Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,208)

Search Parameters:
Keywords = NF-κB signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9451 KB  
Article
Broccoli Extract (Broccoli NMN®) Improves Skin Hydration by Regulating HAS and NF-κB Pathways and Reduces Wrinkle Formation via the TGF-βR1/Smad3/Collagen Pathway
by Wonhee Cho, Yeonhwa Lee, Minhee Lee, Jeongjin Park, Yuki Mukai, Dae Soo Lim, Hyelin Jeon and Woojin Jun
Curr. Issues Mol. Biol. 2026, 48(1), 50; https://doi.org/10.3390/cimb48010050 (registering DOI) - 30 Dec 2025
Abstract
This study investigated the effects and mechanisms of broccoli extract containing more than 99.0% β-NMN (BRC) on UVB-induced skin damage, including moisture loss, oxidative stress, inflammation, wrinkle formation, and melanin production, using in vitro and in vivo models. BRC treatment significantly alleviated UVB-induced [...] Read more.
This study investigated the effects and mechanisms of broccoli extract containing more than 99.0% β-NMN (BRC) on UVB-induced skin damage, including moisture loss, oxidative stress, inflammation, wrinkle formation, and melanin production, using in vitro and in vivo models. BRC treatment significantly alleviated UVB-induced skin dehydration, oxidative stress, and inflammatory responses, as well as inhibited wrinkle formation and melanin synthesis. Mechanistically, BRC enhanced skin hydration and barrier function by upregulating hyaluronic acid synthases and genes related to sphingolipid metabolism, while simultaneously suppressing NF-κB signaling and COX-2 expression, thereby re-ducing inflammation. Moreover, BRC promoted collagen synthesis by activating the TGF-βR1/Smad3/Collagen pathway and prevented extracellular matrix degradation by inhibiting JNK/c-Fos/c-Jun/MMPs signaling. In addition, BRC modulated the cAMP/PKA/CREB/MITF/TRPs pathway, leading to reduced melanin production. These findings suggest that BRC supplementation may effectively protect against UVB-induced skin damage, supporting its potential application as a functional ingredient for skin health. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

24 pages, 1236 KB  
Review
The Role of Plant-Derived Bioactive Compounds in Mitigating Oxidative Stress
by Aslıhan Tüğen and Claudia Lavinia Buruleanu
Foods 2026, 15(1), 108; https://doi.org/10.3390/foods15010108 - 30 Dec 2025
Abstract
Oxidative stress arises from an imbalance between reactive oxygen species (ROS) and antioxidant defense mechanisms and disrupts the structural integrity of macromolecules such as lipids, proteins, and DNA. This biochemical imbalance triggers the pathogenesis of cardiovascular and neurodegenerative diseases and leads to lipid [...] Read more.
Oxidative stress arises from an imbalance between reactive oxygen species (ROS) and antioxidant defense mechanisms and disrupts the structural integrity of macromolecules such as lipids, proteins, and DNA. This biochemical imbalance triggers the pathogenesis of cardiovascular and neurodegenerative diseases and leads to lipid oxidation and quality degradation in food systems. Plant-derived bioactive compounds (BACs) such as polyphenols and terpenes develop versatile molecular strategies to mitigate this oxidative damage. In addition to their direct radical scavenging effects, polyphenols stimulate the synthesis of endogenous antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) by activating the Nrf2–Keap1 signaling pathway. Terpenes, on the other hand, create a specialized protective shield in lipid-based matrices through “chain-breaking” reactions and a “slingshot” mechanism that externally halts the oxidation of γ-terpinene. In food engineering applications, these compounds meet the demand for “clean-label” products by providing alternatives to synthetic antioxidants such as BHA and BHT. Specific terpenes, such as carnosic acid, demonstrate higher performance in inhibiting lipid oxidation compared to their synthetic counterparts. Although BAC use extends the shelf life of products while maintaining color and flavor stability, potential interactions with protein digestibility necessitate dosage management. From a clinical perspective, these compounds suppress inflammatory responses by inhibiting the NF-κB pathway and contribute to the prevention of chronic diseases by modulating the gut microbiota. This review evaluates the capacity of BACs to manage oxidative stress in food preservation technologies and human health through a mechanistic and application-based approach. Full article
Show Figures

Figure 1

22 pages, 4989 KB  
Article
Immune-Modulatory Mechanism of Compound Yeast Culture in the Liver of Weaned Lambs
by Chenlu Li, Hui Bai, Pengxiang Bai, Chenxue Zhang, Yuan Wang, Dacheng Liu and Hui Chen
Animals 2026, 16(1), 104; https://doi.org/10.3390/ani16010104 - 30 Dec 2025
Abstract
Compound yeast culture (CYC) is known to enhance animal health, but its effects on hepatic immune function are unclear. This study systematically examined CYC’s regulatory effects on the liver of weaned lambs using transcriptomics and integrative bioinformatics. Ten lambs were randomly assigned to [...] Read more.
Compound yeast culture (CYC) is known to enhance animal health, but its effects on hepatic immune function are unclear. This study systematically examined CYC’s regulatory effects on the liver of weaned lambs using transcriptomics and integrative bioinformatics. Ten lambs were randomly assigned to a control diet or a basal diet supplemented with 30 g/d per head of Saccharomyces cerevisiae and Kluyveromyces marxianus co-culture (CYC group) for 42 days. Histological analysis showed that CYC improved hepatocyte arrangement and sinusoidal integrity, suggesting enhanced hepatic tissue stability. Cytokine analysis revealed CYC significantly increased IL-6 and IL-1β while reducing IL-10, TGF-β1, TNF-α, and CXCL9, indicating a bidirectional modulation of the immune response. Additionally, CYC enhanced antioxidant defenses by increasing T-SOD, GSH-Px, and T-AOC activities and decreasing MDA content. Transcriptomic sequencing indicated that CYC reshaped hepatic gene expression. Upregulated genes were enriched in immune-regulatory and structural pathways, including PI3K-AKT signaling, ECM–receptor interactions, Toll-like receptor pathways, and cell adhesion molecules. Protein-level validation further confirmed activation of PI3K and AKTAKT phosphorylation with limited engagement of NF-κB signaling. Conversely, downregulated genes were mainly associated with oxidative stress and energy metabolism, such as ROS-related pathways and MAPK signaling. WGCNA identified key hub genes (PTPRC, CD86, and ITGAV), which correlate with pro-inflammatory factors and participate in immune recognition, T-cell activation, and cell adhesion. These data suggest that CYC promotes hepatic immune homeostasis by enhancing immune signaling, stabilizing tissue architecture, and modulating oxidative stress/metabolic processes. This study provides mechanistic insights into CYC’s regulation of liver immune function and supports its targeted application as a functional feed additive for ruminants. Full article
Show Figures

Figure 1

48 pages, 2042 KB  
Review
From Stress to Substance Use Disorders: The Expanding Role of Microglia–Astrocyte Crosstalk in Neuroimmune and Glutamate Alterations in the Nucleus Accumbens
by Liliana Marina Cancela, Bethania Mongi-Bragato, María Paula Avalos and Flavia Andrea Bollati
Int. J. Mol. Sci. 2026, 27(1), 385; https://doi.org/10.3390/ijms27010385 (registering DOI) - 30 Dec 2025
Abstract
This review examines convergent neurobiological mechanisms linking stress and drugs that drive stress-induced drug-related behaviors. It first outlines the main theoretical frameworks explaining substance use disorders (SUDs), emphasizing vulnerability factors—particularly stressful life events—that increase addiction risk. The analysis integrates preclinical evidence demonstrating that [...] Read more.
This review examines convergent neurobiological mechanisms linking stress and drugs that drive stress-induced drug-related behaviors. It first outlines the main theoretical frameworks explaining substance use disorders (SUDs), emphasizing vulnerability factors—particularly stressful life events—that increase addiction risk. The analysis integrates preclinical evidence demonstrating that chronic stress facilitates cross-sensitization to psychostimulants and accelerates drug self-administration, underscoring how stress and drugs converge on glutamatergic and dopaminergic transmission within the Nucleus Accumbens (NAc). Special attention is given to the glial cells, particularly microglia and astrocytes, in mediating stress-induced neuroimmune activation and glutamate dysregulation in the NAc. Three major themes related to microglia–astrocyte crosstalk are addressed: (i) the contribution of these glial cells to neuroimmune and glutamatergic alterations induced by stress; (ii) their role in synaptic and structural plasticity changes within the NAc; and (iii) the mechanisms by which stress and drug exposure reshape glial–neuronal communication, driving the comorbidity between stress and SUDs. A dedicated section focuses on key neuroimmune signaling pathways—particularly the TNF-α/NF-κB axis—and their involvement in stress-induced vulnerability to cocaine addiction. Finally, the review discusses preclinical evidence supporting the therapeutic potential of repurposed glutamate-modulating agents as promising pharmacological candidates for treating comorbid stress and cocaine-use disorder. Full article
(This article belongs to the Special Issue Neurobiological Mechanisms of Addictive Disorders)
Show Figures

Figure 1

39 pages, 2012 KB  
Review
Degenerative Disease of Intervertebral Disc: A Narrative Review of Pathogenesis, Clinical Implications and Therapies
by Lidija Gradisnik, Nina Kocivnik, Uros Maver and Tomaz Velnar
Bioengineering 2026, 13(1), 40; https://doi.org/10.3390/bioengineering13010040 (registering DOI) - 29 Dec 2025
Abstract
This narrative review examines degenerative disc disease (DDD), a major cause of chronic back pain and disability worldwide. It is a multifactorial condition resulting from a complex interplay of genetic, mechanical, metabolic, and environmental factors that progressively impair disc structure and function. The [...] Read more.
This narrative review examines degenerative disc disease (DDD), a major cause of chronic back pain and disability worldwide. It is a multifactorial condition resulting from a complex interplay of genetic, mechanical, metabolic, and environmental factors that progressively impair disc structure and function. The pathophysiology of DDD involves disruption of extracellular matrix homeostasis, cellular senescence, oxidative stress, and chronic inflammation mediated by cytokines such as IL-1β, TNF-α, and IL-6. These processes are further modulated by signalling pathways including NF-κB, MAPK, and Wnt/β-catenin, leading to matrix degradation, dehydration, and loss of disc height. Epidemiological studies highlight the contribution of lifestyle and metabolic disorders, such as obesity, smoking, and diabetes, to disease progression. Traditional conservative and surgical treatments primarily alleviate symptoms but do not halt or reverse degeneration. In contrast, recent advances in molecular biology and regenerative medicine have opened new therapeutic avenues. Mesenchymal stem cell therapy, biomaterial scaffolds, and gene-based interventions aim to restore disc homeostasis by promoting matrix synthesis and suppressing catabolic activity. Despite promising experimental results, clinical translation remains limited by challenges in cell viability, delivery methods, and long-term efficacy. Future research integrating molecular, biomechanical, and regenerative strategies offers the potential for true biological repair and disc regeneration. Full article
Show Figures

Figure 1

18 pages, 3593 KB  
Article
Environmental Enrichment Attenuates Acute Noise-Induced Bursal Injury in Broilers via Suppressing NF-κB and Mitochondrial Apoptotic Pathways
by Min Li, Haowen Wang, Chunye He, Runxiang Zhang and Chaochao Luo
Agriculture 2026, 16(1), 78; https://doi.org/10.3390/agriculture16010078 (registering DOI) - 29 Dec 2025
Abstract
Noise pollution represents a significant environmental stressor that compromises the health and welfare of farm animals. While music enrichment has been suggested to mitigate stress, the specific mechanisms by which it protects against noise-induced immune damage remain poorly understood. This study investigated whether [...] Read more.
Noise pollution represents a significant environmental stressor that compromises the health and welfare of farm animals. While music enrichment has been suggested to mitigate stress, the specific mechanisms by which it protects against noise-induced immune damage remain poorly understood. This study investigated whether music can mitigate acute noise-induced injury to the bursa of Fabricius in broilers. A total of 175 male Arbor Acres broilers were randomly allocated into four groups: Control (C), Noise (N), Noise plus Music (NM), and Music (M). Starting on day 14, groups N and NM were exposed to daily acute noise exposure (115–120 dB for10 min), while groups NM and M received daily 6-h Mozart’s K.448 music enrichment. We evaluated the effects of short-term (by day 21) and long-term (by day 42) music intervention. Results showed that acute noise induced significant histopathological damage, oxidative stress, and apoptosis in the bursa. While short-term music intervention showed limited efficacy, prolonged music exposure significantly attenuated these injuries. Mechanistically, music suppressed the noise-activated NF-κB signaling pathway and reduced inflammatory cytokines (IL-1β, IL-6, and TNF-α). Concurrently, it inhibited mitochondrial-dependent apoptosis by modulating Bcl-2, Bax, Cyt-C, and Caspase-3. These findings provide experimental evidence that long-term music enrichment effectively alleviates noise-induced immune injury, suggesting a practical strategy for improving poultry welfare. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

19 pages, 1618 KB  
Review
From Gut Dysbiosis to Skin Inflammation in Atopic Dermatitis: Probiotics and the Gut–Skin Axis—Clinical Outcomes and Microbiome Implications
by Adina Elena Micu, Ioana Adriana Popescu, Ioana Alina Halip, Mădălina Mocanu, Dan Vâță, Andreea Luana Hulubencu, Dragoș Florin Gheucă-Solovăstru and Laura Gheucă-Solovăstru
Int. J. Mol. Sci. 2026, 27(1), 365; https://doi.org/10.3390/ijms27010365 (registering DOI) - 29 Dec 2025
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease in which barrier impairment, immune dysregulation, and gut–skin dysbiosis intersect, prompting growing interest in probiotics as microbiota-modulating adjuncts. We conducted a narrative review of peer-reviewed articles indexed in PubMed, Scopus, and Google Scholar, restricted [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disease in which barrier impairment, immune dysregulation, and gut–skin dysbiosis intersect, prompting growing interest in probiotics as microbiota-modulating adjuncts. We conducted a narrative review of peer-reviewed articles indexed in PubMed, Scopus, and Google Scholar, restricted to publications from 1 January 2018 to 31 October 2025 (searches last run in December 2025). Eligible evidence included randomized controlled trials (RCTs), observational studies, and mechanistic or conceptual reviews addressing microbiome alterations and microbiota-modulating interventions in AD. Most pediatric RCTs using multistrain, Lactobacillus-dominant formulations (often combined with Bifidobacterium) reported modest improvements in AD severity and pruritus and in selected barrier- and inflammation-related biomarkers. However, direct cutaneous microbiome “restoration” outcomes were reported in a minority of studies, and most clinical evidence relies on clinical endpoints and gut–skin axis plausibility rather than longitudinal skin microbiome readouts. Single-strain regimens showed inconsistent effects, and evidence in adolescents and adults remained heterogeneous. Mechanistically, probiotics may enhance short-chain fatty acid (SCFA) signaling, dampen toll-like receptor 2/4 (TLR2/4)-nuclear factor kappa B (NF-κB) activation, and promote interleukin-10 (IL-10)- and transforming growth factor-β (TGF-β)-driven tolerance. Probiotics are a biologically plausible adjunct targeting the gut–skin axis in AD and are generally well tolerated; however, heterogeneity across trials, limited follow-up, inconsistent adverse-event reporting, and scarce skin microbiome endpoints preclude firm clinical recommendations. Full article
(This article belongs to the Special Issue Skin Microbiome and Skin Health: Molecular Interactions)
Show Figures

Figure 1

28 pages, 3156 KB  
Review
Therapy-Induced Senescence (TIS) and SASP: The p53-Mediated Interplay in Cancer Progression and Treatment
by Chang Hoon Lee, Tuan Minh Nguyen, Yongook Lee, Seoung Gyu Choi, Phuong Ngan Nguyen, Jung Ho Park and Mi Kyung Park
Int. J. Mol. Sci. 2026, 27(1), 357; https://doi.org/10.3390/ijms27010357 - 29 Dec 2025
Viewed by 16
Abstract
Cellular senescence, initially regarded as a potent tumor-suppressive mechanism, is now recognized as a double-edged sword that modulates the hallmarks of cancer. The tumor suppressor p53 typically orchestrates this process to inhibit tumorigenesis; however, mutations in p53 or its regulators can subvert this [...] Read more.
Cellular senescence, initially regarded as a potent tumor-suppressive mechanism, is now recognized as a double-edged sword that modulates the hallmarks of cancer. The tumor suppressor p53 typically orchestrates this process to inhibit tumorigenesis; however, mutations in p53 or its regulators can subvert this program, leading to senescence evasion and therapy resistance. In particular, therapy-induced senescence can paradoxically drive tumor progression via the senescence-associated secretory phenotype, which creates a pro-tumorigenic microenvironment dictated by p53-mediated regulation of NF-κB signaling. Here, we explore the p53-mediated senescence–cancer interplay and evaluate emerging therapies, including senolytics and immunotherapies. We propose that strategic modulation of senescence offers a promising paradigm for future anticancer therapy. Full article
Show Figures

Figure 1

35 pages, 2242 KB  
Review
Systematic Exploration of Molecular Mechanisms and Natural Herbal Therapeutic Strategies for Cancer Cachexia
by Pengyu Han, Xingyu Zhou, Guomin Dong, Litian Ma, Xiao Han, Donghu Liu, Jin Zheng and Jin Zhang
Cancers 2026, 18(1), 104; https://doi.org/10.3390/cancers18010104 - 29 Dec 2025
Viewed by 13
Abstract
Cancer cachexia (CC) is a multifactorial, multi-organ syndrome characterized by systemic inflammation, metabolic dysregulation, anorexia, and progressive depletion of skeletal muscle and adipose tissue. Despite its high prevalence among patients with advanced malignancies, effective therapeutic options remain limited. Recent studies have elucidated the [...] Read more.
Cancer cachexia (CC) is a multifactorial, multi-organ syndrome characterized by systemic inflammation, metabolic dysregulation, anorexia, and progressive depletion of skeletal muscle and adipose tissue. Despite its high prevalence among patients with advanced malignancies, effective therapeutic options remain limited. Recent studies have elucidated the molecular underpinnings of CC and the therapeutic potential of natural herbs, highlighting the involvement of central nervous system regulation, adipose tissue, immune responses, gut microbiota, skeletal muscle, and disruptions in anabolic–catabolic signaling pathways such as mTOR, UPS, NF-κB, and STAT3. Persistent inflammation induces E3 ubiquitin ligases (Atrogin-1/MuRF-1) through cytokines including IL-6 and TNF-α, thereby impairing muscle homeostasis, while suppression of anabolic cascades such as IGF-1/mTOR further aggravates muscle atrophy. The limited efficacy and adverse effects of synthetic agents like megestrol acetate underscore the value of herbal therapies as safer adjunctive strategies. Botanicals such as Coicis Semen, Scutellaria baicalensis, and Astragalus demonstrate anti-inflammatory and muscle-preserving activities by modulating NF-κB, IL-6, and oxidative stress signaling. Numerous investigations indicate that these herbs downregulate MuRF-1 and Atrogin-1 expression, enhance appetite, and attenuate muscle loss, though they exhibit minimal influence on tumor suppression. While promising, current evidence remains largely preclinical and mechanistic validation is incomplete. This review consolidates contemporary insights into CC pathogenesis and the bioactivity of herbal interventions, highlighting the need for translational research to bridge preclinical findings with clinical applicability. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

25 pages, 1727 KB  
Review
Macrophage Plasticity and Regulatory Networks During the Transition from Inflammation to Fibrosis in the Kidney
by Yehun Moon, Jintaek Hong, Jinwoo Chung and Jea-Hyun Baek
Life 2026, 16(1), 52; https://doi.org/10.3390/life16010052 (registering DOI) - 29 Dec 2025
Viewed by 35
Abstract
Kidney fibrosis represents the final common pathway of nearly all progressive renal diseases, linking acute kidney injury (AKI) and chronic kidney disease (CKD) through a maladaptive repair process. Regardless of etiology, persistent inflammation and excessive extracellular matrix (ECM) deposition drive irreversible structural distortion [...] Read more.
Kidney fibrosis represents the final common pathway of nearly all progressive renal diseases, linking acute kidney injury (AKI) and chronic kidney disease (CKD) through a maladaptive repair process. Regardless of etiology, persistent inflammation and excessive extracellular matrix (ECM) deposition drive irreversible structural distortion and functional decline in the kidney. Among cellular mediators, macrophages occupy a central role across the continuum from acute injury to fibrosis, orchestrating both tissue injury and repair through dynamic transitions between pro-inflammatory (M1) and pro-fibrotic (M2) states in response to local cues. Here, we synthesize macrophage-driven mechanisms of renal fibrosis, emphasizing recruitment, infiltration, and local proliferation mediated by chemokine–receptor networks and mechanosensitive ion channels. In addition, in this review paper, we provide an overview on the dual roles of macrophages in acute inflammation and chronic remodeling through key cytokine signaling pathways (TLR4/NF-κB, IL-4/STAT6, TGF-β/Smad, IL-10/STAT3), highlighting how metabolic reprogramming, mechanochemical feedback via Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, and epigenetic modulators collectively stabilize the fibrotic macrophage phenotype. Also, emerging insights into mitochondrial dysfunction, succinate–succinate receptor 1 (SUCNR1) signaling, and autophagy dysregulation reveal the metabolic basis of macrophage persistence in fibrotic kidneys. Understanding these multilayered regulatory circuits offers a framework for therapeutic strategies that selectively target macrophage-dependent fibrogenesis to halt the transition from acute injury to chronic renal failure. Full article
(This article belongs to the Special Issue New Insights into Cellular Inflammation and Regeneration)
Show Figures

Figure 1

23 pages, 2214 KB  
Review
Role of Gut Microbiome in Oncogenesis and Oncotherapies
by Renuka Sri Sai Peddireddi, Sai Kiran Kuchana, Rohith Kode, Saketh Khammammettu, Aishwarya Koppanatham, Supriya Mattigiri, Harshavardhan Gobburi and Suresh K. Alahari
Cancers 2026, 18(1), 99; https://doi.org/10.3390/cancers18010099 (registering DOI) - 29 Dec 2025
Viewed by 47
Abstract
The gut microbiome has emerged as a key regulator of human health, influencing not only metabolism and immunity but also the development and treatment of cancer. Mounting evidence suggests that microbial dysbiosis contributes to oncogenesis by driving chronic inflammation, producing genotoxic metabolites, altering [...] Read more.
The gut microbiome has emerged as a key regulator of human health, influencing not only metabolism and immunity but also the development and treatment of cancer. Mounting evidence suggests that microbial dysbiosis contributes to oncogenesis by driving chronic inflammation, producing genotoxic metabolites, altering bile acid metabolism, and disrupting epithelial barrier integrity. At the same time, the gut microbiome significantly modulates the host response to oncotherapies including chemotherapy, radiotherapy, and especially immunotherapy, where microbial diversity and specific taxa determine treatment efficacy and toxicity. This review synthesizes current evidence on the role of the gut microbiome in both oncogenesis and oncotherapies, focusing on thirteen cancers with the strongest and most clinically relevant microbiome associations, colorectal cancer, gastric cancer, hepatocellular carcinoma, gallbladder cancer, esophageal cancer, pancreatic cancer, oral squamous cell carcinoma, cervical cancer, prostate cancer, breast cancer, lung cancer, brain cancer, and melanoma. These cancers were selected based on robust mechanistic data linking microbial alterations to tumor initiation, progression, and therapy modulation, as well as their global health burden and translational potential. In addition, we have provided mechanistic insights or clinical correlations between the microbiome and cancer outcomes. Across cancers, common microbial mechanisms included pro-inflammatory signaling (e.g., NF-κB and STAT3 pathways), DNA damage from bacterial toxins (e.g., colibactin, nitrosating species), and metabolite-driven tumor promotion (e.g., secondary bile acids, trimethylamine N-oxide). Conversely, beneficial commensals such as Faecalibacterium prausnitzii and Akkermansia muciniphila supported antitumor immunity and improved responses to immune checkpoint inhibitors. In conclusion, the gut microbiome functions as both a driver of malignancy and a modifiable determinant of therapeutic success. Integrating microbiome profiling and modulation strategies such as dietary interventions, probiotics, and fecal microbiota transplantation into oncology practice may pave the way for personalized and more effective cancer care. Full article
Show Figures

Figure 1

23 pages, 825 KB  
Review
Intratumoral Microbiome: Impact on Cancer Progression and Cellular Immunotherapy
by Georgy Leonov, Antonina Starodubova, Oleg Makhnach, Dmitry Goldshtein and Diana Salikhova
Cancers 2026, 18(1), 100; https://doi.org/10.3390/cancers18010100 - 29 Dec 2025
Viewed by 42
Abstract
The intratumoral microbiota, comprising bacteria, fungi, and viruses within the tumor microenvironment, actively influences carcinogenesis. Key mechanisms include the induction of host DNA damage, modulation of critical oncogenic signaling pathways such as WNT-β-catenin, NF-κB, and PI3K, and the orchestration of inflammatory processes. The [...] Read more.
The intratumoral microbiota, comprising bacteria, fungi, and viruses within the tumor microenvironment, actively influences carcinogenesis. Key mechanisms include the induction of host DNA damage, modulation of critical oncogenic signaling pathways such as WNT-β-catenin, NF-κB, and PI3K, and the orchestration of inflammatory processes. The microbiome’s interaction with the host immune system is complex and bidirectional. On one hand, specific microbes can foster a pro-tumorigenic niche by suppressing the activity of cytotoxic T cells and natural killer (NK) cells or by promoting the accumulation of immunosuppressive cell types like tumor-associated macrophages (TAMs). On the other hand, microbial components can serve as neoantigens for T cell recognition or produce metabolites that reprogram the immune landscape to enhance anti-tumor responses. The composition of this microbiome is emerging as a crucial factor influencing the outcomes of immunotherapies. Prospective investigations in cancer immunotherapy ought to prioritize mechanistic inquiry employing integrative multi-omics methodologies. The execution of meticulously designed clinical trials for the validation of microbial biomarkers, and the systematic, evidence-based development of microbiome-targeted therapeutic interventions aimed at enhancing antitumor immune responses. Full article
Show Figures

Figure 1

16 pages, 580 KB  
Review
Mechanistic Analysis of Fisetin in Liver Diseases and Its Potential Therapeutic Application in IFALD—A Review of In Vitro and In Vivo Studies
by Marta Belka, Maciej Stawny, Michal M. Masternak and Violetta Krajka-Kuźniak
Nutrients 2026, 18(1), 102; https://doi.org/10.3390/nu18010102 - 28 Dec 2025
Viewed by 177
Abstract
Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a naturally occurring flavonol in fruits and vegetables. It exhibits diverse biological activities, including anti-inflammatory, antioxidant, senolytic, and lipid-lowering properties. This review explores the molecular mechanisms underlying fisetin’s hepatoprotective effects and evaluates its potential application in Intestinal Failure-Associated Liver Disease [...] Read more.
Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a naturally occurring flavonol in fruits and vegetables. It exhibits diverse biological activities, including anti-inflammatory, antioxidant, senolytic, and lipid-lowering properties. This review explores the molecular mechanisms underlying fisetin’s hepatoprotective effects and evaluates its potential application in Intestinal Failure-Associated Liver Disease (IFALD), a severe complication associated with total parenteral nutrition (TPN). IFALD is characterized by inflammation, cholestasis, steatosis, oxidative stress, and dysregulated lipid and bile acid metabolism. Fisetin modulates several key signaling pathways, including NF-κB, Nrf2, AMPK, and SIRT1, leading to reduced inflammatory cytokine expression, enhanced antioxidant defenses, and improved lipid homeostasis. Fisetin shows potential anti-fibrotic and microbiota-modulating effects. More importantly, fisetin is recognized as a potent senolytic agent, selectively activating pro-apoptotic pathways in senescent cells, which are known sources of inflammation and tissue damage. However, despite its promising pharmacological profile, the poor bioavailability of fisetin remains a significant limitation, particularly for parenteral use. Emerging drug delivery systems such as liposomes and nanoparticles offer potential solutions. Given its broad spectrum of beneficial effects and favorable safety profile, fisetin represents a compelling candidate for future studies in the prevention and management of IFALD. Full article
(This article belongs to the Special Issue Phytonutrients in Diseases of Affluence)
Show Figures

Figure 1

24 pages, 4380 KB  
Article
Data-Driven Optimization of Polyphenol Recovery and Antioxidant Capacity from Medicinal Herbs Using Chemometrics and HPLC Profiling for Functional Food Applications
by Vassilis Athanasiadis, Erva Avdoulach-Chatzi-Giousouf, Errika Koulouri, Dimitrios Kalompatsios and Stavros I. Lalas
Int. J. Mol. Sci. 2026, 27(1), 309; https://doi.org/10.3390/ijms27010309 - 27 Dec 2025
Viewed by 126
Abstract
The optimization of bioactive compound extraction from medicinal herbs is critical for developing functional food ingredients with substantiated health benefits. This study employed response surface methodology (RSM) and partial least squares (PLS) regression to maximize polyphenol recovery and antioxidant capacity from five medicinal [...] Read more.
The optimization of bioactive compound extraction from medicinal herbs is critical for developing functional food ingredients with substantiated health benefits. This study employed response surface methodology (RSM) and partial least squares (PLS) regression to maximize polyphenol recovery and antioxidant capacity from five medicinal herbs (Helichrysum stoechas, Chelidonium majus, Mentha pulegium, Artemisia absinthium, and Adiantum capillus-veneris). A custom experimental design assessed the effects of herb identity, extraction technique, and solvent-to-solid ratio on total polyphenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and DPPH radical scavenging activity. The PLS compromise optimum was identified for M. pulegium using 60% ethanol at 55 mL/g, yielding 37.54 ± 2.10 mg GAE/g dw TPC, 21.62 ± 1.15 mg RtE/g dw TFC, 334.38 ± 12.37 µmol AAE/g dw FRAP, and 262.67 ± 9.46 µmol AAE/g dw DPPH. HPLC-DAD profiling revealed 18 polyphenolic compounds (10.22 ± 0.34 mg/g dw), dominated by kaempferol-3-O-β-rutinoside, protocatechuic acid, and luteolin-7-O-glucoside. These compounds contribute complementary mechanisms: protocatechuic acid modulates oxidative and antioxidant pathways, kaempferol-3-O-β-rutinoside exerts cardioprotective and anti-inflammatory effects via VEGF-C binding, and luteolin-7-O-glucoside suppresses NF-κB-mediated inflammatory signaling. Principal component analysis (PCA) explained 84.8% of variance, clearly separating optimized from non-optimized extracts, while PLS confirmed strong correlations between specific phenolics and antioxidant indices. Overall, this integrated chemometric approach demonstrates that data-driven optimization can deliver phenolic-rich herbal extracts with robust and balanced antioxidant potential for functional food applications. Full article
Show Figures

Figure 1

30 pages, 2720 KB  
Review
Nutritional Regulation of Cardiac Metabolism and Function: Molecular and Epigenetic Mechanisms and Their Role in Cardiovascular Disease Prevention
by Lucia Capasso, Donato Mele, Rosaria Casalino, Gregorio Favale, Giulia Rollo, Giulia Verrilli, Mariarosaria Conte, Paola Bontempo, Vincenzo Carafa, Lucia Altucci and Angela Nebbioso
Nutrients 2026, 18(1), 93; https://doi.org/10.3390/nu18010093 - 27 Dec 2025
Viewed by 189
Abstract
Background: Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and are strongly influenced by dietary habits. Beyond caloric intake, nutrients act as molecular signals that regulate cardiac metabolism, mitochondrial function, inflammation, and epigenetic remodeling. Objectives: This review aims to synthesize [...] Read more.
Background: Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and are strongly influenced by dietary habits. Beyond caloric intake, nutrients act as molecular signals that regulate cardiac metabolism, mitochondrial function, inflammation, and epigenetic remodeling. Objectives: This review aims to synthesize current evidence on how dietary patterns and specific nutritional interventions regulate cardiac metabolism and function through interconnected molecular and epigenetic mechanisms, highlighting their relevance for cardiovascular disease prevention. Methods: A narrative review of the literature was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2006 and 2025. Experimental, translational, and clinical studies addressing diet-induced modulation of cardiac metabolic pathways, oxidative and inflammatory signaling, epigenetic regulation, and gut microbiota-derived metabolites were included. Results: The analyzed literature consistently shows that unbalanced diets rich in saturated fats and refined carbohydrates impair cardiac metabolic flexibility by disrupting key nutrient-sensing pathways, including AMP-activated protein kinase (AMPK), proliferator-activated receptor alpha (PPARα), mammalian target of rapamycin (mTOR), and sirtuin 1/peroxisome proliferator-activated receptor gamma coactivator 1-alpha (SIRT1/PGC-1α), leading to mitochondrial dysfunction, oxidative stress, chronic inflammation, and maladaptive remodeling. In contrast, cardioprotective dietary patterns, such as caloric restriction (CR), intermittent fasting (IF), and Mediterranean and plant-based diets, enhance mitochondrial efficiency, redox balance, and metabolic adaptability. These effects are mediated by coordinated activation of AMPK-SIRT1 signaling, suppression of mTOR over-activation, modulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, and favorable epigenetic remodeling involving DNA methylation, histone modifications, and non-coding RNAs. Emerging evidence also highlights the central role of gut microbiota-derived metabolites, particularly short-chain fatty acids, in linking diet to epigenetic and metabolic regulation of cardiac function. Conclusions: Diet quality emerges as a key determinant of cardiac metabolic health, acting through integrated molecular, epigenetic, and microbiota-mediated mechanisms. Targeted nutritional strategies can induce long-lasting cardioprotective metabolic and epigenetic adaptations, supporting the concept of diet as a modifiable molecular intervention. These findings provide a mechanistic rationale for integrating personalized nutrition into cardiovascular prevention and precision cardiology, complementing standard pharmacological therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Diet-Associated Cardiac Metabolism)
Show Figures

Figure 1

Back to TopTop