCES) materials offers a promising [...] Read more.
The substantial impact of the heating and cooling of the construction sector on global warming necessitates a focus on effective thermal insulation solutions to mitigate high CO2 emissions. Thus, the development of efficient low-temperature thermochemical energy storage (TCES) materials offers a promising approach to improve thermal regulation. This study explores the morphological, physicochemical, and thermal properties of a silicon composite (PDMS foam) filled with calcium L-lactate (CaL) (0–70 wt.%) for the core sandwich thermopassive regulation of buildings. Furthermore, CaL was incorporated into a composite form to improve the handling and processability of the final sandwich material, as CaL is available in powder form. The results demonstrated that the filler is entirely confined within the polymer matrix (FTIR and ESEM). Additionally, the CaL-PDMS composites showed fully reversible dehydration/hydration abilities over a water vapor hydration–dehydration cycle within a temperature range suitable for low-temperature TCES, with no performance loss due to salt confinement. Regarding the energy density, the 70 wt.% CaL-PDMS composites achieved a value up to 955 MJ/m3, making it an excellent candidate for low-temperature energy storage in the construction sector as compared to other similar composites. These findings contribute to the development of new thermopassive regulation techniques for building materials. Full article
Show Figures

Figure 1

18 pages, 3952 KB  
Article
Tunable Electrical and Fatigue Performance of Carbon Nanotube-Embedded Bottlebrush Elastomers via Compositional Control
by Abby Jackson and Yuncheng Du
Processes 2025, 13(11), 3613; https://doi.org/10.3390/pr13113613 - 7 Nov 2025
Viewed by 416
Abstract
Bottlebrush elastomers (BBEs) are promising for flexible and wearable electronics due to their mechanical resilience. Incorporating conductive nanofillers such as carbon nanotubes (CNTs) enables the tuning of their electrical properties. This work studies the electrical properties of CNT–bottlebrush elastomer composites by varying polydimethylsiloxane [...] Read more.
Bottlebrush elastomers (BBEs) are promising for flexible and wearable electronics due to their mechanical resilience. Incorporating conductive nanofillers such as carbon nanotubes (CNTs) enables the tuning of their electrical properties. This work studies the electrical properties of CNT–bottlebrush elastomer composites by varying polydimethylsiloxane (PDMS)/crosslinker ratios and CNTs loadings. Building on established synthesis methods, this study investigates how compositional changes affect conductivity, sensitivity, and fatigue behavior. Our results show a composition-dependent trade-off between electrical and mechanical fatigue performance, offering insights into tailoring these composites to meet specific performance requirements in next-generation soft electronics. Full article
Show Figures

Figure 1

Back to TopTop