Strength Mobilisation in Karlsruhe Fine Sand
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Reduction and Processing
2.3. Data Analysis
3. Results
3.1. Predicting Mobilisation Strain
3.2. Sand Behaviours
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Roscoe, K.H.; Burland, J.B. On the generalised stress-strain behaviour of wet clay. Eng. Plast. 1968, 535–609. [Google Scholar]
- Graham, J.; Houlsby, G.T. Anisotropic elasticity of a natural clay. Géotechnique 1983, 33, 165–180. [Google Scholar] [CrossRef]
- Wood, D.M. Elasticity. In Soil Behaviour and Critical State Soil Mechanics; Cambridge University Press: Cambridge, UK, 1991; pp. 37–54. [Google Scholar]
- Wood, D.M. Elastic-plastic modelfor soil. In Soil Behaviour and Critical State Soil Mechanics; Cambridge University Press: Cambridge, UK, 1991; pp. 84–111. [Google Scholar]
- Vardanega, P.J.; Bolton, M.D. Strength mobilization in clays and silts. Can. Geotech. J. 2011, 48, 1485–1503. [Google Scholar] [CrossRef]
- Yimsiri, S. Pre-Deformation Characteristics of Soils: Anisotropy and Soil Fabric. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2001. [Google Scholar]
- Vardanega, P.J.; Lau, B.H.; Lam, S.Y.; Haigh, S.K.; Madabhushi, S.P.G.; Bolton, M.D.; Mayne, P.W. Discussion: Laboratory measurement of strength mobilisation in kaolin: Link to stress history. Geotech. Lett. 2013, 3, 16–17. [Google Scholar] [CrossRef]
- Osman, A.S.; Bolton, M.D. A new design method for retaining walls in clay. Can. Geotech. J. 2004, 41, 451–466. [Google Scholar] [CrossRef]
- Deng, C.; Haigh, S.K.; Ma, X.; Xu, J. A design method for flexible retaining walls in clay. Geotechnique 2021, 71, 178–187. [Google Scholar] [CrossRef]
- Lam, S.Y.; Bolton, M. Energy Conservation as a Principle Underlying Mobilizable Strength Design for Deep Excavations. J. Geotech. Geoenviron. Eng. 2011, 137, 1062–1074. [Google Scholar] [CrossRef]
- Vardanega, P.J.; Williamson, M.G.; Bolton, M.D. Bored pile design in stiff clay II: Mechanisms and uncertainty. Proc. Inst. Civ. Eng. Geotech. Eng. 2012, 165, 233–246. [Google Scholar] [CrossRef]
- Vasko, A. An Investigation into the Behavior of Ottawa Sand Through Monotonic and Cyclic Shear Tests; The George Washington University: Washington, DC, USA, 2015. [Google Scholar]
- Atigh, E.; Byrne, P.M. Flow Liquefaction Failure of Submarine Slopes Due to Monotonic Loadings—An Effective Stress Approach. In Submarine Mass Movements and Their Consequences: 1st International Symposium; Locat, J., Mienert, J., Boisvert, L., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2003; pp. 3–10. [Google Scholar]
- Bolton, M.D. The strength and dilatancy. Geotechnique 1986, 36, 65–78. [Google Scholar] [CrossRef]
- Dong, Z.; Tong, C.; Zhang, S.; Cheng, Y.P.; Sheng, D. Strength and Dilatancy of Crushable Soils with Different Gradings. Can. Geotech. J. 2024, 62, 1–21. [Google Scholar] [CrossRef]
- Wichtmann, T.; Triantafyllidis, T. An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: Part I—Tests with monotonic loading and stress cycles. Acta Geotech. 2016, 11, 739–761. [Google Scholar] [CrossRef]
- Salgado, R.; Bandini, P.; Karim, A. Shear Strength and Stiffness of Silty Sand. J. Geotech. Geoenviron. Eng. 2000, 126, 451–462. [Google Scholar] [CrossRef]
- Latini, C.; Zania, V. Triaxial Tests in Fontainebleau Sand; Technical University of Denmark Internal Report; Technical University of Denmark: Kongens Lyngby, Denmark, 2017. [Google Scholar]
- Erdoğan, S.T.; Forster, A.M.; Stutzman, P.E.; Garboczi, E.J. Particle-based characterization of Ottawa sand: Shape, size, mineralogy, and elastic moduli. Cem. Concr. Compos. 2017, 83, 36–44. [Google Scholar] [CrossRef]
- Al Saadi, F.; Wolf, K.-H.; van Kruijsdijk, C. Characterization of Fontainebleau Sandstone: Quartz Overgrowth and its Impact on Pore-Throat Framework. J. Pet. Environ. Biotechnol. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Yokota, K.; Konno, M. Dynamic Poisson’s ratio of soil. In Proceedings of the 7th World Conference Earthquake Engineering Istanbul, Istanbul, Turkey, 8–13 September 1980; Volume 3, pp. 475–478. [Google Scholar]
- Vardanega, P.J.; Bolton, M.D. Stiffness of Clays and Silts: Normalizing Shear Modulus and Shear Strain. J. Geotech. Geoenviron. Eng. 2013, 139, 1575–1589. [Google Scholar] [CrossRef]
- Oztoprak, S.; Bolton, M.D. Stiffness of sands through a laboratory test database. Geotechnique 2013, 63, 54–70. [Google Scholar] [CrossRef]
- Been, K.; Jefferies, M. Stress-dilatancy in very loose sand. Can. Geotech. J. 2004, 41, 972–989. [Google Scholar] [CrossRef]
- Vardanega, P.J.; Bolton, M.D. Practical methods to estimate the non-linear shear stiffness of fine grained soils. In Deformation Characteristics of Geomaterials; IOS Press: Amsterdam, The Netherlands, 2011; pp. 372–379. [Google Scholar]
- Vardanega, P.J.; Bolton, M. Stiffness of Clays and Silts: Modeling Considerations. J. Geotech. Geoenviron. Eng. 2014, 140, 6014004. [Google Scholar] [CrossRef]
Test No. | Void Ratios | Relative Densities | Effective Confining Pressures [KPa] |
---|---|---|---|
TMD1 | 0.996 | 0.15 | 50 |
TMD2 | 0.975 | 0.21 | 100 |
TMD3 | 0.975 | 0.21 | 200 |
TMD4 | 0.970 | 0.22 | 300 |
TMD5 | 0.960 | 0.25 | 400 |
TMD6 | 0.880 | 0.46 | 50 |
TMD7 | 0.862 | 0.51 | 100 |
TMD8 | 0.859 | 0.52 | 200 |
TMD9 | 0.848 | 0.55 | 300 |
TMD10 | 0.847 | 0.55 | 400 |
TMD11 | 0.840 | 0.57 | 50 |
TMD12 | 0.819 | 0.63 | 100 |
TMD13 | 0.824 | 0.63 | 200 |
TMD14 | 0.822 | 0.64 | 300 |
TMD15 | 0.814 | 0.68 | 400 |
TMD16 | 0.743 | 0.82 | 50 |
TMD17 | 0.758 | 0.79 | 100 |
TMD18 | 0.748 | 0.81 | 200 |
TMD19 | 0.734 | 0.85 | 300 |
TMD20 | 0.753 | 0.8 | 400 |
TMD21 | 0.734 | 0.85 | 50 |
TMD22 | 0.735 | 0.85 | 100 |
TMD23 | 0.706 | 0.92 | 200 |
TMD24 | 0.697 | 0.95 | 300 |
TMD25 | 0.718 | 0.89 | 400 |
A14 Ottawa | 0.558 | 0.74 | 100 |
A17 Ottawa | 0.699 | 0.27 | 400 |
Test 3-CID Fontainebleau | 0.684 | 0.57 | 200 |
Test 5-CID Fontainebleau | 0.660 | 0.65 | 100 |
Test 7-CID Fontainebleau | 0.612 | 0.80 | 50 |
Reference Strain | Relative Density | Relative Density Index | Dilatancy | Stress Ratio | Confining Pressure |
---|---|---|---|---|---|
+ 0.025 R2 = 0.74 | + 0.021 R2 = 0.85 | + 0.022 R2 = 0.87 | + 0.068 R2 = 0.85 | N/A | |
+ 0.35 R2 = 0.94 | + 0.28 R2 = 0.87 | + 0.29 R2 = 0.89 | + 1.047 R2 = 0.85 | N/A |
Power Law (Karlsruhe Fine Sand) | Standard Deviator | Power Law (Three Sands) | Standard Deviator |
---|---|---|---|
0.006 | 0.02 | ||
0.1 | 0.34 |
Soil Type | Exponent b | Std Dev | Index A | Std Dev | Error Range | Power Laws | Source |
---|---|---|---|---|---|---|---|
Clays | 0.60 | 0.15 | 0.49 | N/A | [5] | ||
London Clay | 0.58 | 0.04 | 0.49 | 0.04 | [6] | ||
Kaolin Clay | N/A | N/A | 0.50 | N/A | N/A | [7] | |
0.52 | 0.07 | 0.48 | 0.02 | This Project | |||
0.52 | 0.07 | 1.67 | 0.34 | This Project |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Cheng, Y.P.; Deng, M. Strength Mobilisation in Karlsruhe Fine Sand. Geotechnics 2025, 5, 52. https://doi.org/10.3390/geotechnics5030052
Liu J, Cheng YP, Deng M. Strength Mobilisation in Karlsruhe Fine Sand. Geotechnics. 2025; 5(3):52. https://doi.org/10.3390/geotechnics5030052
Chicago/Turabian StyleLiu, Jinghong, Yi Pik Cheng, and Min Deng. 2025. "Strength Mobilisation in Karlsruhe Fine Sand" Geotechnics 5, no. 3: 52. https://doi.org/10.3390/geotechnics5030052
APA StyleLiu, J., Cheng, Y. P., & Deng, M. (2025). Strength Mobilisation in Karlsruhe Fine Sand. Geotechnics, 5(3), 52. https://doi.org/10.3390/geotechnics5030052