In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Validation of the Protocol for Measuring Biofilm Formation
3.2. Biofilm Formation on PEEK or PA12 Beads
3.3. Biofilm Formation on the Surface of a Medical Device Made of PEEK or PA12
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donlan, R.M. Biofilm Formation: A Clinically Relevant Microbiological Process. Clin. Infect. Dis. 2001, 33, 1387–1392. [Google Scholar] [CrossRef]
- Garrett, T.R.; Bhakoo, M.; Zhang, Z. Bacterial Adhesion and Biofilms on Surfaces. Prog. Nat. Sci. 2008, 18, 1049–1056. [Google Scholar] [CrossRef]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Bhargava, A. Biofilms and Human Health. Biotechnol. Lett. 2016, 38, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Gondil, V.S.; Subhadra, B. Biofilms and Their Role on Diseases. BMC Microbiol. 2023, 23, 203. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Panayotov, I.V.; Orti, V.; Cuisinier, F.; Yachouh, J. Polyetheretherketone (PEEK) for Medical Applications. J. Mater. Sci. Mater. Med. 2016, 27, 118. [Google Scholar] [CrossRef]
- Su, D.; Yang, J.; Liu, S.; Ren, L.; Qin, S. Preparation of Polyamide 12 Powder for Additive Manufacturing Applications via Thermally Induced Phase Separation. e-Polymers 2022, 22, 553–565. [Google Scholar] [CrossRef]
- Mejía-Manzano, L.A.; Vázquez-Villegas, P.; Prado-Cervantes, L.V.; Franco-Gómez, K.X.; Carbajal-Ocaña, S.; Sotelo-Cortés, D.L.; Atehortúa-Benítez, V.; Delgado-Rodríguez, M.; Membrillo-Hernández, J. Advances in Material Modification with Smart Functional Polymers for Combating Biofilms in Biomedical Applications. Polymers 2023, 15, 3021. [Google Scholar] [CrossRef]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of Polyetheretherketone (PEEK) in Oral Implantology and Prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Devine, J.N. PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Zhao, Z.; Wu, Z.; Li, M.; Li, J. Characterization of PA12/HA Composite Scaffolds Based on Selective Laser Sintering. J. Mech. Behav. Biomed. Mater. 2023, 145, 106000. [Google Scholar] [CrossRef]
- Brum, R.S.; Labes, L.G.; Volpato, C.Â.M.; Benfatti, C.A.M.; Pimenta, A.D.L. Strategies to Reduce Biofilm Formation in PEEK Materials Applied to Implant Dentistry—A Comprehensive Review. Antibiotics 2020, 9, 609. [Google Scholar] [CrossRef]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory Press: Laurel Hollow, NY, USA, 1972. [Google Scholar]
- Colón-González, M.; Méndez-Ortiz, M.M.; Membrillo-Hernández, J. Anaerobic Growth Does Not Support Biofilm Formation in Escherichia Coli K-12. Res. Microbiol. 2004, 155, 514–521. [Google Scholar] [CrossRef]
- Corona-Izquierdo, F.P.; Membrillo-Hernández, J. Biofilm Formation in Escherichia Coli Is Affected by 3-(N-Morpholino)Propane Sulfonate (MOPS). Res. Microbiol. 2002, 153, 181–185. [Google Scholar] [CrossRef]
- Corona-Izquierdo, F.P.; Membrillo-Hernández, J. A Mutation in rpoS Enhances Biofilm Formation in Escherichia Coli during Exponential Phase of Growth. FEMS Microbiol. Lett. 2002, 211, 105–110. [Google Scholar] [CrossRef]
- O’Toole, G.A.; Pratt, L.A.; Watnick, P.I.; Newman, D.K.; Weaver, V.B.; Kolter, R. [6] Genetic Approaches to Study of Biofilms. Methods Enzymol. 1999, 310, 91–109. [Google Scholar]
- Cabellos-Avelar, T.; Souza, V.; Membrillo-Hernández, J. Spent Media from Cultures of Environmental Isolates of Escherichia coli Can Suppress the Deficiency of Biofilm Formation under Anoxic Conditions of Laboratory E. coli Strains. FEMS Microbiol. Ecol. 2006, 58, 414–424. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Ababneh, A.M.; Al-Holy, M.; Al-Nabulsi, A.; Osaili, T.; Abughoush, M.; Ayyash, M.; Holley, R.A. A Review of Bacterial Biofilm Components and Formation, Detection Methods, and Their Prevention and Control on Food Contact Surfaces. Microbiol. Res. 2024, 15, 1973–1992. [Google Scholar] [CrossRef]
- French, P.J.; Tanase, D.; Goosen, J.F.L. Sensors for Catheter Applications. Sens. Update 2003, 13, 107–153. [Google Scholar] [CrossRef]
- O’Grady, N.P.; Alexander, M.; Dellinger, E.P.; Gerberding, J.L.; Heard, S.O.; Maki, D.G.; Masur, H.; McCormick, R.D.; Mermel, L.A.; Pearson, M.L.; et al. Guidelines for the Prevention of Intravascular Catheter–Related Infections. Clin. Infect. Dis. 2002, 35, 1281–1307. [Google Scholar] [CrossRef]
- De León-Rosales, S.P.; Molinar-Ramos, F.; Domínguez-Cherit, G.; Rangel-Frausto, S.M.; Vázquez-Ramos, V.G. Prevalence of Infections in Intensive Care Units in Mexico: A Multicenter Study. Crit. Care Med. 2000, 28, 1316–1321. [Google Scholar] [CrossRef]
- Dudeck, M.A.; Horan, T.C.; Peterson, K.D.; Allen-Bridson, K.; Morrell, G.; Pollock, D.A.; Edwards, J.R. National Healthcare Safety Network (NHSN) Report, Data Summary for 2010, Device-Associated Module. Am. J. Infect. Control 2011, 39, 798–816. [Google Scholar] [CrossRef]
- Chaves, F.; Garnacho-Montero, J.; Del Pozo, J.L.; Bouza, E.; Capdevila, J.A.; De Cueto, M.; Domínguez, M.Á.; Esteban, J.; Fernández-Hidalgo, N.; Fernández Sampedro, M.; et al. Diagnosis and Treatment of Catheter-Related Bloodstream Infection: Clinical Guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology and (SEIMC) and the Spanish Society of Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC). Med. Intensiv. 2018, 42, 5–36. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Ryu, B.-H.; Hong, S.I.; Cho, O.-H.; Hong, K.-W.; Bae, I.-G.; Kwack, W.G.; Kim, Y.J.; Chung, E.K.; Kim, D.Y.; et al. Clinical Impact of Early Reinsertion of a Central Venous Catheter after Catheter Removal in Patients with Catheter-Related Bloodstream Infections. Infect. Control Hosp. Epidemiol. 2021, 42, 162–168. [Google Scholar] [CrossRef]
- Katneni, R.; Hedayati, S.S. Central Venous Catheter-Related Bacteremia in Chronic Hemodialysis Patients: Epidemiology and Evidence-Based Management. Nat. Rev. Nephrol. 2007, 3, 256–266. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant Infections: Adhesion, Biofilm Formation and Immune Evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef]
- Saint, S.; Veenstra, D.L.; Lipsky, B.A. The Clinical and Economic Consequences of Nosocomial Central Venous Catheter-Related Infection: Are Antimicrobial Catheters Useful? Infect. Control Hosp. Epidemiol. 2000, 21, 375–380. [Google Scholar] [CrossRef]
- Sbardelotto, C.; Yoshimi, M.M.; Pereira, R.D.R.; Castro, R.A.C.D. Quebra de Cateter No Espaço Peridural. Rev. Bras. Anestesiol. 2008, 58, 637–642. [Google Scholar] [CrossRef]
- Ateş, Y.; Yücesoy, C.A.; Ünlü, A.M.; Saygin, B.; Akkaş, N. The Mechanical Properties of Intact and Traumatized Epidural Catheters. Anesth. Analg. 2000, 90, 393–399. [Google Scholar] [CrossRef]
- Ishihama, H.; Ishii, K.; Nagai, S.; Kakinuma, H.; Sasaki, A.; Yoshioka, K.; Kuramoto, T.; Shiono, Y.; Funao, H.; Isogai, N.; et al. An Antibacterial Coated Polymer Prevents Biofilm Formation and Implant-Associated Infection. Sci. Rep. 2021, 11, 3602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbajal-Ocaña, S.; Franco-Gómez, K.X.; Atehortúa-Benítez, V.; Mendoza-Lozano, D.; Prado-Cervantes, L.V.; Melgoza-Ramírez, L.J.; Delgado-Rodríguez, M.; Elizondo-García, M.E.; Membrillo-Hernández, J. In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers. Hygiene 2025, 5, 32. https://doi.org/10.3390/hygiene5030032
Carbajal-Ocaña S, Franco-Gómez KX, Atehortúa-Benítez V, Mendoza-Lozano D, Prado-Cervantes LV, Melgoza-Ramírez LJ, Delgado-Rodríguez M, Elizondo-García ME, Membrillo-Hernández J. In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers. Hygiene. 2025; 5(3):32. https://doi.org/10.3390/hygiene5030032
Chicago/Turabian StyleCarbajal-Ocaña, Susana, Kristeel Ximena Franco-Gómez, Valeria Atehortúa-Benítez, Daniela Mendoza-Lozano, Luis Vicente Prado-Cervantes, Luis J. Melgoza-Ramírez, Miguel Delgado-Rodríguez, Mariana E. Elizondo-García, and Jorge Membrillo-Hernández. 2025. "In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers" Hygiene 5, no. 3: 32. https://doi.org/10.3390/hygiene5030032
APA StyleCarbajal-Ocaña, S., Franco-Gómez, K. X., Atehortúa-Benítez, V., Mendoza-Lozano, D., Prado-Cervantes, L. V., Melgoza-Ramírez, L. J., Delgado-Rodríguez, M., Elizondo-García, M. E., & Membrillo-Hernández, J. (2025). In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers. Hygiene, 5(3), 32. https://doi.org/10.3390/hygiene5030032