Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Leaf Anatomical Structure Observation and Measurement
2.3. Physiological and Biochemical Index Measurements
- (1)
- Malondialdehyde (MDA) Content
- (2)
- Catalase (CAT) Activity
- (3)
- Peroxidase (POD) Activity
- (4)
- Superoxide Dismutase (SOD) Activity
- (5)
- Free Proline (Pro) Content
- (6)
- Soluble Protein (SP) Content
- (7)
- Soluble Sugar (SS) Content
- (8)
- Starch Content
2.4. RNA Extraction and Transcriptome Sequencing
2.4.1. RNA Isolation and Library Construction
2.4.2. Transcriptome Data Processing
2.4.3. qRT-PCR Validation
2.5. Data Analysis
3. Results
3.1. Effects of Light Intensity on Leaf Anatomical Structure in A. kusnezoffii
3.2. Physiological Responses of A. kusnezoffii to Different Light Intensities
3.2.1. Effects of Light Intensity on MDA Content in A. kusnezoffii Leaves
3.2.2. Effects of Light Intensity on Antioxidant Enzyme Activities in A. kusnezoffii Leaves
3.2.3. Effects of Light Intensity on Osmoregulatory Substances and Metabolites in A. kusnezoffii
3.3. Transcriptome Analysis
3.3.1. Quality Assessment of Sequencing Data
3.3.2. Differentially Expressed Gene (DEG) Analysis
3.3.3. GO Functional Annotation of Differentially Expressed Genes
3.3.4. KEGG Pathway Enrichment Analysis of Differentially Expressed Genes
3.3.5. Trend Analysis of Differentially Expressed Genes
3.3.6. Expression Patterns of Genes Involved in Light Signaling During Chloroplast Development in A. kusnezoffii
3.3.7. Expression Patterns of Photosynthesis-Related Genes Regulated by Light Signaling in A. kusnezoffii
3.3.8. Expression Patterns of Genes Involved in Photomorphogenesis of A. kusnezoffii Under Different Light Intensities
3.4. Relative Expression Analysis of Key Genes
4. Discussion
4.1. Regulation of Leaf Anatomical Structure in A. kusnezoffii Under Different Light Intensities
4.2. Physiological Response Mechanisms of A. kusnezoffii Under Different Light Intensities
4.3. Multi-Level Transcriptomic Response Mechanisms of A. kusnezoffii Under Different Light Intensities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, M.; Zhao, W.; Xing, M.; Zhao, J.; Jiang, Z.; You, J.; Ni, B.; Ni, Y.; Liu, C.; Li, J.; et al. Resource Allocation Strategies among Vegetative Growth, Sexual Reproduction, Asexual Reproduction and Defense during Growing Season of Aconitum kusnezoffii Reichb. Plant J. 2021, 105, 957–977. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, H.; Hu, Y.; Zhou, L.; Deng, C.; Nan, Z.; Ma, X.; Wu, X. Classification of Diterpenoid Alkaloids from Aconitum kusnezoffii Reichb. by Liquid Chromatography-Tandem Mass Spectrometry-Based on Molecular Networking. J. Sep. Sci. 2022, 45, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-N.; Yang, Y.-Y.; Xu, L.; Xing, Y.-P.; Zhao, R.; Ao, W.-L.; Zhang, T.-T.; Zhang, D.-C.; Song, Y.-Y.; Bao, G.-H.; et al. The Complete Mitochondrial Genome of Aconitum kusnezoffii Rchb. (Ranales, Ranunculaceae). Mitochondrial DNA Part B-Resour. 2021, 6, 779–781. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Zhao, D.-F.; Liang, X.-M.; Zhang, H.; Xiao, Y.-S. Identification of Diterpenoid Alkaloids from the Roots of Aconitum kusnezoffii Reihcb. Molecules 2011, 16, 3345–3350. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhang, D.; Wang, W.; Peng, C. Complete Chloroplast Genome of Medicinal Plant Aconitum carmichaelii: Genome Characterization and Phylogenetic Analysis. Mitochondrial DNA Part B-Resour. 2016, 1, 893–894. [Google Scholar] [CrossRef]
- Ouzounis, T.; Rosenqvist, E.; Ottosen, C.-O. Spectral Effects of Artificial Light on Plant Physiology and Secondary Metabolism: A Review. Hortscience 2015, 50, 1128–1135. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Zou, H.; Qiu, L.; Zheng, Y.; Yang, D.; Wang, Y. Effects of Light on Secondary Metabolite Biosynthesis in Medicinal Plants. Front. Plant Sci. 2021, 12, 781236. [Google Scholar] [CrossRef]
- Lazzarin, M.; Dupont, K.; van Ieperen, W.; Marcelis, L.F.M.; Driever, S.M. Far-Red Light Effects on Plant Photosynthesis: From Short-Term Enhancements to Long-Term Effects of Artificial Solar Light. Ann. Bot. 2024, 135, 589–602. [Google Scholar] [CrossRef]
- Yoshida, H.; Nishikawa, T.; Hikosaka, S.; Goto, E. Effects of Nocturnal UV-B Irradiation on Growth, Flowering, and Phytochemical Concentration in Leaves of Greenhouse-Grown Red Perilla. Plants 2021, 10, 1252. [Google Scholar] [CrossRef]
- Xie, D.; Tarin, M.W.K.; Chen, L.; Ren, K.; Yang, D.; Zhou, C.; Wan, J.; He, T.; Rong, J.; Zheng, Y. Consequences of LED Lights on Root Morphological Traits and Compounds Accumulation in Sarcandra glabra Seedlings. Int. J. Mol. Sci. 2021, 22, 7179. [Google Scholar] [CrossRef]
- Stepanova, A.; Solov’yova, A.; Salamaikina, S. Influence of Spectral Light Composition on Flavones Formation in Callus Culture of Scutellaria Baicalensis Georgi. Pharmacogn. Mag. 2020, 16, 156. [Google Scholar] [CrossRef]
- Wang, C.H.; Zheng, L.P.; Tian, H.; Wang, J.W. Synergistic Effects of Ultraviolet-B and Methyl Jasmonate on Tanshinone Biosynthesis in Salvia Miltiorrhiza Hairy Roots. J. Photochem. Photobiol. B Biol. 2016, 159, 93–100. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Prokopiuk, B.; Komsta, Ł.; Pawłowska, B.; Ekiert, H. The Influence of Light Quality on the Production of Bioactive Metabolites—Verbascoside, Isoverbascoside and Phenolic Acids and the Content of Photosynthetic Pigments in Biomass of Verbena officinalis L. Cultured in Vitro. J. Photochem. Photobiol. B Biol. 2020, 203, 111768. [Google Scholar] [CrossRef]
- Paiva, E.A.S.; Isaias, R.M.d.S.; Vale, F.H.A.; Queiroz, C.G.d.S. The Influence of Light Intensity on Anatomical Structure and Pigment Contents of Tradescantia Pallida (Rose) Hunt. Cv. Purpurea Boom (Commelinaceae) Leaves. Braz. Arch. Biol. Technol. 2003, 46, 617–624. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Q.; Luo, S.; Pan, J.; Yao, S.; Gao, C.; Guo, Y. Leaf Morphology, Structure, and Function of Camellia Oleifera (Abel) under Different Light Regimes. Eur. J. Hortic. Sci. 2022, 87, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Ren, X.; Khan, A.; Chen, K.; Gao, H.; Ma, X. Insights into Leaf Morphology, Photosynthetic Efficiency, and Light Adaptation in Cigar Tobacco as Light Intensity Transitions: A Comprehensive Analysis of Transcriptomic, Hormonal, and Physiological Responses. Ind. Crop. Prod. 2025, 230, 121087. [Google Scholar] [CrossRef]
- Ma, X.; Ren, X.; Gao, H.; Wu, X.; Chen, K.; Khan, R. Proteomic, Transcriptomic, Biochemical, and Physio-Anatomical Analyses Provide Insights into Energy Metabolism, Light Usage, and Photosynthesis in Cigar Tobacco under Different Light Intensities. Ind. Crop. Prod. 2023, 198, 116651. [Google Scholar] [CrossRef]
- Li, Y.; Liang, W.; Zhao, B. Physiological and Microstructural Responses of Two Rhododendron Cultivars to High Temperature and Low Light. Hortic. Environ. Biotechnol. 2020, 61, 445–458. [Google Scholar] [CrossRef]
- Gong, X.; Liu, C.; Dang, K.; Wang, H.; Du, W.; Qi, H.; Jiang, Y.; Feng, B. Mung Bean (Vigna radiata L.) Source Leaf Adaptation to Shading Stress Affects Not Only Photosynthetic Physiology Metabolism but Also Control of Key Gene Expression. Front. Plant Sci. 2022, 13, 753264. [Google Scholar] [CrossRef]
- Dong, C.; Fu, Y.; Liu, G.; Liu, H. Low Light Intensity Effects on the Growth, Photosynthetic Characteristics, Antioxidant Capacity, Yield and Quality of Wheat (Triticum aestivum L.) at Different Growth Stages in BLSS. Adv. Space Res. 2014, 53, 1557–1566. [Google Scholar] [CrossRef]
- Caliskan, O.; Odabas, M.S.; Cirak, C.; Radusiene, J.; Odabas, F. The Quantitative Effect of Temperature and Light Intensity at Growth in Origanum onites L. J. Med. Plants Res. 2010, 4, 551–558. [Google Scholar]
- Chen, Z.; Shah Jahan, M.; Mao, P.; Wang, M.; Liu, X.; Guo, S. Functional Growth, Photosynthesis and Nutritional Property Analyses of Lettuce Grown under Different Temperature and Light Intensity. J. Hortic. Sci. Biotechnol. 2021, 96, 53–61. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hahida, S.; Yoshihara, T. Effect of Green Light Wavelength and Intensity on Photomorphogenesis and Photosynthesis in Lactuca Sativa. Environ. Exp. Bot. 2012, 75, 128–133. [Google Scholar] [CrossRef]
- Albayrak, S.; Camas, N. Effects of Temperature and Light Intensity on Growth of Fodder Beet (Beta vulgaris L. Var. Crassa Mansf.). Bangladesh J. Bot. 2007, 36, 1–12. [Google Scholar]
- Wang, F.; Gao, Q.; Ji, G.; Wang, J.; Ding, Y.; Wang, S. Effects of Light Intensity and Photoperiod on Morphological Development and Photosynthetic Characteristics of Coriander. Horticulturae 2024, 10, 215. [Google Scholar] [CrossRef]
- Fan, X.-X.; Xu, Z.-G.; Liu, X.-Y.; Tang, C.-M.; Wang, L.-W.; Han, X. Effects of Light Intensity on the Growth and Leaf Development of Young Tomato Plants Grown under a Combination of Red and Blue Light. Sci. Hortic. 2013, 153, 50–55. [Google Scholar] [CrossRef]
- Pan, J.; Chen, H.; Guo, B.; Liu, C. Understanding the Molecular Mechanisms Underlying the Effects of Light Intensity on Flavonoid Production by RNA-Seq Analysis in Epimedium Pseudowushanense BLGuo. PLoS ONE 2017, 12, e0182348. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Li, Y.; Lu, B.; Zhang, W.; Shi, X.; Fu, H.; Long, G. The Effect of Light Intensity on the Chlorogenic Acid Biosynthesis Pathway in Marsdenia Tenacissima. Agronomy 2024, 14, 1063. [Google Scholar] [CrossRef]
- Ye, J.-H.; Lv, Y.-Q.; Liu, S.-R.; Jin, J.; Wang, Y.-F.; Wei, C.-L.; Zhao, S.-Q. Effects of Light Intensity and Spectral Composition on the Transcriptome Profiles of Leaves in Shade Grown Tea Plants (Camellia sinensis L.) and Regulatory Network of Flavonoid Biosynthesis. Molecules 2021, 26, 5836. [Google Scholar] [CrossRef]
- Fang, Z.-T.; Jin, J.; Ye, Y.; He, W.-Z.; Shu, Z.-F.; Shao, J.-N.; Fu, Z.-S.; Lu, J.-L.; Ye, J.-H. Effects of Different Shading Treatments on the Biomass and Transcriptome Profiles of Tea Leaves (Camellia sinensis L.) and the Regulatory Effect on Phytohormone Biosynthesis. Front. Plant Sci. 2022, 13, 909765. [Google Scholar] [CrossRef]
- Sun, L.; Li, D.; Ma, C.; Jiao, B.; Wang, J.; Zhao, P.; Dong, F.; Zhou, S. Transcriptomic Analysis of Wheat Under Multi LED Light Conditions. Plants 2025, 14, 46. [Google Scholar] [CrossRef]
- Li, T.; Li, B.; Liao, C.; Zhang, H.; Wang, L.; Fu, T.; Xue, S.; Sun, T.; Xu, X.; Fan, X.; et al. Transcriptome Analysis Provides Insights into Light Condition Effect on Paclitaxel Biosynthesis in Yew Saplings. BMC Plant Biol. 2022, 22, 577. [Google Scholar] [CrossRef]
- Shen, Y.; Mao, L.; Zhou, Y.; Sun, Y.; Liu, Z.; Liang, C. Integrated Transcriptome and Metabolome Analysis Revealed the Molecular Mechanism of Anthocyanin Synthesis in Purple Leaf Pepper (Capsicum annuum L.) under Different Light Intensities. Horticulturae 2023, 9, 814. [Google Scholar] [CrossRef]
- Zhao, N.; Geng, Z.; Zhao, G.; Liu, J.; An, Z.; Zhang, H.; Ai, P.; Wang, Y. Integrated Analysis of the Transcriptome and Metabolome Reveals the Molecular Mechanism Regulating Cotton Boll Abscission under Low Light Intensity. BMC Plant Biol. 2024, 24, 182. [Google Scholar] [CrossRef]
- Huang, Y.; Zhai, Y.; Huang, Y.; Huang, Y.; Liu, K.; Zhang, J.; Zhou, J. Effects of Light Intensity on Physiological Characteristics and Expression of Genes in Coumarin Biosynthetic Pathway of Angelica dahurica. Int. J. Mol. Sci. 2022, 23, 15912. [Google Scholar] [CrossRef]
- Nagano, S.; Mori, N.; Tomari, Y.; Mitsugi, N.; Deguchi, A.; Kashima, M.; Tezuka, A.; Nagano, A.J.; Usami, H.; Tanabata, T.; et al. Effect of Differences in Light Source Environment on Transcriptome of Leaf Lettuce (Lactuca sativa L.) to Optimize Cultivation Conditions. PLoS ONE 2022, 17, e0265994. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Guo, G.; Cui, L.; Rashid, M.A.R.; Jiang, L.; Sun, G.; Yang, J.; Zhang, Y. Combined Transcriptome and Metabolome Analysis Reveals the Effects of Light Quality on Maize Hybrids. BMC Plant Biol. 2023, 23, 41. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Sui, C.; Chen, Z.; Lv, C.; Luo, K.; Chen, J.; Wu, W. Exogenous Calcium Treatments Improve Growth, Photosynthesis and Resistance of Tobacco Seedlings under Low Light Stress and Transcriptome Analysis. Int. J. Agric. Biol. 2020, 24, 909–917. [Google Scholar]
Gene | Forward Primer | Reverse Primer |
---|---|---|
PFK | GATTTGCTTGCCATTCTTCTCTC | CTTGCAGTGAACCCACTC |
NCED | TGTTCCCGAATGTCCGTGT | TTCGCTCCGTTACGAAGA |
PP2C | TGGTGTTCGGTGGGAAAGAA | GACTTTGCCACCGGATA |
GA2ox | CTCCTGACCCTACTGACTT | GGGCCTTGTTGAGTTTGAT |
DELLA | TCCTCTGACATGGTTCACTAC | AGTGTCGAATCGGAGGAGC |
AMY | AGACTTGAGAGAGGAGAGGAA | ACAATAGGTGCTGGAGTCTT |
LHCB17 | ATGGGGGCTCTCTTCTTCTCTCT | TTAGTGAGCACGGTGTCC |
LHCB1 | ATGGCCCTCTTGATGTTTGC | TTAGTGAGCACGGTGTCC |
ATPβ | ATGGCGAGACCTTGGTGTTGT | TTAGTGGTCTCGGAAGTTTG |
PetA | ATGGAAGGTTCCATCCTCCA | TCAGTGAGCACGGTGTCC |
Sample | Clean Reads | Clean Bases | GC Content | %≥30 |
---|---|---|---|---|
A1 | 20,913,066 | 6,253,938,597 | 46.04% | 95.06% |
A2 | 20,937,218 | 6,271,699,310 | 45.75% | 95.17% |
A3 | 21,340,129 | 6,391,249,626 | 45.53% | 95.10% |
B1 | 20,952,999 | 6,277,146,897 | 45.67% | 94.81% |
B2 | 20,283,257 | 6,077,272,468 | 45.67% | 95.49% |
B3 | 21,234,781 | 6,359,402,361 | 45.79% | 94.81% |
C1 | 21,344,169 | 6,389,542,876 | 46.00% | 94.37% |
C2 | 20,223,069 | 6,055,680,316 | 45.82% | 95.49% |
C3 | 22,691,284 | 6,795,199,966 | 45.65% | 95.35% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, K.; Mu, Y.; Zhang, X. Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy. Genes 2025, 16, 898. https://doi.org/10.3390/genes16080898
Cao K, Mu Y, Zhang X. Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy. Genes. 2025; 16(8):898. https://doi.org/10.3390/genes16080898
Chicago/Turabian StyleCao, Kefan, Yingtong Mu, and Xiaoming Zhang. 2025. "Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy" Genes 16, no. 8: 898. https://doi.org/10.3390/genes16080898
APA StyleCao, K., Mu, Y., & Zhang, X. (2025). Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy. Genes, 16(8), 898. https://doi.org/10.3390/genes16080898