Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,412)

Search Parameters:
Keywords = PA12

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 767 KiB  
Article
The Association Between Physical Activity and Frailty: China Health and Retirement Longitudinal Study (CHARLS)
by Wupeng Yin, Ximeng Zhao, Ayodele Tyndall and Nan Hu
Int. J. Environ. Res. Public Health 2025, 22(8), 1219; https://doi.org/10.3390/ijerph22081219 (registering DOI) - 4 Aug 2025
Abstract
Background: With China’s rapidly aging population, frailty has become a growing concern among older adults. Physical activity (PA) is known to mitigate frailty-related decline, yet few studies have examined these associations longitudinally. Methods: Using five waves (2011–2020) of CHARLS data, we analyzed Chinese [...] Read more.
Background: With China’s rapidly aging population, frailty has become a growing concern among older adults. Physical activity (PA) is known to mitigate frailty-related decline, yet few studies have examined these associations longitudinally. Methods: Using five waves (2011–2020) of CHARLS data, we analyzed Chinese adults aged 60+ to assess the association between frailty—measured by a frailty index (FI)—and PA across various types (light, moderate, vigorous, total, and leisure). A generalized linear mixed-effects model was used, adjusting for demographic, socioeconomic, and health-related factors. Results: All PA types were significantly associated with lower odds of concurrent frailty, including light (OR = 0.37), moderate (OR = 0.37), vigorous (OR = 0.40), total (OR = 0.23), and leisure PA (OR = 0.56). Lagged PA also predicted reduced frailty risk over time, except for light PA. Conclusion: Regular PA is linked to a lower risk of frailty among older Chinese adults. These findings underscore the importance of sustained PA as a strategy to promote healthy aging and inform public health interventions for this population. Full article
40 pages, 15185 KiB  
Article
The Extract of Periplaneta americana (L.) Promotes Hair Regrowth in Mice with Alopecia by Regulating the FOXO/PI3K/AKT Signaling Pathway and Skin Microbiota
by Tangfei Guan, Xin Yang, Canhui Hong, Zehao Zhang, Peiyun Xiao, Yongshou Yang, Chenggui Zhang and Zhengchun He
Curr. Issues Mol. Biol. 2025, 47(8), 619; https://doi.org/10.3390/cimb47080619 (registering DOI) - 4 Aug 2025
Abstract
Alopecia, a prevalent dermatological disorder affecting over half of the global population, is strongly associated with psychological distress. Extracts from Periplaneta americana (L. PA), a medicinal insect resource, exhibit pharmacological activities (e.g., antioxidant, anti-inflammatory, microcirculation improvement) that align with core therapeutic targets for [...] Read more.
Alopecia, a prevalent dermatological disorder affecting over half of the global population, is strongly associated with psychological distress. Extracts from Periplaneta americana (L. PA), a medicinal insect resource, exhibit pharmacological activities (e.g., antioxidant, anti-inflammatory, microcirculation improvement) that align with core therapeutic targets for alopecia. This study aimed to systematically investigate the efficacy and mechanisms of PA extracts in promoting hair regeneration. A strategy combining network pharmacology prediction and in vivo experiments was adopted. The efficacy of a Periplaneta americana extract was validated by evaluating hair regrowth status and skin pathological staining in C57BL/6J mice. Transcriptomics, metabolomics, RT-qPCR, and 16s rRNA techniques were integrated to dissect the underlying mechanisms of its hair-growth-promoting effects. PA-011 significantly promoted hair regeneration in depilated mice via multiple mechanisms: enhanced skin superoxide dismutase activity and upregulated vascular endothelial growth factor expression; modulated FOXO/PI3K/AKT signaling pathway and restored skin microbiota homeostasis; and accelerated transition of hair follicles from the telogen to anagen phase. PA-011 exerts hair-promoting effects through synergistic modulation of FOXO/PI3K/AKT signaling and the skin microbiome. As a novel therapeutic candidate, it warrants further systematic investigation for clinical translation. Full article
18 pages, 6915 KiB  
Article
Strength Mobilisation in Karlsruhe Fine Sand
by Jinghong Liu, Yi Pik Cheng and Min Deng
Geotechnics 2025, 5(3), 52; https://doi.org/10.3390/geotechnics5030052 (registering DOI) - 4 Aug 2025
Abstract
The strength mobilisation framework was adopted for the first time to describe the stress–strain responses for three different types of sands, including a total of 30 published drained triaxial tests—25 for Karlsruhe Fine Sand, 2 for Ottawa sands and 3 for Fontainebleau sand, [...] Read more.
The strength mobilisation framework was adopted for the first time to describe the stress–strain responses for three different types of sands, including a total of 30 published drained triaxial tests—25 for Karlsruhe Fine Sand, 2 for Ottawa sands and 3 for Fontainebleau sand, under confining pressures ranging from 50 to 400 kPa. The peak shear strength τpeak obtained from drained triaxial shearing of these sands was used to normalise shear stress. Shear strains normalised at peak strength γpeak and at half peak of shear strength γM=2 were taken as the normalised reference strains, and the results were compared. Power–law functions were then derived when the mobilised strength was between 0.2τpeak and 0.8τpeak. Exponents of the power–law functions of these sands were found to be lower than in the published undrained shearing data of clays. Using γM=2 as the reference strain shows a slightly better power–law correlation than using γpeak. Linear relationships between the reference strains and variables, such as relative density, relative dilatancy index, and dilatancy, are identified. Full article
Show Figures

Figure 1

16 pages, 20542 KiB  
Article
Establishment of Agrobacterium-Mediated Transient Transformation System in Sunflower
by Fangyuan Chen, Lai Wang, Qixiu Huang, Run Jiang, Wenhui Li, Xianfei Hou, Zihan Tan, Zhonghua Lei, Qiang Li and Youling Zeng
Plants 2025, 14(15), 2412; https://doi.org/10.3390/plants14152412 - 4 Aug 2025
Abstract
Sunflower (Helianthus annuus L.) is an important oilseed crop in Northwest China, exhibiting resistance to salt and drought. Mining its excellent tolerance genes can be used for breeding. However, the current platforms for identifying gene function in sunflower is inadequate. The transient [...] Read more.
Sunflower (Helianthus annuus L.) is an important oilseed crop in Northwest China, exhibiting resistance to salt and drought. Mining its excellent tolerance genes can be used for breeding. However, the current platforms for identifying gene function in sunflower is inadequate. The transient transformation system, which can rapidly validate gene function, shows promising prospects in research. In this study, we established an efficient transient expression transformation system for sunflower using three methods: Agrobacterium-mediated infiltration, injection, and ultrasonic-vacuum. The detailed procedures were as follows: Agrobacterium GV3101 carrying a GUS reporter gene on the pBI121 vector with an OD600 of 0.8 as the bacterial suspension and 0.02% Silwet L-77 as the surfactant were utilized in all three approaches. For the infiltration method, seedlings grown hydroponically for 3 days were immersed in a bacterial suspension containing 0.02% Silwet L-77 for 2 h; for the injection method, the same solution was injected into the cotyledons of seedlings grown in soil for 4 to 6 days. Subsequently, the seedlings were cultured in the dark at room temperature for three days; for the ultrasonic-vacuum method, seedlings cultured in Petri dishes for 3 days were first subjected to ultrasonication at 40 kHz for 1 min, followed by vacuum infiltration at 0.05 kPa for 5–10 min. Agrobacterium-mediated transient transformation efficiency achieved by the three methods exceeded 90%, with gene expression being sustained for at least 6 days. Next, we employed the infiltration-based sunflower transient transformation technology with the Arabidopsis stable transformation platform to confirm salt and drought stress tolerance of candidate gene HaNAC76 from sunflower responding to various abiotic stresses. Altogether, this study successfully established an Agrobacterium-mediated transient transformation system for sunflower using these three methods, which can rapidly identify gene function and explore the molecular mechanisms underlying sunflower’s resistance traits. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

22 pages, 6962 KiB  
Article
Suppression of Delamination in CFRP Laminates with Ply Discontinuity Using Polyamide Mesh
by M. J. Mohammad Fikry, Keisuke Iizuka, Hayato Nakatani, Satoru Yoneyama, Vladimir Vinogradov, Jun Koyanagi and Shinji Ogihara
J. Compos. Sci. 2025, 9(8), 414; https://doi.org/10.3390/jcs9080414 (registering DOI) - 4 Aug 2025
Abstract
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in improving interlaminar toughness and suppressing delamination in CFRP laminates with such features. Two PA mesh configurations were evaluated: a fully embedded continuous layer and a 20 mm cut mesh strip placed between continuous and discontinuous plies near critical regions. Fracture toughness tests showed that PA mesh insertion improved interlaminar toughness approximately 2.4-fold compared to neat CFRP, primarily due to a mechanical interlocking mechanism that disrupts crack propagation and enhances energy dissipation. Uniaxial tensile tests with digital image correlation revealed that while initial matrix cracking occurred at similar stress levels, the stress at which complete delamination occurred was approximately 60% higher in specimens with a 20 mm mesh and up to 92% higher in specimens with fully embedded mesh. The fully embedded mesh provided consistent delamination resistance across the laminate, while the 20 mm insert localized strain redistribution and preserved global mechanical performance. These findings demonstrate that PA mesh is an effective interleaving material for enhancing damage tolerance in CFRP laminates with internal discontinuities. Full article
Show Figures

Figure 1

45 pages, 1629 KiB  
Review
Direct Air Capture Using Pyrolysis and Gasification Chars: Key Findings and Future Research Needs
by Wojciech Jerzak, Bin Li, Dennys Correia da Silva and Glauber Cruz
Energies 2025, 18(15), 4120; https://doi.org/10.3390/en18154120 (registering DOI) - 3 Aug 2025
Abstract
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface [...] Read more.
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, and low-cost feedstocks. This review critically examines the current state of research on the physicochemical properties of PCs and GCs relevant to CO2 adsorption, including surface area, pore structure, surface functionality and aromaticity. Comparative analyses show that chemical activation, especially with KOH, can significantly improve CO2 adsorption capacity, with some PCs achieving more than 308 mg/g (100 kPa CO2, 25 °C). Additionally, nitrogen and sulfur doping further improves the affinity for CO2 through increased surface basicity. GCs, although inherently more porous, often require additional modification to achieve a similar adsorption capacity. Importantly, the long-term stability and regeneration potential of these chars remain underexplored, but are essential for practical DAC applications and economic viability. The paper identifies critical research gaps related to material design and techno-economic feasibility. Future directions emphasize the need for integrated multiscale research that bridges material science, process optimization, and real-world DAC deployment. A synthesis of findings and a research outlook are provided to support the advancement of carbon-negative technologies using thermochemically derived biomass chars. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
23 pages, 5809 KiB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

24 pages, 4701 KiB  
Article
Evidence of Graft Incompatibility and Rootstock Scion Interactions in Cacao
by Ashley E. DuVal, Alexandra Tempeleu, Jennifer E. Schmidt, Alina Puig, Benjamin J. Knollenberg, José X. Chaparro, Micah E. Stevens and Juan Carlos Motamayor
Horticulturae 2025, 11(8), 899; https://doi.org/10.3390/horticulturae11080899 (registering DOI) - 3 Aug 2025
Abstract
This study sought to quantify and characterize diverse rootstock scion interactions in cacao around graft compatibility, disease resistance, nutrient use efficiency, vigor traits, and translocation of nonstructural carbohydrates. In total, 106 grafts were performed with three scion cultivars (Matina 1/6, Criollo 22, Pound [...] Read more.
This study sought to quantify and characterize diverse rootstock scion interactions in cacao around graft compatibility, disease resistance, nutrient use efficiency, vigor traits, and translocation of nonstructural carbohydrates. In total, 106 grafts were performed with three scion cultivars (Matina 1/6, Criollo 22, Pound 7) and nine diverse open-pollinated seedling populations (BYNC, EQX 3348, GNV 360, IMC 14, PA 107, SCA 6, T 294, T 384, T 484). We found evidence for both local and translocated graft incompatibility. Cross sections and Micro-XCT imaging revealed anatomical anomalies, including necrosis and cavitation at the junction and accumulation of starch in the rootstock directly below the graft junction. Scion genetics were a significant factor in explaining differences in graft take, and graft take varied from 47% (Criollo 22) to 72% (Pound 7). Rootstock and scion identity both accounted for differences in survival over the course of the 30-month greenhouse study, with a low of 28.5% survival of Criollo 22 scions and a high of 72% for Pound 7 scions. Survival by rootstocks varied from 14.3% on GNV 360 to 100% survival on T 294 rootstock. A positive correlation of 0.34 (p = 0.098) was found between the graft success of different rootstock–scion combinations and their kinship coefficient, suggesting that relatedness of stock and scion could be a driver of incompatibility. Significant rootstock–scion effects were also observed for nutrient use efficiency, plant vigor, and resistance to Phytophthora palmivora. These findings, while preliminary in nature, highlight the potential of rootstock breeding to improve plant nutrition, resilience, and disease resistance in cacao. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

14 pages, 2736 KiB  
Case Report
Renal Malacoplakia Following Obstetric Intervention: A Rare Cause of Acute Kidney Injury in a Young Woman
by Letícia Miyuki Ito, Juliana Miki Oguma, André Kiyoshi Miyahara, Marco Aurélio Sales da Veiga, Leandro Favaro, David Wesley de Godoy, Bárbara Antunes Bruno da Silva, Luiz Antônio Moura, Marcelino de Souza Durão and Érika Bevilaqua Rangel
Clin. Pract. 2025, 15(8), 143; https://doi.org/10.3390/clinpract15080143 - 3 Aug 2025
Abstract
Introduction: Renal malacoplakia is a rare chronic granulomatous disease, often associated with immunosuppression and persistent Gram-negative infections, particularly Escherichia coli. Case Presentation: We present a case involving a 31-year-old woman with hypertension, gestational diabetes, and prior uterine curettage after labor [...] Read more.
Introduction: Renal malacoplakia is a rare chronic granulomatous disease, often associated with immunosuppression and persistent Gram-negative infections, particularly Escherichia coli. Case Presentation: We present a case involving a 31-year-old woman with hypertension, gestational diabetes, and prior uterine curettage after labor induction for preeclampsia at 23 weeks. She developed urinary sepsis post-procedure. Imaging revealed bilateral nephromegaly, while laboratory tests showed acute kidney injury (KDIGO stage III), anemia, and thrombocytopenia. Blood and urine cultures grew Escherichia coli. Renal biopsy confirmed malacoplakia, demonstrating PAS-positive Michaelis–Gutmann bodies and Von Hansemann cells. The patient responded to prolonged antibiotic therapy and supportive care. Discussion and Conclusion: This case highlights the importance of considering renal malacoplakia in patients with atypical urinary tract infections and nephromegaly, particularly in obstetric settings. Histopathological confirmation is essential, and timely treatment with intracellularly active antibiotics can lead to favorable outcomes. Early diagnosis is critical to prevent irreversible renal damage. Full article
Show Figures

Figure 1

14 pages, 2448 KiB  
Article
Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane
by Bo Wang, Zhanqi He, Jin Lin, Kang Ren, Zhengyang Zhao, Kaihe Lv, Yiting Liu and Jiafeng Jin
Processes 2025, 13(8), 2453; https://doi.org/10.3390/pr13082453 - 3 Aug 2025
Abstract
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing [...] Read more.
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing a critical role in determining CBM output. However, during extended horizontal drilling, wellbore instability frequently occurs as a result of drilling fluid invasion into the coal formation, posing significant safety challenges. This instability is primarily caused by the physical intrusion of drilling fluids and their interactions with the coal seam, which alter the mechanical integrity of the formation. To address these challenges, interpenetrating and semi-interpenetrating network (IPN/s-IPN) hydrogels have gained attention due to their superior physicochemical properties. This material offers enhanced sealing and support performance across fracture widths ranging from micrometers to millimeters, making it especially suited for plugging applications in deep CBM reservoirs. A self-degradable interpenetrating double-network hydrogel particle plugging agent (SSG) was developed in this study, using polyacrylamide (PAM) as the primary network and an ionic polymer as the secondary network. The SSG demonstrated excellent thermal stability, remaining intact for at least 40 h in simulated formation water at 120 °C with a degradation rate as high as 90.8%, thereby minimizing potential damage to the reservoir. After thermal aging at 120 °C, the SSG maintained strong plugging performance and favorable viscoelastic properties. A drilling fluid containing 2% SSG achieved an invasion depth of only 2.85 cm in an 80–100 mesh sand bed. The linear viscoelastic region (LVR) ranged from 0.1% to 0.98%, and the elastic modulus reached 2100 Pa, indicating robust mechanical support and deformation resistance. Full article
Show Figures

Figure 1

26 pages, 1613 KiB  
Article
Olive Oil-Based Lipid Coating as a Precursor Organogel for Postharvest Preservation of Lychee: Efficacy Combined with Polyamide/Polyethylene Packaging Under Passive Atmosphere
by Alessandra Culmone, Roberta Passafiume, Pasquale Roppolo, Ilenia Tinebra, Vincenzo Naselli, Alfonso Collura, Antonino Pirrone, Luigi Botta, Alessandra Carrubba, Nicola Francesca, Raimondo Gaglio and Vittorio Farina
Gels 2025, 11(8), 608; https://doi.org/10.3390/gels11080608 (registering DOI) - 2 Aug 2025
Viewed by 24
Abstract
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil [...] Read more.
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil coating (OC), a natural lipidic system with the potential to act as a precursor for organogel development, combined with polyamide/polyethylene (PA/PE) packaging under passive modified atmosphere. Fruits were harvested at commercial maturity and divided into two groups: OC-treated and untreated control (CTR). Both groups were stored at 5 ± 1 °C and 90 ± 5% relative humidity and analyzed on days 0, 3, 6, and 9. The OC-treated fruits showed significantly better retention of physical, chemical, microbiological, and sensory qualities. The coating reduced oxidative stress and enzymatic browning, preserving color and firmness. The PA/PE packaging regulated gas exchange, lowering oxygen levels and delaying respiration and ripening. As a result, OC fruits had lower weight loss, a slower increase in browning index and maturity index, and better visual and sensory scores than the CTR group. This dual strategy proved effective in extending shelf life while maintaining the fruit’s appearance, flavor, and nutritional value. It represents a sustainable and natural approach to enhancing the postharvest stability of lychee. Full article
(This article belongs to the Special Issue Edible Coatings and Film: Gel-Based Innovations)
Show Figures

Figure 1

15 pages, 5468 KiB  
Article
Flexible Strain Sensor Based on PVA/Tannic Acid/Lithium Chloride Ionically Conductive Hydrogel with Excellent Sensing and Good Adhesive Properties
by Xuanyu Pan, Hongyuan Zhu, Fufei Qin, Mingxing Jing, Han Wu and Zhuangzhi Sun
Sensors 2025, 25(15), 4765; https://doi.org/10.3390/s25154765 (registering DOI) - 1 Aug 2025
Viewed by 211
Abstract
Ion-conductive-hydrogel strain sensors demonstrate broad application prospects in the fields of flexible sensing and bioelectric signal monitoring due to their excellent skin conformability and efficient signal transmission characteristics. However, traditional preparation methods face significant challenges in enhancing adhesion strength, conductivity, and mechanical stability. [...] Read more.
Ion-conductive-hydrogel strain sensors demonstrate broad application prospects in the fields of flexible sensing and bioelectric signal monitoring due to their excellent skin conformability and efficient signal transmission characteristics. However, traditional preparation methods face significant challenges in enhancing adhesion strength, conductivity, and mechanical stability. To address this issue, this study employed a freeze–thaw cycling method, using polyvinyl alcohol (PVA) as the matrix material, tannic acid (TA) as the adhesion reinforcement material, and lithium chloride (LiCl) as the conductive medium, successfully developing an ion-conductive hydrogel with superior comprehensive performance. Experimental data confirm that the PVA-TA-0.5/LiCl-1 hydrogel achieves optimal levels of adhesion strength (2.32 kPa on pigskin) and conductivity (0.64 S/m), while also exhibiting good tensile strength (0.1 MPa). Therefore, this hydrogel shows great potential for use in strain sensors, demonstrating excellent sensitivity (GF = 1.15), reliable operational stability, as the ΔR/R0 signal remains virtually unchanged after 2500 cycles of stretching, and outstanding strain sensing and electromyographic signal acquisition capabilities, fully highlighting its practical value in the fields of flexible sensing and bioelectric monitoring. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

10 pages, 1883 KiB  
Article
In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers
by Susana Carbajal-Ocaña, Kristeel Ximena Franco-Gómez, Valeria Atehortúa-Benítez, Daniela Mendoza-Lozano, Luis Vicente Prado-Cervantes, Luis J. Melgoza-Ramírez, Miguel Delgado-Rodríguez, Mariana E. Elizondo-García and Jorge Membrillo-Hernández
Hygiene 2025, 5(3), 32; https://doi.org/10.3390/hygiene5030032 - 1 Aug 2025
Viewed by 148
Abstract
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on [...] Read more.
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on two medical-grade polymers: polyether ether ketone (PEEK) and polyamide 12 (PA12). Using a modified crystal violet staining method and spectrophotometric quantification, we evaluated biofilm development over time on polymer granules and catheter segments composed of these materials. Results revealed that PEEK surfaces supported significantly more biofilm formation than PA12, with peak accumulation observed at 24 h for both pathogens. Conversely, PA12 demonstrated reduced bacterial adhesion and lower biofilm biomass, suggesting surface characteristics less conducive to microbial colonization. Additionally, the study validated a reproducible protocol for assessing biofilm formation, providing a foundation for evaluating anti-biofilm strategies. While the assays were performed under static in vitro conditions, the findings highlight the importance of material selection and early prevention strategies in the design of infection-resistant medical devices. This work contributes to the understanding of how surface properties affect microbial adhesion and underscores the critical need for innovative surface modifications or coatings to mitigate biofilm-related healthcare risks. Full article
(This article belongs to the Section Hygiene in Healthcare Facilities)
Show Figures

Figure 1

20 pages, 10391 KiB  
Article
Sustainable Substitution of Petroleum-Based Processing Oils with Soybean-Derived Alternatives in Styrene–Butadiene Rubber: Effects on Processing Behavior and Mechanical Properties
by Yang-Wei Lin, Tsung-Yi Chen, Chen-Yu Chueh, Yi-Ting Chen, Tsunghsueh Wu and Hsi-Ming Hsieh
Polymers 2025, 17(15), 2129; https://doi.org/10.3390/polym17152129 - 1 Aug 2025
Viewed by 204
Abstract
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) [...] Read more.
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) systems to assess processing characteristics, mechanical performance, and environmental durability. Among the alternatives, SBO demonstrated the best overall performance, improving processability and tensile strength by over 10%, while ESBO enhanced ozone resistance by 35% due to its epoxide functionality. Expired and recycled SBOs maintained essential mechanical properties within 90% of virgin SBO values. The full replacement of CH450 with SBO in tire prototypes resulted in burst strength exceeding 1000 kPa and stable appearance after 5000 km of road testing. To validate industrial relevance, the developed green tire was exhibited at the 2025 Taipei International Cycle Show, attracting interest from international buyers and stakeholders for its eco-friendly composition and carbon footprint reduction potential, thereby demonstrating both technical feasibility and commercial viability. Full article
(This article belongs to the Special Issue Functional Polymers and Their Composites for Sustainable Development)
Show Figures

Figure 1

15 pages, 2440 KiB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 (registering DOI) - 1 Aug 2025
Viewed by 75
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
Show Figures

Figure 1

Back to TopTop