Flexible Strain Sensor Based on PVA/Tannic Acid/Lithium Chloride Ionically Conductive Hydrogel with Excellent Sensing and Good Adhesive Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Hydrogel
2.3. Characterization
2.4. Mechanical Properties Testing of Hydrogel
- (1)
- Adhesive properties
- (2)
- Tensile properties
2.5. Conductivity Measurements
2.6. Sensitivity and Linearity of Hydrogel
2.7. Sensing Performance of Hydrogel
2.8. Strain Sensing and Electromyographic (EMG) Signal Acquisition Functional Applications
2.9. Water Retention Performance of Hydrogel
3. Results
3.1. Mechanical Properties of Hydrogel
3.2. Conductivity, Sensitivity, and Sensing Performance of Hydrogels
3.3. Application of PVA-TA-0.5/LiCl-1 Hydrogel Strain Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rescio, G.; Sciurti, E.; Giampetruzzi, L.; Carluccio, A.M.; Francioso, L.; Leone, A. Preliminary Study on Wearable Smart Socks with Hydrogel Electrodes for Surface Electromyography-Based Muscle Activity Assessment. Sensors 2025, 25, 1618. [Google Scholar] [CrossRef]
- Attik, N.; Basri, I.; Sohier, J.; Gauthier, R.; Villat, C.; Goutaudier, C. Aluminum-Free Borosilicate Glass Functionalized Hydrogels for Enhanced Dental Tissue Regeneration. Materials 2024, 17, 5862. [Google Scholar] [CrossRef]
- Hasan, S.; D’auria, B.G.; Mahmud, M.A.P.; Adams, S.D.; Long, J.M.; Kong, L.; Kouzani, A.Z. AI-Aided Gait Analysis with a Wearable Device Featuring a Hydrogel Sensor. Sensors 2024, 24, 7370. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Chortos, A.; Yu, G.; Wang, Y.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. An Ultra-Sensitive Resistive Pressure Sensor Based on Hollow-Sphere Microstructure Induced Elasticity in Conducting Polymer Film. Nat. Commun. 2014, 5, 3002. [Google Scholar] [CrossRef]
- Choong, C.; Shim, M.; Lee, B.; Jeon, S.; Ko, D.; Kang, T.; Bae, J.; Lee, S.H.; Byun, K.; Im, J.; et al. Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array. Adv. Mater. 2014, 26, 3451–3458. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Zong, Y.; Zhang, X. Cellulose Nanofibril-Based Triboelectric Nanogenerators Enhanced by Isoreticular Metal-Organic Frameworks for Long-Term Motion Monitoring. Sensors 2025, 25, 3232. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Xia, Q.; Zhou, K.; Yue, X.; Ren, M.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Multifunctional Flexible Carbon Black/Polydimethylsiloxane Piezoresistive Sensor with Ultrahigh Linear Range, Excellent Durability and Oil/Water Separation Capability. Chem. Eng. J. 2019, 372, 373–382. [Google Scholar] [CrossRef]
- Chen, W.; Liu, P.; Liu, Y.; Wang, Q.; Duan, W. A Temperature-Induced Conductive Coating via Layer-by-Layer Assembly of Functionalized Graphene Oxide and Carbon Nanotubes for a Flexible, Adjustable Response Time Flame Sensor. Chem. Eng. J. 2018, 353, 115–125. [Google Scholar] [CrossRef]
- Lin, J.; Pan, K.; Li, Y.; Wang, J.; Cheng, X.; Lu, P.; Zhang, H.; Yang, Z.; Lin, Y.; Hu, D. A Novel Flexible Phase Change Fibrous Composite Membrane with Tunable Thermal Management Capability for Highly Sensitive and Physically Comfortable Strain Sensor. Compos. Commun. 2025, 57, 102433. [Google Scholar] [CrossRef]
- Ma, W.; Wu, Z.; Yuan, G.; Wang, B.; Xu, B.; Kong, L.; Wan, T.; Wang, S.; Jiang, H. Flexible Strain Sensors Made from Glycolic Acid-Based Biodegradable Polyurethane for Human Body Monitoring. Mater. Today Commun. 2025, 46, 112717. [Google Scholar] [CrossRef]
- Ding, H.; Liu, J.; Wang, B.; Yang, X.; Yin, B.; Liang, T.; Wen, Y.; Li, H.; Shen, X. Tough and Recyclable Polyvinyl Alcohol/Carboxymethyl Chitosan Hydrogels with High Strength, Low Modulus and Fast Self-Recovery as Flexible Strain Sensors. Int. J. Biol. Macromol. 2025, 310, 143430. [Google Scholar] [CrossRef]
- Demidenko, N.A.; Kuksin, A.V.; Molodykh, V.V.; Pyankov, E.S.; Ichkitidze, L.P.; Zaborova, V.A.; Tsymbal, A.A.; Tkachenko, S.A.; Shafaei, H.; Diachkova, E.; et al. Flexible Strain-Sensitive Silicone-CNT Sensor for Human Motion Detection. Bioengineering 2022, 9, 36. [Google Scholar] [CrossRef]
- Gao, C.; Zhu, J.; Wu, H.; Chen, J.; Zhu, P.; Gao, Q. A Transparent Ionic Conductive Poly (Vinyl Alcohol)/Poly (γ-Glutamic Acid)/LiCl Hydrogel with Long-Lasting Anti-Freezing, Water Retention, Self-Adhesion, Self-Healing and Self-Regeneration for Wearable Sensors. Polymer 2025, 328, 128461. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, K.; Mu, Y.; Xiang, J.; Yao, T.; Zhao, K.; Gu, T.; Jia, P. A Janus Hydrogel with High Strength, Adhesive and Conductive for Wearable Strain Sensor. Polymer 2025, 323, 128210. [Google Scholar] [CrossRef]
- Tang, L.; Huang, Y.; Wang, Y.; Zhao, J.; Lian, H.; Dong, Y.; Zhang, Z.; Hasebe, Y. Highly Stretchable, Adhesive and Conductive Hydrogel for Flexible and Stable Bioelectrocatalytic Sensing Layer of Enzyme-Based Amperometric Glucose Biosensor. Bioelectrochemistry 2025, 163, 108882. [Google Scholar] [CrossRef]
- Ngo, H.T.; Kwon, K.; Shin, S. Biomass-Derived CMC-Reinforced Zwitterionic Organohydrogel for Wearable Strain Sensors: Achieving Superior Stretchability, Adhesion, and Anti-Freezing Performance. Carbohydr. Polym. 2025, 361, 123605. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Zhang, L. Ultrastretchable Hydrogels with Strong Damping Effects. Polym. J. 2024, 56, 599–607. [Google Scholar] [CrossRef]
- Xie, M.; Wang, Y.; Zhang, Z.; Lin, T.; Wang, Y.; Sheng, L.; Li, J.; Peng, J.; Zhai, M. Mechanically Excellent, Notch-Insensitive, and Highly Conductive Double-Network Hydrogel for Flexible Strain Sensor. ACS Appl. Mater. Interfaces 2024, 16, 22604–22613. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Ghosal, K.; Sarkar, K.; Pradhan, D.; Das, R.K. From Ultrastiff to Soft Materials: Exploiting Dynamic Metal–Ligand Cross-Links to Access Polymer Hydrogels Combining Customized Mechanical Performance and Tailorable Functions by Controlling Hydrogel Mechanics. Chem. Eng. J. 2021, 419, 129528. [Google Scholar] [CrossRef]
- Ou, K.; Wang, M.; Meng, C.; Guo, K.; Shariar Emon, N.; Li, J.; Qi, K.; Dai, Y.; Wang, B. Enhanced Mechanical Strength and Stretchable Ionic Conductive Hydrogel with Double-Network Structure for Wearable Strain Sensing and Energy Harvesting. Compos. Sci. Technol. 2024, 255, 110732. [Google Scholar] [CrossRef]
- Zhao, D.; Luo, J.; Fang, K.; Huang, C.; Zhou, X.; Jiang, K. Highly Adhesive Conductive Hydrogels Fabricated by Catechol Lignin/Liquid Metal-Initiated Polymerization of Acrylic Acid for Strain Sensors. Int. J. Biol. Macromol. 2025, 310, 143438. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Sheng, N.; Zhang, X.; Luan, Z.; Qi, P.; Lin, M.; Tan, Y.; Xia, Y.; Li, Y.; Sui, K. Design of Injectable Agar/NaCl/Polyacrylamide Ionic Hydrogels for High Performance Strain Sensors. Carbohydr. Polym. 2019, 211, 322–328. [Google Scholar] [CrossRef]
- Holloway, J.L.; Lowman, A.M.; Palmese, G.R. The Role of Crystallization and Phase Separation in the Formation of Physically Cross-Linked PVA Hydrogels. Soft Matter 2012, 9, 826–833. [Google Scholar] [CrossRef]
- Huang, J.; Wu, C.; Yu, X.; Li, H.; Ding, S.; Zhang, W. Biocompatible Autonomic Self-Healing PVA-TA Hydrogel with High Mechanical Strength. Macromol. Chem. Phys. 2021, 222, 2100061. [Google Scholar] [CrossRef]
- Chang, N.; Li, T.; Li, R.; Wang, S.; Yin, Y.; Zhang, H.; Li, X. An Aqueous Hybrid Electrolyte for Low-Temperature Zinc-Based Energy Storage Devices. Energy Environ. Sci. 2020, 13, 3527–3535. [Google Scholar] [CrossRef]
- Li, Z.; Qu, J.; Qian, L.; Li, Y.; Liu, J.; Yao, X.; Zhang, S.; Valentin, N.; Song, W. Multifunctional Composite Films Based on Polyvinyl Alcohol, Quaternary Ammonium Salt Modified Cellulose Nanofibers and Tannic Acid-Iron Ion Coordination Complexes for Food Packaging. Int. J. Biol. Macromol. 2023, 253, 126857. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Liu, Z.; Abubaker, M.A.; Ding, L.; Zhang, J.; Yang, S.; Fan, Z. Antibacterial Polyvinyl Alcohol/Bacterial Cellulose/Nano-Silver Hydrogels That Effectively Promote Wound Healing. Mater. Sci. Eng. C 2021, 126, 112171. [Google Scholar] [CrossRef]
- Zhang, X.; Li, R.; Li, S.; Cui, W.; Wang, D.; Zhu, Y.; Liu, Z.; Hou, Y.; Lee, S. Tri-Network PVA/Chitosan/Gelatin Hydrogel Modified by Tannic Acid with Self-Healing, Adhesive and Anti-Inflammatory Properties to Accelerate Wound Healing. Int. J. Biol. Macromol. 2025, 308, 142280. [Google Scholar] [CrossRef]
- Yao, Q.; Zheng, W.; Tang, X.; Chen, M.; Liao, M.; Chen, G.; Huang, W.; Xia, Y.; Wei, Y.; Hu, Y.; et al. Tannic Acid/Polyvinyl Alcohol/2-Hydroxypropyl Trimethyl Ammonium Chloride Chitosan Double-Network Hydrogel with Adhesive, Antibacterial and Biocompatible Properties. React. Funct. Polym. 2022, 179, 105384. [Google Scholar] [CrossRef]
- Adel Rashiq, S.; Abd El-Sattar, N.E.A.; Abd Elhamid, H.A.E.; El-Sayyad, G.S.; Bassioni, G.; Ghobashy, M.M. Enhanced Bioadhesive and Antimicrobial Properties of PVA/Ascorbic Acid Composite with Tannic Acid Synthesized by Gamma Irradiation for Biomedical Applications. ACS Omega 2025, 10, 13839–13853. [Google Scholar] [CrossRef]
- Anand, R.; Collard, D.; Thomann, J.-S.; Duday, D. Antimicrobial Sponge: A Polyvinyl Alcohol, Tannic Acid and Curcumin-Loaded Nanolignin Hydrogel Composite Scaffold. Gels 2025, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Ji, D.; Yang, S.; Pang, B.; Chen, X.; Zhu, J.; Cao, W.; Song, T. Strong, Antioxidant, and Biodegradable Gelatin Methacryloyl Composite Hydrogel for Oxidative Stress Protection in Schwann Cells. Front. Bioeng. Biotechnol. 2025, 13, 1586380. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Yin, M.; Yang, K.; Wang, S.; Pei, Y.; Luo, R.; Zhou, S.; Li, H. Ultrafast Polymerization of a Self-Adhesive and Strain Sensitive Hydrogel-Based Flexible Sensor for Human Motion Monitoring and Handwriting Recognition. Polymers 2024, 16, 1595. [Google Scholar] [CrossRef]
- Tang, C.; Yao, Y.; Li, M.; Wang, Y.; Zhang, Y.; Zhu, J.; Wang, L.; Li, L. A New Polyvinyl Alcohol Lithium Chloride Hydrogel Electrolyte: High Ionic Conductivity and Wide Working Temperature Range. Adv. Funct. Mater. 2025, 35, 2417207. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, Y.; Liu, L.; Zhang, Y.; Bai, X.; Zhang, B.; Jia, Z. Hofmeister Effect-Based 3D Hydrogel Sponge via Non-Contact Localized Crystallization for Achieving Zero Liquid Discharge Desalination of High-Salinity Brine. Desalination 2025, 610, 118911. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Cao, D.; Zhang, G.; Li, J.; Li, K.; Yang, Y.; Wang, W.; Jin, Y.; Sun, R.; et al. Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Appl. Mater. Interfaces 2017, 9, 12147–12164. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Dong, L.; Jiang, H.; Aihemaiti, P.; Aiyiti, W.; Shuai, C. Three-Dimensional Printed Ionic Conductive Hydrogels with Tunable Mechanical Properties for Wearable Strain Sensors. Colloids Surf. B Biointerfaces 2025, 255, 114912. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Z.; Zhang, Z.; Zhou, C.; Zhang, T.; Wang, T. Strong and Tough Chitosan-Based Conductive Hydrogels Cross-Linked by Dual Ionic Networks for Flexible Strain Sensors. Int. J. Biol. Macromol. 2025, 315, 144498. [Google Scholar] [CrossRef]
- Amjadi, M.; Kyung, K.-U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Feng, J.; Cao, P.; Yang, T.; Ao, H.; Xing, B. Fabrication of Microgel-Modified Hydrogel Flexible Strain Sensors Using Electrohydrodynamic Direct Printing Method. Sensors 2024, 24, 3038. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Cao, J.; Zheng, W.; Zhao, Q.; Chen, W.; Xu, X.; Luo, X.; Liu, Q.; Liu, X.; et al. Low Hysteresis and Fatigue-Resistant Polyvinyl Alcohol/Activated Charcoal Hydrogel Strain Sensor for Long-Term Stable Plant Growth Monitoring. Polymers 2023, 15, 90. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Li, K.; Ma, C.; Zhou, W.; Lin, T.; Xu, J.; Liu, X. Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring. Nanomaterials 2023, 13, 2465. [Google Scholar] [CrossRef]
- Cai, Z.; Qu, M.; Han, M.; Wu, Z.; Wu, T.; Liu, M.; Yu, H. Prediction and Fitting of Nonlinear Dynamic Grip Force of the Human Upper Limb Based on Surface Electromyographic Signals. Sensors 2025, 25, 13. [Google Scholar] [CrossRef]
- Hao, Y.; Yan, Q.; Liu, H.; He, X.; Zhang, P.; Qin, X.; Wang, R.; Sun, J.; Wang, L.; Cheng, Y. A Stretchable, Breathable, And Self-Adhesive Electronic Skin with Multimodal Sensing Capabilities for Human-Centered Healthcare. Adv. Funct. Mater. 2023, 33, 2303881. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Wang, H.-D.; Zhang, Y.-Q. A Mechanically Robust PVA-Xylosylated Sericin Composite Hydrogel Membrane with Enhanced Biocompatibility by Unidirectional Dehydration Throught nanopore. Polym. Test. 2023, 124, 108062. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Ma, S.; Cui, J.; Chen, C.; Liu, Z.; Zhang, J.; Liu, M.; Liu, D.; Li, M.; et al. 3D Printing of Microstructured Polyacrylamide/Sodium Alginate/Lithium Chloride Composite Hydrogels for Nanofriction Generator and e-Skin. Int. J. Biol. Macromol. 2025, 306, 141472. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Guo, H.; Cai, C.; Li, Q.; Wen, C.; Zhang, X.; Wang, X.; Yang, J.; Zhang, L. Ionic Conductive Hydrogels with Long-Lasting Antifreezing, Water Retention and Self-Regeneration Abilities. Chem. Eng. J. 2021, 419, 129478. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Zhu, H.; Qin, F.; Jing, M.; Wu, H.; Sun, Z. Flexible Strain Sensor Based on PVA/Tannic Acid/Lithium Chloride Ionically Conductive Hydrogel with Excellent Sensing and Good Adhesive Properties. Sensors 2025, 25, 4765. https://doi.org/10.3390/s25154765
Pan X, Zhu H, Qin F, Jing M, Wu H, Sun Z. Flexible Strain Sensor Based on PVA/Tannic Acid/Lithium Chloride Ionically Conductive Hydrogel with Excellent Sensing and Good Adhesive Properties. Sensors. 2025; 25(15):4765. https://doi.org/10.3390/s25154765
Chicago/Turabian StylePan, Xuanyu, Hongyuan Zhu, Fufei Qin, Mingxing Jing, Han Wu, and Zhuangzhi Sun. 2025. "Flexible Strain Sensor Based on PVA/Tannic Acid/Lithium Chloride Ionically Conductive Hydrogel with Excellent Sensing and Good Adhesive Properties" Sensors 25, no. 15: 4765. https://doi.org/10.3390/s25154765
APA StylePan, X., Zhu, H., Qin, F., Jing, M., Wu, H., & Sun, Z. (2025). Flexible Strain Sensor Based on PVA/Tannic Acid/Lithium Chloride Ionically Conductive Hydrogel with Excellent Sensing and Good Adhesive Properties. Sensors, 25(15), 4765. https://doi.org/10.3390/s25154765