Degenerative Disease of Intervertebral Disc: A Narrative Review of Pathogenesis, Clinical Implications and Therapies
Abstract
1. Introduction
2. Anatomy of the Intervertebral Disc

| Component/ Feature | Structure/Composition | Function | Key Physiological Characteristics | References |
|---|---|---|---|---|
| Annulus fibrosus (AF) |
|
|
| [4,13,14] |
| Nucleus pulposus (NP) |
|
|
| [6,8,15] |
| Cartilaginous endplates (CEPs) |
|
|
| [16,17,18] |
| Vascular supply |
|
|
| [17,19,20] |
| Cellular activity |
|
|
| [16,21,22,23] |
| Biomechanical function |
|
|
| [1,4,16] |
| Physiological vulnerabilities |
|
|
| [14,17,24] |
3. The Multifactorial Nature of Intervertebral Disc Degeneration
| Category | Representative Factors | Key Mechanisms | Consequences for IVD | References |
|---|---|---|---|---|
| Mechanical stress and load |
|
|
| [1,8,16,26] |
| Genetic and environmental factors |
|
|
| [27,28,29,30,31] |
| Nutritional and metabolic aspects |
|
|
| [17,19,32,33,34] |
| Cellular senescence |
|
|
| [35,36,37,38,39,40] |
| Ageing and microenvironmental changes |
|
|
| [14,17,20,41] |
| Lifestyle and comorbidities |
|
|
| [20,24,32,42,43] |
| Hormonal changes |
|
|
| [44,45,46,47,48,49,50] |
3.1. Mechanical Stress and Load
3.2. Genetic and Environmental Factors
3.3. Nutritional and Metabolic Aspects
3.4. Cellular Senescence
3.5. Ageing and Microenvironmental Changes
3.6. Lifestyle and Comorbidity Influences
3.7. Hormonal Influences on the Intervertebral Disc
4. Molecular and Cellular Mechanisms of Degeneration
Post-Transcriptional Regulation by microRNAs and Long Non-Coding RNAs
5. Transition from Degeneration to Symptomatic Disease
6. Structural and Functional Consequences
7. Degenerative Intervertebral Disc Disease in Clinical Practice
7.1. Emerging Diagnostic and Therapeutic Opportunities
7.2. Regenerative and Molecular Therapies
8. Epidemiology, Diagnosis and Management of IVD
8.1. Epidemiological Context
8.2. Clinical Manifestations
8.3. Diagnostic Evaluation
8.4. Therapeutic Approaches
9. Translational Challenges from Animal Models to Human Disease
10. Future Directions
11. Limitations of Our Review
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welke, B.; Daentzer, D.; Neidlinger-Wilke, C.; Liebsch, C. Biomechanik der Bandscheibe: Bedeutung degenerativer Veränderungen. Die Orthopädie 2024, 53, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Konstantinou, K.; Lewis, M.; Oppong, R.; Ogollah, R.; Jowett, S. Systematic Review of Decision Analytic Modelling in Economic Evaluations of Low Back Pain and Sciatica. Appl. Health Econ. Health Policy 2019, 17, 467–491. [Google Scholar] [CrossRef]
- Teraguchi, M.; Yoshimura, N.; Hashizume, H.; Muraki, S.; Yamada, H.; Oka, H.; Minamide, A.; Nakagawa, H.; Ishimoto, Y.; Nagata, K.; et al. The association of combination of disc degeneration, end plate signal change, and Schmorl node with low back pain in a large population study: The Wakayama Spine Study. Spine J. 2015, 15, 622–628. [Google Scholar] [CrossRef]
- Dowdell, J.; Erwin, M.; Choma, T.; Vaccaro, A.; Iatridis, J.; Cho, S.K. Intervertebral Disk Degeneration and Repair. Neurosurgery 2017, 80, S46–S54. [Google Scholar] [CrossRef] [PubMed]
- Groh, A.M.R.; Fournier, D.E.; Battié, M.C.; Séguin, C.A. Innervation of the Human Intervertebral Disc: A Scoping Review. Pain. Med. 2021, 22, 1281–1304. [Google Scholar] [CrossRef]
- Mohd Isa, I.L.; Teoh, S.L.; Mohd Nor, N.H.; Mokhtar, S.A. Discogenic Low Back Pain: Anatomy, Pathophysiology and Treatments of Intervertebral Disc Degeneration. Int. J. Mol. Sci. 2022, 24, 208. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Ham, C.H.; Kwon, W.K. Current Knowledge and Future Therapeutic Prospects in Symptomatic Intervertebral Disc Degeneration. Yonsei Med. J. 2022, 63, 199–210. [Google Scholar] [CrossRef]
- Boxberger, J.I.; Orlansky, A.S.; Sen, S.; Elliott, D.M. Reduced nucleus pulposus glycosaminoglycan content alters intervertebral disc dynamic viscoelastic mechanics. J. Biomech. 2009, 42, 1941–1946. [Google Scholar] [CrossRef]
- Scarcia, L.; Pileggi, M.; Camilli, A.; Romi, A.; Bartolo, A.; Giubbolini, F.; Valente, I.; Garignano, G.; D’Argento, F.; Pedicelli, A.; et al. Degenerative Disc Disease of the Spine: From Anatomy to Pathophysiology and Radiological Appearance, with Morphological and Functional Considerations. J. Pers. Med. 2022, 12, 1810. [Google Scholar] [CrossRef]
- Kos, N.; Gradisnik, L.; Velnar, T. A Brief Review of the Degenerative Intervertebral Disc Disease. Med. Arch. 2019, 73, 421–424. [Google Scholar] [CrossRef]
- Velnar, T.; Gradisnik, L. Endplate role in the degenerative disc disease: A brief review. World J. Clin. Cases 2023, 11, 17–29. [Google Scholar] [CrossRef]
- Kirnaz, S.; Capadona, C.; Lintz, M.; Kim, B.; Yerden, R.; Goldberg, J.L.; Medary, B.; Sommer, F.; McGrath, L.B., Jr.; Bonassar, L.J.; et al. Pathomechanism and Biomechanics of Degenerative Disc Disease: Features of Healthy and Degenerated Discs. Int. J. Spine Surg. 2021, 15, 10–25. [Google Scholar] [CrossRef]
- Colombini, A.; Lombardi, G.; Corsi, M.M.; Banfi, G. Pathophysiology of the human intervertebral disc. Int. J. Biochem. Cell Biol. 2008, 40, 837–842. [Google Scholar] [CrossRef]
- Roughley, P.J. Biology of intervertebral disc aging and degeneration: Involvement of the extracellular matrix. Spine 2004, 29, 2691–2699. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H. Aggrecan and versican: Two brothers close or apart. Am. J. Physiol. Cell Physiol. 2022, 322, 967–976. [Google Scholar] [CrossRef]
- Vergroesen, P.P.; Kingma, I.; Emanuel, K.S.; Hoogendoorn, R.J.; Welting, T.J.; van Royen, B.J.; van Dieën, J.H.; Smit, T.H. Mechanics and biology in intervertebral disc degeneration: A vicious circle. Osteoarthr. Cartil. 2015, 23, 1057–1070. [Google Scholar] [CrossRef]
- Grunhagen, T.; Wilde, G.; Soukane, D.M.; Shirazi-Adl, S.A.; Urban, J.P. Nutrient supply and intervertebral disc metabolism. J. Bone Jt. Surg. 2006, 88, 30–35. [Google Scholar]
- Moon, S.M.; Yoder, J.H.; Wright, A.C.; Smith, L.J.; Vresilovic, E.J.; Elliott, D.M. Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur. Spine J. 2013, 22, 1820–1828. [Google Scholar] [CrossRef]
- Shirazi-Adl, A.; Taheri, M.; Urban, J.P. Analysis of cell viability in intervertebral disc: Effect of endplate permeability on cell population. J. Biomech. 2010, 43, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Ekşi, M.Ş.; Orhun, Ö.; Demir, Y.N.; Kara, M.; Berikol, G.; Özcan-Ekşi, E.E. Are serum thyroid hormone, parathormone, calcium, and vitamin D levels associated with lumbar spine degeneration? A cross-sectional observational clinical study. Eur. Spine J. 2023, 32, 1561–1574. [Google Scholar] [CrossRef] [PubMed]
- Setton, L.A.; Chen, J. Mechanobiology of the intervertebral disc and relevance to disc degeneration. J. Bone Jt. Surg. 2006, 88, 52–57. [Google Scholar] [PubMed]
- Daly, C.; Ghosh, P.; Jenkin, G.; Oehme, D.; Goldschlager, T. A Review of Animal Models of Intervertebral Disc Degeneration: Pathophysiology, Regeneration, and Translation to the Clinic. Biomed. Res. Int. 2016, 2016, 5952165. [Google Scholar] [CrossRef] [PubMed]
- Fearing, B.V.; Hernandez, P.A.; Setton, L.A.; Chahine, N.O. Mechanotransduction and cell biomechanics of the intervertebral disc. JOR Spine 2018, 1, e1026. [Google Scholar] [CrossRef]
- Chiu, A.P.; Chia, C.; Arendt-Nielsen, L.; Curatolo, M. Lumbar intervertebral disc degeneration in low back pain. Minerva Anestesiol. 2024, 90, 330–338. [Google Scholar] [CrossRef]
- Feng, J.; Yang, Q.; Xu, H.; Kang, T.; Huang, L.; Jiang, H. Integrated multi-omics analysis reveals AKR1C1 as a key mediator of intervertebral disc degeneration: Protecting against ferroptosis via PI3K/AKT signaling. Funct. Integr. Genom. 2025, 25, 222. [Google Scholar] [CrossRef] [PubMed]
- Raftery, K.A.; Kargarzadeh, A.; Tavana, S.; Newell, N. Disc degeneration influences the strain magnitude and stress distribution within the adjacent trabecular bone. Front. Bioeng. Biotechnol. 2024, 12, 1511685. [Google Scholar] [CrossRef]
- Ravichandran, D.; Pillai, J.; Krishnamurthy, K. Genetics of intervertebral disc disease: A review. Clin. Anat. 2022, 35, 116–120. [Google Scholar] [CrossRef]
- Ala-Kokko, L. Genetic risk factors for lumbar disc disease. Ann. Med. 2002, 34, 42–47. [Google Scholar] [CrossRef]
- Xie, G.; Liang, C.; Yu, H.; Zhang, Q. Association between polymorphisms of collagen genes and susceptibility to intervertebral disc degeneration: A meta-analysis. J. Orthop. Surg. Res. 2021, 16, 616. [Google Scholar] [CrossRef]
- Kocaoğlu, S.; Sagiri, D.B.; Kahraman Özlü, E.B.; Akar, E.; Güler, E.M.; Çetin, E.; Beyaztaş, H.; Demir, E. The Impact of Smoking on Inflammatory Biomarkers in Intervertebral Disc Degeneration: A Biochemical and Diagnostic Evaluation. Clin. Spine Surg. 2025. [Google Scholar] [CrossRef]
- Kalichman, L.; Hunter, D.J. The genetics of intervertebral disc degeneration. Familial predisposition and heritability estimation. Jt. Bone Spine 2008, 75, 383–387. [Google Scholar] [CrossRef]
- Li, S.; Du, J.; Huang, Y.; Gao, S.; Zhao, Z.; Chang, Z.; Zhang, X.; He, B. From hyperglycemia to intervertebral disc damage: Exploring diabetic-induced disc degeneration. Front. Immunol. 2024, 15, 1355503. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, D.; Wang, Z.; Ma, Y.; Huang, L.; Kang, X.; Ma, B. Role of Advanced Glycation End Products in Intervertebral Disc Degeneration: Mechanism and Therapeutic Potential. Oxid. Med. Cell Longev. 2022, 2022, 7299005. [Google Scholar] [CrossRef]
- Luo, R.; Song, Y.; Liao, Z.; Yin, H.; Zhan, S.; Wang, K.; Li, S.; Li, G.; Ma, L.; Lu, S.; et al. Impaired calcium homeostasis via advanced glycation end products promotes apoptosis through endoplasmic reticulum stress in human nucleus pulposus cells and exacerbates intervertebral disc degeneration in rats. FEBS J. 2019, 286, 4356–4373. [Google Scholar] [CrossRef]
- Li, L.; He, J.; Zhang, G.; Chen, H.; Luo, Z.; Deng, B.; Zhou, Y.; Kang, X. Role of Caspase Family in Intervertebral Disc Degeneration and Its Therapeutic Prospects. Biomolecules 2022, 12, 1074. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, H.; Zuo, J.; Lei, F. Mechanistic Interactions Driving Nucleus Pulposus Cell Senescence in Intervertebral Disc Degeneration: A Multi-Axial Perspective of Mechanical, Immune, and Metabolic Pathways. JOR Spine 2025, 8, e70089. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Yang, H.; Cheng, Y.; Liu, Y.; Hai, Y.; Zhang, Y. The role of oxidative stress in intervertebral disc cellular senescence. Front. Endocrinol. 2022, 13, 1038171. [Google Scholar] [CrossRef]
- Silwal, P.; Nguyen-Thai, A.M.; Mohammad, H.A.; Wang, Y.; Robbins, P.D.; Lee, J.Y.; Vo, N.V. Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and Potential Therapeutic Opportunities. Biomolecules 2023, 13, 686. [Google Scholar] [CrossRef]
- Yurube, T.; Takeoka, Y.; Kanda, Y.; Kuroda, R.; Kakutani, K. Intervertebral disc cell fate during aging and degeneration: Apoptosis, senescence, and autophagy. N. Am. Spine Soc. J. 2023, 14, 100210. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Che, M.; Xin, J.; Zheng, Z.; Li, J.; Zhang, S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed. Pharmacother. 2020, 131, 110660. [Google Scholar] [CrossRef]
- Wang, Y.X.; Griffith, J.F. Menopause causes vertebral endplate degeneration and decrease in nutrient diffusion to the intervertebral discs. Med. Hypotheses 2011, 77, 18–20. [Google Scholar] [CrossRef]
- Liuke, M.; Solovieva, S.; Lamminen, A.; Luoma, K.; Leino-Arjas, P.; Luukkonen, R.; Riihimäki, H. Disc degeneration of the lumbar spine in relation to overweight. Int. J. Obes. 2005, 29, 903–908. [Google Scholar] [CrossRef]
- Yang, S.; Kim, W.; Choi, K.H.; Yi, Y.G. Influence of occupation on lumbar spine degeneration in men: The Korean National Health and Nutrition Examination Survey 2010–2013. Int. Arch. Occup. Environ. Health 2016, 89, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Shelby, T.; Mills, E.S.; Ton, A.; Wang, J.C.; Hah, R.J.; Qureshi, S.A.; Alluri, R.K. The Role of Sex Hormones in Degenerative Disc Disease. Global Spine J. 2023, 13, 2096–2099. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.Y.; Song, X.X.; Li, X.F. The role of estrogen in intervertebral disc degeneration. Steroids 2020, 154, 108549. [Google Scholar] [CrossRef]
- Lin, H.; Tian, S.; Peng, Y.; Wu, L.; Xiao, Y.; Qing, X.; Shao, Z. IGF Signalling in Intervertebral Disc Health and Disease. Front. Cell Dev. Biol. 2022, 9, 817099. [Google Scholar] [CrossRef] [PubMed]
- Sukul, A.; Ren, S.; Miller, A.E.; Liu, H.; Akande, O.; Tang, S.Y.; O’Connor, P.; Kopchick, J.J.; Zhu, S. Intervertebral disc degeneration is accelerated by GH overexpression but attenuated by GH antagonism. Geroscience 2025. [Google Scholar] [CrossRef]
- Hingert, D.; Nilsson, J.; Barreto Henriksson, H.; Baranto, A.; Brisby, H. Pathological Effects of Cortisol on Intervertebral Disc Cells and Mesenchymal Stem Cells from Lower Back Pain Patients. Cells Tissues Organs 2019, 207, 34–45. [Google Scholar] [CrossRef]
- Ząbek, Z.; Wyczałkowska-Tomasik, A.; Poboży, K.; Adamus, J.P.; Turek, G.; Ząbek, M.; Pączek, L. Understanding the Microenvironment of Intervertebral Disc Degeneration: A Comprehensive Review of Pathophysiological Insights and Therapeutic Implications. Int. J. Mol. Sci. 2025, 26, 9938. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Chen, S.; Li, L.; Zhang, Y.; Shang, C.; Leng, Z.; Shang, G.; Kou, H.; Mao, K.; et al. From molecular regulation to tissue repair: Hydrogels in the fight against intervertebral disc degeneration. Ann. Med. 2025, 57, 2572310. [Google Scholar] [CrossRef]
- Nazari, A.R. A structural description for severe degeneration of intervertebral discs to computationally interpret experimental results obtained by stress profilometry. Eur. Spine J. 2025, 34, 4619–4630. [Google Scholar] [CrossRef] [PubMed]
- McGirt, M.J.; Ambrossi, G.L.; Datoo, G.; Sciubba, D.M.; Witham, T.F.; Wolinsky, J.P.; Gokaslan, Z.L.; Bydon, A. Recurrent disc herniation and long-term back pain after primary lumbar discectomy: Review of outcomes reported for limited versus aggressive disc removal. Neurosurgery 2009, 64, 338–345. [Google Scholar] [CrossRef]
- Hanaei, S.; Abdollahzade, S.; Sadr, M.; Fattahi, E.; Mirbolouk, M.H.; Khoshnevisan, A.; Rezaei, N. Lack of association between COL1A1 and COL9A2 single nucleotide polymorphisms and intervertebral disc degeneration. Br. J. Neurosurg. 2021, 35, 77–79. [Google Scholar] [CrossRef]
- Huffer, A.; Mao, M.; Ballard, K.; Ozdemir, T. Biomimetic Hyaluronan Binding Biomaterials to Capture the Complex Regulation of Hyaluronan in Tissue Development and Function. Biomimetics 2024, 9, 499. [Google Scholar] [CrossRef]
- Ke, W.; Xu, H.; Zhang, C.; Liao, Z.; Liang, H.; Tong, B.; Yuan, F.; Wang, K.; Hua, W.; Wang, B.; et al. An overview of mechanical microenvironment and mechanotransduction in intervertebral disc degeneration. Exp. Mol. Med. 2025, 57, 2157–2168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, R.; Zhao, G.; Wu, Z.; Song, W.; Ran, R.; Zhou, K.; Zhang, H. Chronotherapy and intervertebral disc degeneration: Understanding the role of circadian rhythm in degenerative processes. Front. Cell Dev. Biol. 2025, 13, 1586193. [Google Scholar] [CrossRef]
- De Simone, M.; Choucha, A.; Ciaglia, E.; Conti, V.; Pecoraro, G.; Santurro, A.; Puca, A.A.; Cascella, M.; Iaconetta, G. Discogenic Low Back Pain: Anatomic and Pathophysiologic Characterization, Clinical Evaluation, Biomarkers, AI, and Treatment Options. J. Clin. Med. 2024, 13, 5915. [Google Scholar] [CrossRef]
- Hao, P.; He, Y.; Li, F.; Luo, Y.; Song, C.; Liu, Z.; Fu, Z. Research on the molecular mechanism of intervertebral disc degeneration caused by mitochondrial dysfunction. Tissue Cell 2025, 98, 103155. [Google Scholar] [CrossRef]
- Cao, G.; Yang, S.; Cao, J.; Tan, Z.; Wu, L.; Dong, F.; Ding, W.; Zhang, F. The Role of Oxidative Stress in Intervertebral Disc Degeneration. Oxid. Med. Cell Longev. 2022, 2022, 2166817. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Wang, T.; Zhang, K.; Zhang, Y.; Kang, X. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif. 2023, 56, e13448. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Yang, M.; Lan, M.; Liu, C.; Zhang, Y.; Huang, B.; Liu, H.; Zhou, Y. ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration. Oxid. Med. Cell Longev. 2017, 2017, 5601593. [Google Scholar] [CrossRef]
- Ge, J.; Zhou, Q.; Cheng, X.; Qian, J.; Yan, Q.; Wu, C.; Chen, Y.; Yang, H.; Zou, J. The protein tyrosine kinase inhibitor, Genistein, delays intervertebral disc degeneration in rats by inhibiting the p38 pathway-mediated inflammatory response. Aging 2020, 12, 2246–2260. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Coughlin, D.; Ballatori, A.; Berg-Johansen, B.; Waldorff, E.I.; Zhang, N.; Ryaby, J.T.; Aliston, T.; Lotz, J.C. Pulsed Electromagnetic Fields Reduce Interleukin-6 Expression in Intervertebral Disc Cells Via Nuclear Factor-κβ and Mitogen-Activated Protein Kinase p38 Pathways. Spine 2019, 44, 1290–1297. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H.; Alfonso, Z.C.; Fraser, J.K.; Benhaim, P.; Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 2002, 13, 4279–4295. [Google Scholar] [CrossRef]
- Cannon, K.; Gill, S.; Mercuri, J. Mesenchymal stromal cell response to intervertebral disc-like pH is tissue source dependent. J. Orthop. Res. 2024, 42, 1303–1313. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Okano, I.; Guven, A.E.; Köhli, P.; Hambrecht, J.; Evangelisti, G.; Chiapparelli, E.; Burkhard, M.D.; Shue, J.; Girardi, F.P.; et al. Risk factors for progression of nucleus pulposus degeneration in the lumbar intervertebral disc: A retrospective analysis using the disc signal intensity index. Spine J. 2025, 25, 1466–1473. [Google Scholar] [CrossRef]
- Shu, H.; Gao, Y.; Zhang, Q.; Sun, H.; Wang, H.; Jing, C.; Liu, P.; Geng, D.; Shen, H.; Gan, M. Electric currents in disc health: The role of ion channels in intervertebral disc pathophysiology. J. Orthop. Transl. 2025, 53, 126–137. [Google Scholar] [CrossRef]
- Risbud, M.V.; Shapiro, I.M. Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat. Rev. Rheumatol. 2014, 10, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Wang, Y.; Lv, L.; Wang, D.; Wang, Y. Roles of Chemokines in Intervertebral Disk Degeneration. Curr. Pain Headache Rep. 2024, 28, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Huang, S.G.; Ju, L.; Li, M.; Nie, F.F.; Zhang, Y.; Zhang, Y.H.; Chen, X.; Gao, F. Effect of microRNA-21 on the proliferation of human degenerated nucleus pulposus by targeting programmed cell death 4. Braz. J. Med. Biol. Res. 2016, 49, e5020. [Google Scholar] [CrossRef]
- Wang, H.Q.; Yu, X.D.; Liu, Z.H.; Cheng, X.; Samartzis, D.; Jia, L.T.; Wu, S.X.; Huang, J.; Chen, J.; Luo, Z.J. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J. Pathol. 2011, 225, 232–242. [Google Scholar] [CrossRef]
- Zhang, Q.C.; Hu, S.Q.; Hu, A.N.; Zhang, T.W.; Jiang, L.B.; Li, X.L. Autophagy-activated nucleus pulposus cells deliver exosomal miR-27a to prevent extracellular matrix degradation by targeting MMP-13. J. Orthop. Res. 2021, 39, 1921–1932. [Google Scholar] [CrossRef] [PubMed]
- Miyaki, S.; Asahara, H. Macro view of microRNA function in osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486. [Google Scholar] [CrossRef]
- Feng, G.; Zha, Z.; Huang, Y.; Li, J.; Wang, Y.; Ke, W.; Chen, H.; Liu, L.; Song, Y.; Ge, Z. Sustained and Bioresponsive Two-Stage Delivery of Therapeutic miRNA via Polyplex Micelle-Loaded Injectable Hydrogels for Inhibition of Intervertebral Disc Fibrosis. Adv. Healthc. Mater. 2018, 7, e1800623. [Google Scholar] [CrossRef]
- Hua, W.B.; Wu, X.H.; Zhang, Y.K.; Song, Y.; Tu, J.; Kang, L.; Zhao, K.C.; Li, S.; Wang, K.; Liu, W.; et al. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration. Biochimie 2017, 139, 74–80. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Zheng, W.; He, Y. Long Non-Coding RNAs H19 and HOTAIR Implicated in Intervertebral Disc Degeneration. Front. Genet. 2022, 13, 843599. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Hu, Y.; Tang, W.; Shen, H.; Yu, Z.; Gu, J. The long noncoding RNA HOTAIR serves as a microRNA-34a-5p sponge to reduce nucleus pulposus cell apoptosis via a NOTCH1-mediated mechanism. Gene 2019, 715, 144029. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Duan, D.; She, W.; Wang, L.; Zhang, F. The role of lncRNA MALAT1 in intervertebral degenerative disc disease. Int. J. Clin. Exp. Pathol. 2017, 10, 10611–10617. [Google Scholar]
- Wang, Y.; Song, Q.; Huang, X.; Chen, Z.; Zhang, F.; Wang, K.; Huang, G.; Shen, H. Long noncoding RNA GAS5 promotes apoptosis in primary nucleus pulposus cells derived from the human intervertebral disc via Bcl-2 downregulation and caspase-3 upregulation. Mol. Med. Rep. 2019, 19, 2164–2172. [Google Scholar] [CrossRef]
- Ruan, Z.; Ma, H.; Li, J.; Liu, H.; Jia, H.; Li, F. The long non-coding RNA NEAT1 contributes to extracellular matrix degradation in degenerative human nucleus pulposus cells. Exp. Biol. Med. 2018, 243, 595–600. [Google Scholar] [CrossRef]
- Kaneda, G.; Zila, L.; Wechsler, J.T.; Shafi, K.; Cheema, K.; Bae, H.; Kim, S.D.; Tuchman, A.; Li, D.; Sheyn, D. What a pain in the back: Etiology, diagnosis and future treatment directions for discogenic low back pain. Bone Res. 2025, 13, 89. [Google Scholar] [CrossRef]
- Brayda-Bruno, M.; Tibiletti, M.; Ito, K.; Fairbank, J.; Galbusera, F.; Zerbi, A.; Roberts, S.; Wachtel, E.; Merkher, Y.; Sivan, S.S. Advances in the diagnosis of degenerated lumbar discs and their possible clinical application. Eur. Spine J. 2014, 23, S315–S323. [Google Scholar] [CrossRef]
- Katz, J.N.; Zimmerman, Z.E.; Mass, H.; Makhni, M.C. Diagnosis and Management of Lumbar Spinal Stenosis: A Review. JAMA 2022, 327, 1688–1699. [Google Scholar] [CrossRef]
- Evans, L.; O’Donohoe, T.; Morokoff, A.; Drummond, K. The role of spinal surgery in the treatment of low back pain. Med. J. 2023, 218, 40–45. [Google Scholar] [CrossRef]
- Zhao, L.; Manchikanti, L.; Kaye, A.D.; Abd-Elsayed, A. Treatment of Discogenic Low Back Pain: Current Treatment Strategies and Future Options-a Literature Review. Curr. Pain. Headache Rep. 2019, 23, 86. [Google Scholar] [CrossRef]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Hu, B.; Liu, W.; Wang, P.; Lv, X.; Chen, S.; Shao, Z. The role of structure and function changes of sensory nervous system in intervertebral disc-related low back pain. Osteoarthr. Cartil. 2021, 29, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Elmounedi, N.; Keskes, H. Innovative therapeutic strategies used in the regenerative medicine of the intervertebral disc degeneration. Tissue Cell 2025, 97, 103069. [Google Scholar] [CrossRef]
- Pettine, K.A.; Murphy, M.B.; Suzuki, R.K.; Sand, T.T. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells 2015, 33, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Orozco, L.; Soler, R.; Morera, C.; Alberca, M.; Sánchez, A.; García-Sancho, J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: A pilot study. Transplantation 2011, 92, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Vadalà, G.; Russo, F.; Lavazza, C.; Petrucci, G.; Ambrosio, L.; Budelli, S.; Montelatici, E.; Di Giacomo, G.; Cicione, C.; Tilotta, V.; et al. Intradiscal Mesenchymal Stromal Cell Therapy for the Treatment of Low Back Pain Due to Moderate-to-Advanced Multilevel Disc Degeneration: A Preliminary Report of a Double-Blind, Phase IIB Randomized Clinical Trial (DREAM Study). JOR Spine 2025, 8, e70086. [Google Scholar] [CrossRef]
- Pers, Y.M.; Soler-Rich, R.; Vadalà, G.; Ferreira, R.; Duflos, C.; Picot, M.C.; Herman, F.; Broussous, S.; Sánchez, A.; Noriega, D.; et al. Allogenic bone marrow-derived mesenchymal stromal cell-based therapy for patients with chronic low back pain: A prospective, multicentre, randomised placebo controlled trial (RESPINE study). Ann. Rheum. Dis. 2024, 83, 1572–1583. [Google Scholar] [CrossRef]
- Xia, K.; Gong, Z.; Zhu, J.; Yu, W.; Wang, Y.; Wang, J.; Xu, A.; Zhou, X.; Tao, H.; Li, F.; et al. Differentiation of Pluripotent Stem Cells into Nucleus Pulposus Progenitor Cells for Intervertebral Disc Regeneration. Curr. Stem Cell Res. Ther. 2019, 14, 57–64. [Google Scholar] [CrossRef]
- Bowles, R.D.; Setton, L.A. Biomaterials for intervertebral disc regeneration and repair. Biomaterials 2017, 129, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Nerurkar, N.L.; Elliott, D.M.; Mauck, R.L. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J. Orthop. Res. 2007, 25, 1018–1028. [Google Scholar] [CrossRef]
- Luo, J.; Darai, A.; Pongkulapa, T.; Conley, B.; Yang, L.; Han, I.; Lee, K.B. Injectable bioorthogonal hydrogel (BIOGEL) accelerates tissue regeneration in degenerated intervertebral discs. Bioact. Mater. 2022, 23, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; He, L.; Ye, Z.; Wei, Z.; Ao, J. Decellularized matrix for repairing intervertebral disc degeneration: Fabrication methods, applications and animal models. Mater. Today Bio 2022, 18, 100523. [Google Scholar] [CrossRef]
- Gan, Y.; Tu, B.; Li, P.; Ye, J.; Zhao, C.; Luo, L.; Zhang, C.; Zhang, Z.; Zhu, L.; Zhou, Q. Low Magnitude of Compression Enhances Biosynthesis of Mesenchymal Stem Cells towards Nucleus Pulposus Cells via the TRPV4-Dependent Pathway. Stem Cells Int. 2018, 2018, 7061898. [Google Scholar] [CrossRef]
- Shi, S.; Ou, X.; Liu, C.; Li, R.; Zheng, Q.; Hu, L. Nanotechnology-Enhanced Pharmacotherapy for Intervertebral Disc Degeneration Treatment. Int. J. Nanomed. 2024, 19, 14043–14058. [Google Scholar] [CrossRef]
- Wei, M.; Zhu, K. Disc inflammation and intercellular communication in shaping the immune microenvironment of intervertebral disc degeneration. Front. Immunol. 2025, 16, 1719293. [Google Scholar] [CrossRef]
- Fu, Y.C.; Nie, H.; Ho, M.L.; Wang, C.K.; Wang, C.H. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol. Bioeng. 2008, 99, 996–1006. [Google Scholar] [CrossRef]
- Keskin, D.S.; Tezcaner, A.; Korkusuz, P.; Korkusuz, F.; Hasirci, V. Collagen-chondroitin sulfate-based PLLA-SAIB-coated rhBMP-2 delivery system for bone repair. Biomaterials 2005, 26, 4023–4034. [Google Scholar] [CrossRef]
- Vadalà, G.; Ambrosio, L.; Russo, F.; Papalia, R.; Denaro, V. Interaction between Mesenchymal Stem Cells and Intervertebral Disc Microenvironment: From Cell Therapy to Tissue Engineering. Stem Cells Int. 2019, 2019, 2376172. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, Z.; Guo, C.; Huang, Z.; Zhang, W.; Ma, F.; Wang, Z.; Kong, Q.; Wang, Y. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: A literature review. Front. Cell Dev. Biol. 2023, 11, 1286223. [Google Scholar] [CrossRef]
- Wang, P.; Yao, Y.; Chen, X.; Luo, W.; Li, H.; Wang, D. The role of nucleus pulposus progenitor cells in intervertebral disc degeneration and regeneration. J. Orthop. Surg. Res. 2025, 20, 946. [Google Scholar] [CrossRef]
- Ma, L.; Pan, J.; Zhang, J.; Liu, F. Innovative strategies in combating intervertebral disc degeneration: Pathological mechanisms and biomaterial advancements. Front. Bioeng. Biotechnol. 2025, 13, 1643222. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, B.; Pan, Y.; Weng, Q.; Hu, K. Emerging roles of tsRNAs in programmed cell death and disease therapeutics: Challenges, opportunities, and future directions. Non-Coding RNA Res. 2025, 15, 65–73. [Google Scholar] [CrossRef]
- Yue, Y.; Dai, W.; Wei, Y.; Cao, S.; Liao, S.; Li, A.; Liu, P.; Lin, J.; Zeng, H. Unlocking the potential of exosomes: A breakthrough in the theranosis of degenerative orthopaedic diseases. Front. Bioeng. Biotechnol. 2024, 12, 1377142. [Google Scholar] [CrossRef]
- Sakai, D.; Andersson, G.B. Stem cell therapy for intervertebral disc regeneration: Obstacles and solutions. Nat. Rev. Rheumatol. 2015, 11, 243–256. [Google Scholar] [CrossRef] [PubMed]
- English, K. Intervertebral disc repair: Mesenchymal stem cells to the rescue? Transplantation 2011, 92, 733–734. [Google Scholar] [CrossRef] [PubMed]
- Maal, A.B.; Kordi, R.; Madani, H.; Khadivi, M.; Moghadam, N.; Asnaashari, A.; Najafi, M.; Eslaminejad, M.B.; Farzanbakhsh, S.; Hghighatkhah, H.; et al. Intradiscal injection of allogeneic bone marrow derived clonal mesenchymal stromal cells in discogenic low back pain: A phase I study on safety and feasibility (RELIEF: Phase I). Stem Cell Res. Ther. 2025, 16, 525. [Google Scholar] [CrossRef]
- Ogaili, R.H.; Alassal, A.; Za’aba, N.F.; Zulkiflee, I.; Mohd Isa, I.L. Regenerative strategies for intervertebral disc degeneration. J. Orthop. Transl. 2025, 53, 286–308. [Google Scholar] [CrossRef]
- Kawabata, S.; Akeda, K.; Yamada, J.; Takegami, N.; Fujiwara, T.; Fujita, N.; Sudo, A. Advances in Platelet-Rich Plasma Treatment for Spinal Diseases: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 7677. [Google Scholar] [CrossRef]
- Basso, M.; Cavagnaro, L.; Zanirato, A.; Divano, S.; Formica, C.; Formica, M.; Felli, L. What is the clinical evidence on regenerative medicine in intervertebral disc degeneration? Musculoskelet. Surg. 2017, 101, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Abel, F.; Altorfer, F.C.S.; Rohatgi, V.; Gibbs, W.; Chazen, J.L. Imaging of Discogenic and Vertebrogenic Pain. Neurosurg. Clin. N. Am. 2025, 36, 485–496. [Google Scholar] [CrossRef]
- Nakahashi, Y.; Saida, T.; Yoshida, M.; Shindo, M.; Yamada, K.; Ishimori, T.; Terakado, M.; Amano, T.; Ishiguro, T.; Kwon, J.; et al. Evaluation of lumbar intervertebral disc degeneration using 23Na-MRI in clinical settings. Skelet. Radiol. 2025, 54, 2725–2734. [Google Scholar] [CrossRef]
- Yang, L.; Li, W.; Yang, Y.; Zhao, H.; Yu, X. The correlation between the lumbar disc MRI high-intensity zone and discogenic low back pain: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2023, 18, 758. [Google Scholar] [CrossRef]
- Fang, Y.; Ye, Y.; Wang, Q.; Zhang, S.; Ling, G.; Chen, K.; Chen, H.; Chen, W.; Liu, C. Correlating factors between vertebral fracture and fracture-associated intervertebral disc vacuum phenomenon after thoracolumbar fracture surgery: A single-centre retrospective study. BMC Musculoskelet. Disord. 2025, 26, 605. [Google Scholar] [CrossRef] [PubMed]
- Lagerstrand, K.M.; Hebelka, H.; Brisby, H.; Waldenberg, C. Disc deformation as a potential biomarker of nonspecific low back pain. Sci. Rep. 2025, 15, 28480. [Google Scholar] [CrossRef]
- Enthoven, W.T.; Roelofs, P.D.; Deyo, R.A.; van Tulder, M.W.; Koes, B.W. Non-steroidal anti-inflammatory drugs for chronic low back pain. Cochrane Database Syst. Rev. 2016, CD012087. [Google Scholar] [CrossRef]
- Bovill, J.G. Mechanisms of actions of opioids and non-steroidal anti-inflammatory drugs. Eur. J. Anaesthesiol. Suppl. 1997, 15, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Carassiti, M.; Pascarella, G.; Strumia, A.; Russo, F.; Papalia, G.F.; Cataldo, R.; Gargano, F.; Costa, F.; Pierri, M.; De Tommasi, F.; et al. Epidural Steroid Injections for Low Back Pain: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 19, 231. [Google Scholar] [CrossRef]
- Jacobs, W.; Van der Gaag, N.A.; Tuschel, A.; de Kleuver, M.; Peul, W.; Verbout, A.J.; Oner, F.C. Total disc replacement for chronic back pain in the presence of disc degeneration. Cochrane Database Syst. Rev. 2012, CD008326. [Google Scholar] [CrossRef]
- Soufi, K.H.; Castillo, J.A.; Rogdriguez, F.Y.; DeMesa, C.J.; Ebinu, J.O. Potential Role for Stem Cell Regenerative Therapy as a Treatment for Degenerative Disc Disease and Low Back Pain: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 8893. [Google Scholar] [CrossRef]
- NICE Guidelines. Interventional Procedure Overview of Prosthetic Intervertebral Disc Replacement in the Lumbar Spine; National Institute for Health and Clinical Excellence: London, UK, 2009; pp. 1–30. Available online: https://www.nice.org.uk/guidance/ipg306/evidence/overview-pdf-312596461 (accessed on 23 December 2025).
- Korovessis, P.G.; Sasso, R.C.; Foulk, D.M.; Hahn, M. Prospective, randomized trial of metal-on-metal artificial lumbar disc replacement: Initial results for treatment of discogenic pain. Spine 2008, 33, 123–131. [Google Scholar]
- Li, P.; Zhang, R.; Zhou, Q. Efficacy of Platelet-Rich Plasma in Retarding Intervertebral Disc Degeneration: A Meta-Analysis of Animal Studies. Biomed. Res. Int. 2017, 2017, 7919201. [Google Scholar] [CrossRef] [PubMed]
- Han, I.; Ropper, A.E.; Konya, D.; Kabatas, S.; Toktas, Z.; Aljuboori, Z.; Zeng, X.; Chi, J.H.; Zafonte, R.; Teng, Y.D. Biological approaches to treating intervertebral disk degeneration: Devising stem cell therapies. Cell Transplant. 2015, 24, 2197–2208. [Google Scholar] [CrossRef] [PubMed]


| Category | Key Changes | Consequences/Effects | References |
|---|---|---|---|
| Structural degeneration |
|
| [8,13,14,16] |
| Facet joint changes |
|
| [1,9,16,26] |
| Ligamentous changes |
|
| [83,84,85] |
| Mechanical outcomes |
|
| [1,16,51] |
| Biochemical sensitisation |
|
| [40,86,87] |
| Neural changes |
|
| [5,82,88] |
| Overall pathophysiology |
|
| [6,24,57] |
| Category | Therapy | Key features | Benefits and limitations | References |
|---|---|---|---|---|
| Conservative Management |
|
|
| [6,24] |
|
|
| [30,42,43] | |
|
|
| [86,121,122] | |
| Medical pain Management |
|
|
| [87,121] |
|
|
| [86,122] | |
|
|
| [86,122,123] | |
|
|
| [86,123] | |
| Emerging pharmacologic therapies |
|
|
| [26,57] |
|
|
| [22,107] | |
|
|
| [20,40] | |
| Surgical management |
|
|
| [52,84] |
|
|
| [84,85,124] | |
|
|
| [7,30] | |
| Biological and regenerative therapies |
|
|
| [86,125] |
|
|
| [64,110,125] | |
|
|
| [89,106,107,113] | |
|
|
| [89,107,113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gradisnik, L.; Kocivnik, N.; Maver, U.; Velnar, T. Degenerative Disease of Intervertebral Disc: A Narrative Review of Pathogenesis, Clinical Implications and Therapies. Bioengineering 2026, 13, 40. https://doi.org/10.3390/bioengineering13010040
Gradisnik L, Kocivnik N, Maver U, Velnar T. Degenerative Disease of Intervertebral Disc: A Narrative Review of Pathogenesis, Clinical Implications and Therapies. Bioengineering. 2026; 13(1):40. https://doi.org/10.3390/bioengineering13010040
Chicago/Turabian StyleGradisnik, Lidija, Nina Kocivnik, Uros Maver, and Tomaz Velnar. 2026. "Degenerative Disease of Intervertebral Disc: A Narrative Review of Pathogenesis, Clinical Implications and Therapies" Bioengineering 13, no. 1: 40. https://doi.org/10.3390/bioengineering13010040
APA StyleGradisnik, L., Kocivnik, N., Maver, U., & Velnar, T. (2026). Degenerative Disease of Intervertebral Disc: A Narrative Review of Pathogenesis, Clinical Implications and Therapies. Bioengineering, 13(1), 40. https://doi.org/10.3390/bioengineering13010040

