Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (468)

Search Parameters:
Keywords = LX

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4361 KiB  
Article
Pinene-Based Chiral Bipyridine Ligands Drive Potent Antibacterial Activity in Rhenium(I) Complexes
by Justine Horner, Gozde Demirci, Aurelien Crochet, Aleksandar Pavic, Olimpia Mamula Steiner and Fabio Zobi
Molecules 2025, 30(15), 3183; https://doi.org/10.3390/molecules30153183 - 29 Jul 2025
Viewed by 235
Abstract
Antimicrobial resistance (AMR) poses a critical global health threat by rendering existing antibiotics ineffective against infections, leading to increased mortality, prolonged illnesses, and higher healthcare costs. Developing new antibiotics is essential to combat resistant pathogens, safeguard modern medical procedures, and prevent a return [...] Read more.
Antimicrobial resistance (AMR) poses a critical global health threat by rendering existing antibiotics ineffective against infections, leading to increased mortality, prolonged illnesses, and higher healthcare costs. Developing new antibiotics is essential to combat resistant pathogens, safeguard modern medical procedures, and prevent a return to a pre-antibiotic era where common infections become untreatable. We report a series of chiral tricarbonyl rhenium(I) complexes incorporating enantiopure pinene-substituted bipyridine ligands (L#) of the general formula fac-[Re(CO)3L#X] and fac-[Re(CO)3L#Py]+ (where X = Cl or Br and Py = pyridine). These complexes were isolated as mixtures of two diastereomers, characterized by standard techniques, and evaluated for cytotoxic activity against methicillin-resistant and methicillin-sensitive Staphylococcus aureus (MRSA and MSSA). The results revealed notable antibacterial efficacy (MIC = 1.6 μM), reflected in high therapeutic indices (Ti > 10). In contrast, analogous complexes bearing non-chiral 2,2′-bipyridine ligands exhibited no activity, underscoring the critical role of chirality in modulating biological interactions at the molecular level. These findings highlight the potential of chiral Re(I) complexes as promising scaffolds for the development of more potent and selective antibacterial agents. Full article
Show Figures

Figure 1

24 pages, 6890 KiB  
Article
Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy
by Kefan Cao, Yingtong Mu and Xiaoming Zhang
Genes 2025, 16(8), 898; https://doi.org/10.3390/genes16080898 - 28 Jul 2025
Viewed by 246
Abstract
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive [...] Read more.
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive strategies of A. kusnezoffii under different light intensities through integrated physiological and transcriptomic analyses. Methods: Two-year-old A. kusnezoffii plants were exposed to three controlled light regimes (790, 620, and 450 lx). Leaf anatomical traits were assessed via histological sectioning and microscopic imaging. Antioxidant enzyme activities (CAT, POD, and SOD), membrane lipid peroxidation (MDA content), osmoregulatory substances, and carbon metabolites were quantified using standard biochemical assays. Transcriptomic profiling was conducted using Illumina RNA-seq, with differentially expressed genes (DEGs) identified through DESeq2 and functionally annotated via GO and KEGG enrichment analyses. Results: Moderate light (620 lx) promoted optimal leaf structure by enhancing palisade tissue development and epidermal thickening, while reducing membrane lipid peroxidation. Antioxidant defense capacity was elevated through higher CAT, POD, and SOD activities, alongside increased accumulation of soluble proteins, sugars, and starch. Transcriptomic analysis revealed DEGs enriched in photosynthesis, monoterpenoid biosynthesis, hormone signaling, and glutathione metabolism pathways. Key positive regulators (PHY and HY5) were upregulated, whereas negative regulators (COP1 and PIFs) were suppressed, collectively facilitating chloroplast development and photomorphogenesis. Trend analysis indicated a “down–up” gene expression pattern, with early suppression of stress-responsive genes followed by activation of photosynthetic and metabolic processes. Conclusions: A. kusnezoffii employs a coordinated, multi-level adaptation strategy under moderate light (620 lx), integrating leaf structural optimization, enhanced antioxidant defense, and dynamic transcriptomic reprogramming to maintain energy balance, redox homeostasis, and photomorphogenic flexibility. These findings provide a theoretical foundation for optimizing artificial cultivation and light management of alpine medicinal plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 1169 KiB  
Article
Multi-Dimensional Analysis of Quality-Related Traits Affecting the Taste of Main Cultivated Japonica Rice Varieties in Northern China
by Hongwei Yang, Liying Zhang, Xiangquan Gao, Shi Han, Zuobin Ma and Lili Wang
Agronomy 2025, 15(8), 1757; https://doi.org/10.3390/agronomy15081757 - 22 Jul 2025
Viewed by 310
Abstract
The quality of rice, one of the most important food crops in the world, is directly related to people’s dietary experience and nutritional health. With the improvement in living standards, consumer requirements for the taste quality of rice are becoming increasingly strict. Japonica [...] Read more.
The quality of rice, one of the most important food crops in the world, is directly related to people’s dietary experience and nutritional health. With the improvement in living standards, consumer requirements for the taste quality of rice are becoming increasingly strict. Japonica rice occupies an important position in rice production due to its rich genetic diversity and excellent agronomic characteristics. In this study, LJ433, JY653, LJ218, LJ177, LY66, and LX21, which are mainly popularized in northern China and have different taste values, were selected as the experimental subjects, and YJ219, which won the gold award in the third China high-quality rice variety taste quality evaluation, was taken as the control (CK). Low-field nuclear magnetic resonance and spectral analysis were adopted as the main detection techniques. The effects of free water (peak area increased by 13.24–86.68% when p < 0.05), bound water, appearance characteristics (such as chalkiness, which decreased by 18.48–86.48%), and chemical composition (amylose content decreased by 3.76–26.47%) on the taste value of rice were systematically analyzed, and a multi-dimensional “appearance–palatability–nutrition” evaluation system was constructed. The experimental results indicated that increasing the free water content, reducing the chalkiness and chemical component content could significantly improve the taste value of rice (p < 0.05). The results of this research provide a theoretical basis for breeding new high-yield and high-quality rice varieties and have guiding significance for the practice of rice planting and processing. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

24 pages, 3833 KiB  
Article
Impact of Lighting Conditions on Emotional and Neural Responses of International Students in Cultural Exhibition Halls
by Xinyu Zhao, Zhisheng Wang, Tong Zhang, Ting Liu, Hao Yu and Haotian Wang
Buildings 2025, 15(14), 2507; https://doi.org/10.3390/buildings15142507 - 17 Jul 2025
Viewed by 359
Abstract
This study investigates how lighting conditions influence emotional and neural responses in a standardized, simulated museum environment. A multimodal evaluation framework combining subjective and objective measures was used. Thirty-two international students assessed their viewing experiences using 14 semantic differential descriptors, while real-time EEG [...] Read more.
This study investigates how lighting conditions influence emotional and neural responses in a standardized, simulated museum environment. A multimodal evaluation framework combining subjective and objective measures was used. Thirty-two international students assessed their viewing experiences using 14 semantic differential descriptors, while real-time EEG signals were recorded via the EMOTIV EPOC X device. Spectral energy analyses of the α, β, and θ frequency bands were conducted, and a θα energy ratio combined with γ coefficients was used to model attention and comfort levels. The results indicated that high illuminance (300 lx) and high correlated color temperature (4000 K) significantly enhanced both attention and comfort. Art majors showed higher attention levels than engineering majors during short-term viewing. Among four regression models, the backpropagation (BP) neural network achieved the highest predictive accuracy (R2 = 88.65%). These findings provide empirical support for designing culturally inclusive museum lighting and offer neuroscience-informed strategies for promoting the global dissemination of traditional Chinese culture, further supported by retrospective interview insights. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 1094 KiB  
Article
Study on the Selective Behavior of Brachymystax tsinlingensis Li, 1966 (Order: Saloniformes, Family: Salmonidae) on Substrate Color and Type
by Lin Zhang, Rongqun Song and Jian Shao
Animals 2025, 15(14), 2089; https://doi.org/10.3390/ani15142089 - 15 Jul 2025
Viewed by 191
Abstract
Substrate is an important component of a fish’s habitat environment. Fish preferences for substrate influence their growth and development, feeding, hiding, schooling, and reproduction. To explore the habitat preference of Brachymystax tsinlingensis, this study was conducted on the preferences of B. pre-smolts, [...] Read more.
Substrate is an important component of a fish’s habitat environment. Fish preferences for substrate influence their growth and development, feeding, hiding, schooling, and reproduction. To explore the habitat preference of Brachymystax tsinlingensis, this study was conducted on the preferences of B. pre-smolts, post-smolts, and juveniles for three substrate colors, white, blue, and black, and four substrate types, sand (<0.5 cm in diameter), small gravel (1–2 cm in diameter), medium gravel (5–7 cm in diameter), and large gravel (12–16 cm in diameter), which were investigated in light (10–60 lx) and dark (no light) environments. The results showed that the individual populations of B. tsinlingensis in three periods of time had a clear preference for substrate color, preferring black substrate and staying away from blue substrate under both light and dark environmental conditions; B. tsinlingensis pre-smolts and post-smolts preferred sandy substrate, and juveniles preferred medium gravel substrate. The choice of substrate color and substrate type by B. tsinlingensis is a manifestation of the living environment characteristics of this species, which is conducive to their hiding, better avoidance of enemies, and improvement of their survival rate. Based on the research results and the early biological characteristics of B. tsinlingensis, it is recommended to use black or dark substrate during the cultivation of B. tsinlingensis fry. During the larval fish stage, a sandy substrate environment should be provided. During the juvenile fish stage, a medium-gravel environment should be provided. Full article
(This article belongs to the Collection Behavioral Ecology of Aquatic Animals)
Show Figures

Figure 1

18 pages, 2384 KiB  
Article
Image Quality Assessment of Augmented Reality Glasses as Medical Display Devices (HoloLens 2)
by Simon König, Simon Siebers and Claus Backhaus
Appl. Sci. 2025, 15(14), 7648; https://doi.org/10.3390/app15147648 - 8 Jul 2025
Viewed by 358
Abstract
See-through augmented reality glasses, such as HoloLens 2, are increasingly adopted in medical settings; however, their efficacy as medical display devices remains unclear, as current evaluation protocols are designed for traditional monitors. This study examined whether the established display-evaluation techniques apply to HoloLens [...] Read more.
See-through augmented reality glasses, such as HoloLens 2, are increasingly adopted in medical settings; however, their efficacy as medical display devices remains unclear, as current evaluation protocols are designed for traditional monitors. This study examined whether the established display-evaluation techniques apply to HoloLens 2 and whether it meets standards for primary and secondary medical displays. HoloLens 2 was assessed for overall image quality, luminance, grayscale consistency, and color uniformity. Five participants rated the TG18-OIQ pattern under ambient lighting conditions of 2.4 and 138.7 lx. Minimum and maximum luminance were measured using the TG18-LN12-03 and -18 patterns, targeting ≥ 300 cd/m2 and a luminance ratio ≥ 250. Grayscale conformity to the standard grayscale display function allowed deviations of 10% for primary and 20% for secondary displays. Color uniformity was measured at five screen positions for red, green, and blue, with a chromaticity limit of 0.01 for primary displays. HoloLens 2 satisfied four of the ten primary and four of the seven secondary overall-quality criteria, achieving a maximum luminance of 2366 cd/m2 and a luminance ratio of 1478.75. Grayscale uniformity was within tolerance for 10 of the 15 primary and 13 of the 15 secondary measurements, while 25 of the 30 color uniformity values exceeded the threshold. The adapted evaluation methods facilitate a systematic assessment of HoloLens 2 as a medical display. Owing to inadequate grayscale and color representation, the headset is unsuitable as a primary diagnostic display; for secondary use, requirements must be assessed based on specific application requirements. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

15 pages, 2045 KiB  
Article
Monochromatic Photophase Light Alters Diurnal Profiles of Melatonin Pathway Indoles in the Rat Pineal Gland
by Bogdan Lewczuk, Kamila Martyniuk, Natalia Szyryńska, Magdalena Prusik and Natalia Ziółkowska
Int. J. Mol. Sci. 2025, 26(13), 6515; https://doi.org/10.3390/ijms26136515 - 6 Jul 2025
Viewed by 394
Abstract
Light is a major environmental factor that regulates circadian rhythms and pineal melatonin synthesis. While the influence of nighttime light exposure on melatonin suppression has been extensively investigated, much less is known about the impact of photophase light wavelength on pineal function. The [...] Read more.
Light is a major environmental factor that regulates circadian rhythms and pineal melatonin synthesis. While the influence of nighttime light exposure on melatonin suppression has been extensively investigated, much less is known about the impact of photophase light wavelength on pineal function. The aim of the study was to determine the influence of monochromatic light during the photophase on diurnal changes in melatonin-related indoles in the rat pineal gland. Wistar rats were exposed for 7 days to 150 lx of monochromatic blue (463 ± 10 nm), green (523 ± 10 nm), or red (623 ± 10 nm) LED light, or to white fluorescent light (control), under a 12:12 light–dark cycle. Pineal glands were collected every 3 h over 24 h, and the indole content was analyzed by high-performance liquid chromatography. The results demonstrated that both the timing and course of N-acetylserotonin (NAS) and melatonin (MLT) rhythms were significantly affected by light wavelength. Blue light most effectively preserved the normal rhythmicity observed under full-spectrum white light, whereas green—and particularly red light—delayed nocturnal NAS and MLT synthesis. These changes were accompanied by concurrent alternations in rhythms of serotonin, its precursors, and metabolites. The data strongly suggest that spectral light composition during the photophase influences pineal indole metabolism via melanopsin-mediated phototransduction and possibly other retinal mechanisms. These findings may have implications for the design of artificial lighting environments in human life and animal housing. Full article
(This article belongs to the Special Issue Focus on the Tryptophan Pathway)
Show Figures

Figure 1

14 pages, 3481 KiB  
Article
Effect of 3-HBI on Liver Fibrosis via the TGF-β/SMAD2/3 Pathway on the Human Hepatic Stellate Cell Model
by Chavisa Khongpiroon, Watunyoo Buakaew, Paul J. Brindley, Saranyapin Potikanond, Krai Daowtak, Yordhathai Thongsri, Pachuenp Potup and Kanchana Usuwanthim
Int. J. Mol. Sci. 2025, 26(13), 6022; https://doi.org/10.3390/ijms26136022 - 23 Jun 2025
Viewed by 765
Abstract
Liver fibrosis can progress to irreversible cirrhosis if the underlying causes remain, and this can in turn develop into hepatocellular carcinoma (HCC). Despite these adverse outcomes, liver fibrosis can be reversed. Consequently, research has focused on substances that target liver fibrosis to prevent [...] Read more.
Liver fibrosis can progress to irreversible cirrhosis if the underlying causes remain, and this can in turn develop into hepatocellular carcinoma (HCC). Despite these adverse outcomes, liver fibrosis can be reversed. Consequently, research has focused on substances that target liver fibrosis to prevent or reduce its progression. This study deals with the potential anti-fibrotic action of 3-hydroxy-β-ionone (3-HBI), a bioactive compound found in many plants. To assess the putative effects of 3-HBI, pro-inflammatory cytokine production and the expression of genes and proteins associated with the TGF-β/SMAD2/3 pathway were monitored following exposure to 3-HBI. Initially, cells of the human hepatic stellate cell line LX-2 were treated with TGF-β1 to simulate fibrogenesis. Following the exposure of activated LX-2 cells to 3-HBI, the production of pro-fibrotic substances was significantly reduced. Molecular docking studies revealed that 3-HBI exhibited a high binding affinity for key proteins in the TGF-β/SMAD2/3 pathway. Analyses using qRT-PCR and Western blotting revealed that 3-HBI suppressed the expression of TIMP1, MMP2, MMP9, COL1A1, COL4A1, SMAD2, SMAD3, SMAD4, MMP2, and ACTA2. Together, these findings demonstrate that 3-HBI inhibited the activation of LX-2 cells and significantly reduced the proinflammatory responses triggered by TGF-β1. Accordingly, we confirmed the noteworthy potential of 3-HBI as a therapeutic agent to prevent and treat liver fibrosis, effected by its modulation of the TGF-β/SMAD2/3 signaling pathway. Full article
(This article belongs to the Special Issue Molecular Advances in Liver Fibrosis)
Show Figures

Figure 1

19 pages, 7139 KiB  
Article
Multidimensional Human Responses Under Dynamic Spectra of Daylighting and Electric Lighting
by Yingjun Dong, Guiyi Wu, Jiaxin Shi, Qingxuan Liang, Zhipeng Cui and Peng Xue
Buildings 2025, 15(13), 2184; https://doi.org/10.3390/buildings15132184 - 23 Jun 2025
Viewed by 321
Abstract
The luminous environment, shaped by daylight and electric light, significantly influences visual performance, physiological responses, and perceptual experiences. While these light sources are often perceived as distinct due to their differing effects on occupants’ cognition and well-being, the underlying mechanisms remain unclear. Nine [...] Read more.
The luminous environment, shaped by daylight and electric light, significantly influences visual performance, physiological responses, and perceptual experiences. While these light sources are often perceived as distinct due to their differing effects on occupants’ cognition and well-being, the underlying mechanisms remain unclear. Nine lighting conditions were evaluated, combining three spectral types—daylight (DL), conventional LED (CLED), and daylight LED (DLED)—with three horizontal illuminance levels (300 lx, 500 lx, and 1000 lx). Twelve healthy subjects completed visual performance tasks (2-back working memory test), physiological measurements (heart rate variability and critical flicker frequency), and subjective evaluations. The results revealed that 500 lx consistently yielded the most favorable outcomes: 2-back task response speed improved by 6.2% over 300 lx and 1000 lx, and the critical flicker frequency difference was smallest, indicating reduced fatigue. DLED lighting achieved cognitive and physiological levels comparable to daylight. Heart rate variability analyzes further confirmed higher alertness levels under 500 lx DLED lighting (LF/HF = 3.31). Subjective ratings corroborated these findings, with perceived alertness and comfort highest under DLED and 500 lx conditions. These results demonstrate that DLED, which offers a balanced spectral composition and improved uniformity, may serve as an effective lighting configuration for supporting both visual and non-visual performance in indoor settings lacking daylight. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 2442 KiB  
Article
Hesperidin Is a Promising Nutraceutical Compound in Counteracting the Progression of NAFLD In Vitro
by Miriam Cofano, Ilenia Saponara, Valentina De Nunzio, Giuliano Pinto, Emanuela Aloisio Caruso, Matteo Centonze and Maria Notarnicola
Int. J. Mol. Sci. 2025, 26(13), 5982; https://doi.org/10.3390/ijms26135982 - 21 Jun 2025
Viewed by 511
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by an accumulation of fat in hepatocytes, and it may progress, under additional triggering factors, to non-alcoholic steatohepatitis (NASH). Effective strategies to counteract this progression are essential, especially considering that at the moment, there is a [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is characterized by an accumulation of fat in hepatocytes, and it may progress, under additional triggering factors, to non-alcoholic steatohepatitis (NASH). Effective strategies to counteract this progression are essential, especially considering that at the moment, there is a lack of approved pharmacological therapies. Our previous study showed that the daily consumption of Navelina oranges significantly reduced hepatic steatosis in patients with Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). Starting with our previous study, here, we have investigated the molecular targets through which Hesperidin (HE), a citrus flavanone, is able to prevent the progression of NAFLD to NASH using an in vitro model. In Hepa-RG cells exposed to NAFLD Promoting Agents, HE reduced lipid droplet accumulation (~35%) and suppressed de novo lipogenesis, with decreased expression of FASN (0.62 ± 0.06 vs. 0.39 ± 0.03 at 100 µg/mL) and SCD1 (0.05 ± 0.001 vs. 0.03 ± 0.004 at 50 µg/mL). HE also enhanced fatty acid oxidation by increasing SIRT1 (0.73 ± 0.16 vs. 2.36 ± 0.10 at 50 µg/mL) and PGC1α (0.71 ± 0.03 vs. 0.89 ± 0.003 at 50 µg/mL). In LX-2 cells, HE downregulated COL1A1 (1.48 ± 0.10 vs. 0.90 ± 0.11 at 100 µg/mL) and α-SMA (1.21 ± 0.16 vs. 0.76 ± 0.07 at 75 µg/mL) and upregulated MMP3 (0.64 ± 0.05 vs. 0.98 ± 0.07) and MMP9 (0.99 ± 0.005 vs. 2.61 ± 0.16 at 100 µg/mL). In conclusion, HE may offer a promising approach for NAFLD/NASH prevention and treatment, demonstrating in vitro its potential to reduce hepatic steatosis and fibrosis. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

29 pages, 7409 KiB  
Article
Quality Assessment of High-Speed Motion Blur Images for Mobile Automated Tunnel Inspection
by Chulhee Lee, Donggyou Kim and Dongku Kim
Sensors 2025, 25(12), 3804; https://doi.org/10.3390/s25123804 - 18 Jun 2025
Viewed by 596
Abstract
This study quantitatively evaluates the impact of motion blur—caused by high-speed movement—on image quality in a mobile tunnel scanning system (MTSS). To simulate movement at speeds of up to 70 km/h, a high-speed translational motion panel was developed. Images were captured under conditions [...] Read more.
This study quantitatively evaluates the impact of motion blur—caused by high-speed movement—on image quality in a mobile tunnel scanning system (MTSS). To simulate movement at speeds of up to 70 km/h, a high-speed translational motion panel was developed. Images were captured under conditions compliant with the ISO 12233 international standard, and image quality was assessed using two metrics: blurred edge width (BEW) and the spatial frequency response at 50% contrast (MTF50). Experiments were conducted under varying shutter speeds, lighting conditions (15,000 lx and 40,000 lx), and motion speeds. The results demonstrated that increased motion speed increased BEW and decreased MTF50, indicating greater blur intensity and reduced image sharpness. Two-way analysis of variance and t-tests confirmed that shutter and motion speed significantly affected image quality. Although higher illumination levels partially improved, they also occasionally led to reduced sharpness. Field validation using MTSS in actual tunnel environments demonstrated that BEW and MTF50 effectively captured blur variations by scanning direction. This study proposes BEW and MTF50 as reliable indicators for quantitatively evaluating motion blur in tunnel inspection imagery and suggests their potential to optimize MTSS operation and improve the accuracy of automated defect detection. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 1232 KiB  
Article
Process Optimization of Ultrasonic-Assisted Extraction and Resin Purification of Flavonoids from Eucommia ulmoides Leaves and Their Antioxidant Properties In Vitro
by Jia Li, Lingling Tang and Jungang Wang
Processes 2025, 13(6), 1905; https://doi.org/10.3390/pr13061905 - 16 Jun 2025
Viewed by 327
Abstract
In this study, an orthogonal array design was employed to optimize total flavonoid extraction conditions. The results showed that the optimal conditions were an ethanol concentration of 70%, an ultrasonic power of 250 W, a solid–liquid ratio of 1:30 g/mL, and an ultrasonic [...] Read more.
In this study, an orthogonal array design was employed to optimize total flavonoid extraction conditions. The results showed that the optimal conditions were an ethanol concentration of 70%, an ultrasonic power of 250 W, a solid–liquid ratio of 1:30 g/mL, and an ultrasonic time of 25 min. Under these optimal extraction conditions, the total flavonoid yield was 169.3 mg/g plant material. The purification effects of LX-38, LX-60, LS-46, LS-306, XDA-8, AB-8, and D101 macroporous resins on the total flavonoids of Eucommia ulmoides leaves were also investigated. The parameters of the process using XDA-8 macroporous resin for the purification of the crude extract of total flavonoids from Eucommia ulmoides leaves were investigated. The adsorption conditions of the XDA-8 resin consisted of an initial sample concentration of 2.0 mg/mL, a sample pH value of 5.0, an adsorption flow rate of 1.5 mL/min, and a temperature of 25 °C. The desorption conditions of the XDA-8 resin consisted of 60% ethanol used as a desorption solution and a 2.0 mL/min desorption flow rate of the eluent. The total flavonoids from the Eucommia ulmoides leaves were purified under these conditions, and, afterward, the flavonoid content was 51.5%. The main components of the purified flavonoids from the Eucommia ulmoides leaves were isolated using high-performance liquid chromatography (HPLC), and they included chlorogenic acid, rutin, isoquercetin, kaempferol-3-O-rutinoside, quercetin 3-rhamnoside, hyperoside, and quercetin. The antioxidant activities were measured, and those of the purified total flavonoids from the Eucommia ulmoides leaves were higher than those of dibutylhydroxytoluene (BHT) and lower than those of ascorbic acid (Vc). Additionally, the purified total flavonoids from the Eucommia ulmoides leaves exhibited significant antioxidant activities. Full article
Show Figures

Figure 1

15 pages, 1849 KiB  
Article
Sublethal Effects of Abamectin and Acetamiprid on the Longevity, Fecundity and Detoxification Enzyme Activity of Rhopalosiphum padi
by Bokun Wang, Hongming Hui, Xingye Li, Xueqing Yang and Yuting Li
Insects 2025, 16(6), 629; https://doi.org/10.3390/insects16060629 - 15 Jun 2025
Viewed by 602
Abstract
The bird cherry-oat aphid Rhopalosiphum padi (L.) poses a significant threat to wheat production, resulting in substantial yield reductions. Abamectin and acetamiprid are frequently utilized for management. This study assessed the sublethal effects of abamectin and acetamiprid on R. padi through life table [...] Read more.
The bird cherry-oat aphid Rhopalosiphum padi (L.) poses a significant threat to wheat production, resulting in substantial yield reductions. Abamectin and acetamiprid are frequently utilized for management. This study assessed the sublethal effects of abamectin and acetamiprid on R. padi through life table analysis and enzyme activity assays. At 24 h, the LC10 and LC30 values for abamectin to R. padi were 0.063 mg/L and 0.252 mg/L, respectively, while, for acetamiprid, the corresponding values were 0.065 and 0.293 mg/L. The results indicated that exposure to sublethal concentrations of abamectin (AB-LC10) extended the longevity of R. padi F0 generation, while acetamiprid (AC-LC10 and AC-LC30) decreased it. Furthermore, the fecundity of the F0 generation was significantly reduced following exposure to AB-LC30, AC-LC10 and AC-LC30. In the F1 generation, exposure to sublethal concentrations of acetamiprid negatively impacted on R. padi, as evidenced by a significant reduction in longevity; fecundity and population parameters (R0, r, λ, sxj, lx, lxmx, vxj and exj). Conversely, sublethal concentrations of abamectin did not significantly affect these parameters. Additionally, population projections revealed a significantly smaller total population size of R. padi in the acetamiprid-exposed group compared to both the abamectin-exposed and control groups. Except these population-level effects, the activities of detoxification enzymes, including cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST) and carboxylesterases (CarE), changed differently after treatments. These results suggest that sublethal concentrations of acetamiprid, but not abamectin, significantly inhibit the population growth of R. padi. These insights are crucial for R. padi control and facilitate the development of effective control strategies that take into account these sublethal effects in integrated pest management strategies targeting R. padi. Full article
Show Figures

Figure 1

19 pages, 4932 KiB  
Article
Deep Learning-Based Fluid Identification with Residual Vision Transformer Network (ResViTNet)
by Yunan Liang, Bin Zhang, Wenwen Wang, Sinan Fang, Zhansong Zhang, Liang Peng and Zhiyang Zhang
Processes 2025, 13(6), 1707; https://doi.org/10.3390/pr13061707 - 29 May 2025
Cited by 1 | Viewed by 418
Abstract
The tight sandstone gas reservoirs in the LX area of the Ordos Basin are characterized by low porosity, poor permeability, and strong heterogeneity, which significantly complicate fluid type identification. Conventional methods based on petrophysical logging and core analysis have shown limited effectiveness in [...] Read more.
The tight sandstone gas reservoirs in the LX area of the Ordos Basin are characterized by low porosity, poor permeability, and strong heterogeneity, which significantly complicate fluid type identification. Conventional methods based on petrophysical logging and core analysis have shown limited effectiveness in this region, often resulting in low accuracy of fluid identification. To improve the precision of fluid property identification in such complex tight gas reservoirs, this study proposes a hybrid deep learning model named ResViTNet, which integrates ResNet (residual neural network) with ViT (vision transformer). The proposed method transforms multi-dimensional logging data into thermal maps and utilizes a sliding window sampling strategy combined with data augmentation techniques to generate high-dimensional image inputs. This enables automatic classification of different reservoir fluid types, including water zones, gas zones, and gas–water coexisting zones. Application of the method to a logging dataset from 80 wells in the LX block demonstrates a fluid identification accuracy of 97.4%, outperforming conventional statistical methods and standalone machine learning algorithms. The ResViTNet model exhibits strong robustness and generalization capability, providing technical support for fluid identification and productivity evaluation in the exploration and development of tight gas reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 4032 KiB  
Article
Research on the Impact of Lighting Illuminance and Color on Creative Performance and Mood
by Bo Zhou, Yangxiaoxiao Zhou, Qixuan Ren, Li Peng, Yang Guan and Haiyin He
Buildings 2025, 15(10), 1738; https://doi.org/10.3390/buildings15101738 - 20 May 2025
Viewed by 895
Abstract
With the development of the knowledge economy, the significance of the creative industry has become increasingly prominent. Individual creativity can be stimulated by optimal lighting. This research consists of two parts: Part I examines the effects of illuminance and color temperature on creativity [...] Read more.
With the development of the knowledge economy, the significance of the creative industry has become increasingly prominent. Individual creativity can be stimulated by optimal lighting. This research consists of two parts: Part I examines the effects of illuminance and color temperature on creativity through three experiments, while Part II employs a two-factor repeated-measures design to investigate their interaction effects. The participants completed creativity tests during light exposure, including TTCT tasks in Part I of the experiment, and AUT and RAT tasks in Part II. They also completed questionnaires to assess their mood, and HRV data were collected for physiological analysis. The results showed that the subjects performed worse on a creativity test at an extremely low illuminance of 150 lx. Within a comfortable neutral lighting range, the participants’ creativity at 300 lx was superior to that at 1500 lx. In exploring light color, the conventional correlated color temperature (CCT) variable was replaced with colored lighting. The results indicated that both blue and orange light enhanced creative performance compared to white light. Additionally, an interactive effect of illuminance and colored lighting was observed. Fluency on the Alternative Uses Task (AUT) test was greater under 5000 K and 300 lx lighting, while originality on the AUT test was enhanced under 1500 lx, colored lighting. Emotional experience was found to be significantly correlated with creative performance. These findings contribute to the development of a design guideline that utilizes lighting intensity, color, and other elements to foster a relaxing indoor atmosphere that enhances positive mood and creativity. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop