Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (189)

Search Parameters:
Keywords = Island landscape pattern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9488 KiB  
Article
Effects of 2D/3D Urban Morphology on Cooling Effect Diffusion of Urban Rivers in Summer: A Case Study of Huangpu River in Shanghai
by Yuhui Wang, Shuo Sheng, Junda Huang and Yuncai Wang
Land 2025, 14(7), 1498; https://doi.org/10.3390/land14071498 - 19 Jul 2025
Viewed by 236
Abstract
The diffusion effect of river cooling is critical for mitigating the urban heat island effect in riverside areas and for establishing an urban cooling network. River cooling effect diffusion is influenced by the two-dimensional (2D) and three-dimensional (3D) urban morphology of surrounding areas. [...] Read more.
The diffusion effect of river cooling is critical for mitigating the urban heat island effect in riverside areas and for establishing an urban cooling network. River cooling effect diffusion is influenced by the two-dimensional (2D) and three-dimensional (3D) urban morphology of surrounding areas. However, the characteristics of 2D/3D urban morphology that facilitate efficient river cooling effect diffusion remain unclear. This study establishes a technical framework to analyze river cooling effect diffusion resistance (RCDR) across different urban morphologies, using the Huangpu River waterside area in Shanghai as a case study. Seven urban morphology indicators, derived from both 2D and 3D dimensions, were developed to characterize the river cooling effect diffusion resistance. The relative contributions and marginal effects were analyzed using the Boosted Regression Tree (BRT) model. The study found that (1) river cooling effect diffusion was heterogeneous, with four typical patterns; (2) the Landscape Shape Index (LSI) and Blue-green Space Ratio (BGR) significantly impacted cooling effect diffusion; and (3) optimal cooling effect diffusion occurred when the blue-green space occupancy ratio exceeded 20% and building density ranged from 0.1 to 0.3. This study’s technical framework offers a new perspective on river cooling effect diffusion and heat island mitigation in riverside spaces, with significant practical value and potential for broader application. Full article
Show Figures

Figure 1

25 pages, 6935 KiB  
Article
Multi-Scale Analysis of the Mitigation Effect of Green Space Morphology on Urban Heat Islands
by Jie Liu, Xueying Wu, Liyu Pan and Chun-Ming Hsieh
Atmosphere 2025, 16(7), 857; https://doi.org/10.3390/atmos16070857 - 14 Jul 2025
Viewed by 238
Abstract
Urban green spaces (UGS) serve as critical mitigators of urban heat islands (UHIs), yet the scale-dependent mechanisms through which UGS morphology regulates thermal effects remain insufficiently understood. This study investigates the multi-scale relationships between UGS spatial patterns and cooling effects in Macao, employing [...] Read more.
Urban green spaces (UGS) serve as critical mitigators of urban heat islands (UHIs), yet the scale-dependent mechanisms through which UGS morphology regulates thermal effects remain insufficiently understood. This study investigates the multi-scale relationships between UGS spatial patterns and cooling effects in Macao, employing morphological spatial pattern analysis (MSPA) to characterize UGS configurations and geographically weighted regression (GWR) to examine city-scale thermal interactions, complemented by patch-scale buffer analyses of area, perimeter, and landscape shape index effects. Results demonstrate that high-UGS-integrity areas significantly enhance cooling capacity (area with proportion of core ≥35% showing optimal performance), while fragmented elements (branches, edges) exacerbate UHIs, with patch-scale analyses revealing nonlinear threshold effects in cooling efficiency. A tripartite classification of UGS by cooling capacity identifies strong mitigation types with optimal shape metrics and cooling extents. These findings establish a tripartite UGS classification system based on cooling performance and identify optimal morphological parameters, advancing understanding of thermal regulation mechanisms in urban environments. This research provides empirical evidence for UGS planning strategies prioritizing core area conservation, morphological optimization, and seasonal adaptation to improve urban climate resilience, offering practical insights for sustainable development in high-density coastal cities. Full article
(This article belongs to the Special Issue Urban Design Guidelines for Climate Change (2nd edition))
Show Figures

Figure 1

31 pages, 18606 KiB  
Article
Research on Thermal Environment Influencing Mechanism and Cooling Model Based on Local Climate Zones: A Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration
by Mengyu Ge, Zhongzhao Xiong, Yuanjin Li, Li Li, Fei Xie, Yuanfu Gong and Yufeng Sun
Remote Sens. 2025, 17(14), 2391; https://doi.org/10.3390/rs17142391 - 11 Jul 2025
Viewed by 276
Abstract
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan [...] Read more.
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXA) as a case study and systematically examined spatiotemporal patterns of LCZs and land surface temperature (LST) from 2002 to 2019, while elucidating mechanisms influencing urban thermal environments and proposing optimized cooling strategies. Key findings demonstrated that through multi-source remote sensing data integration, long-term LCZ classification was achieved with 1,592 training samples, maintaining an overall accuracy exceeding 70%. Landscape pattern analysis revealed that increased fragmentation, configurational complexity, and diversity indices coupled with diminished spatial connectivity significantly elevate LST. Rapid development of the city in the vertical direction also led to an increase in LST. Among seven urban morphological parameters, impervious surface fraction (ISF) and pervious surface fraction (PSF) demonstrated the strongest correlations with LST, showing Pearson coefficients of 0.82 and −0.82, respectively. Pearson coefficients of mean building height (BH), building surface fraction (BSF), and mean street width (SW) also reached 0.50, 0.55, and 0.66. Redundancy analysis (RDA) results revealed that the connectivity and fragmentation degree of LCZ_8 (COHESION8) was the most critical parameter affecting urban thermal environment, explaining 58.5% of LST. Based on these findings and materiality assessment, the regional cooling model of “cooling resistance surface–cooling source–cooling corridor–cooling node” of CZXA was constructed. In the future, particular attention should be paid to the shape and distribution of buildings, especially large, openly arranged buildings with one to three stories, as well as to controlling building height and density. Moreover, tailored protection strategies should be formulated and implemented for cooling sources, corridors, and nodes based on their hierarchical significance within urban thermal regulation systems. These research outcomes offer a robust scientific foundation for evidence-based decision-making in mitigating UHI effects and promoting sustainable urban ecosystem development across urban agglomerations. Full article
Show Figures

Figure 1

23 pages, 8779 KiB  
Article
Visual Storytelling of Landscape Change on Rathlin Island, UK
by Ying Zheng, Rebecca Jane McConnell, Zehan Zhou, Tom Jefferies, Greg Keeffe, Sean Cullen and Emma Campbell
Land 2025, 14(6), 1304; https://doi.org/10.3390/land14061304 - 19 Jun 2025
Viewed by 577
Abstract
Islands represent distinctive geographical landscapes where cultural heritage, history, and ecological systems converge, offering critical insights into human–environment interactions. This study investigates how visual storytelling through digital tools such as the Historical Environment Map Viewer, Environment Digimap, Google Maps and Google Street View, [...] Read more.
Islands represent distinctive geographical landscapes where cultural heritage, history, and ecological systems converge, offering critical insights into human–environment interactions. This study investigates how visual storytelling through digital tools such as the Historical Environment Map Viewer, Environment Digimap, Google Maps and Google Street View, and ArcGIS Field Maps can be employed to capture, interpret, and communicate islands’ landscape changes. By integrating historical environmental mapping, landscape change mapping, street map views, and field observations, this study creates a layered visual narrative that reveals shifts in land use, settlement patterns, and ecological features over time. Rathlin Island represents a distinctive island landscape, and this study uses visual storytelling as a tool to foster a broader public understanding of environmental conservation and engagement with the island’s ecologial challenges. The study demonstrates that multi-perspective, interdisciplinary methods provide valuable insights into the complex dynamics of landscape change, while also offering a comprehensive vision of sustainable future landscape on small islands. Full article
(This article belongs to the Special Issue Urban Resilience and Heritage Management (Second Edition))
Show Figures

Figure 1

19 pages, 10983 KiB  
Article
Spatiotemporal Variations of Cropland Quality and Morphology Under the Requisition–Compensation Balance Policy
by Zhuochun Lin, Zejia Chen, Fengyu Zhang, Jiapei Li, Yifei Liufu, Lisiren Cao and Jinyao Lin
Land 2025, 14(6), 1235; https://doi.org/10.3390/land14061235 - 8 Jun 2025
Viewed by 561
Abstract
The Requisition–Compensation Balance of Cropland (RCBC) policy is important for ensuring food security. Previous studies have mainly focused on the quantity and quality of cropland when assessing the impacts of this policy. In terms of morphology, previous studies have primarily relied on landscape [...] Read more.
The Requisition–Compensation Balance of Cropland (RCBC) policy is important for ensuring food security. Previous studies have mainly focused on the quantity and quality of cropland when assessing the impacts of this policy. In terms of morphology, previous studies have primarily relied on landscape indicators. Therefore, this study aims to thoroughly analyze the impacts of the RCBC policy on the quality and morphology of cropland (especially morphological spatial pattern analysis, MSPA) in the Pearl River Delta (PRD) during 1996–2021. To this end, we constructed a comprehensive evaluation index system by combining MSPA, landscape indicators, and field research. The results show that the cropland quality in the PRD has exhibited a consistent improvement trend. High-quality cropland is spreading from central cities to the periphery, and the spatial distribution is becoming more even. Nonetheless, MSPA reveals an increasing trend of cropland fragmentation. The results indicate a decline in the area of the “core”, an increase in the area of the “island”, and a decrease in the connectivity of the cropland. Our field research confirms that the RCBC policy has indirectly exacerbated cropland fragmentation. In many regions of the PRD, the fragmentation of cropland hinders the application of agricultural mechanization and increases the cost of cultivation, resulting in severe cropland abandonment. Therefore, local governments should implement rigorous planning and prioritize cropland morphology when compensating cropland. Our findings are expected to provide empirical evidence for improving the RCBC policy and protecting cropland. Full article
Show Figures

Figure 1

21 pages, 13494 KiB  
Article
Analysis of the Coupling Trend Between the Urban Agglomeration Development and Land Surface Heat Island Effect: A Case Study of Guanzhong Plain Urban Agglomeration, China
by Xiaogang Feng, Fei Li, Sekhar Somenahalli, Yang Zhao, Meng Li, Zaihui Zhou and Fengxia Li
Sustainability 2025, 17(12), 5239; https://doi.org/10.3390/su17125239 - 6 Jun 2025
Viewed by 526
Abstract
The exploration of the coupling trend between urban agglomeration development (UAD) and land surface temperature (LST) expansion is of great significance, and it is of scientific value for the regulation of the thermal environment of urban agglomerations, the optimization of urban spatial planning, [...] Read more.
The exploration of the coupling trend between urban agglomeration development (UAD) and land surface temperature (LST) expansion is of great significance, and it is of scientific value for the regulation of the thermal environment of urban agglomerations, the optimization of urban spatial planning, and the achievement of sustainable urban development. This study employs an array of remote sensing datasets from multiple sources—employing a multi-faceted approach encompassing an overall coupling situation analysis model, a coordination and evaluation system, a geographically weighted spatial autocorrelation algorithm, and landscape pattern quantification indicators—to explore the mutual feedback mechanism and spatial coupling characterization of LST and UAD in the Guanzhong Plain Urban Agglomeration (GZPUA). The results of the study can provide data support for urban spatial planning and thermal environment regulation. The results indicate the following findings: (1) In the GZPUA, the nighttime light (NTL) and land surface temperature (LST) centroids show a significant tendency toward approaching one another, with a spatial offset decreasing from 45.0 km to 9.1 km at the end, indicating a strengthening trend in the photothermal system’s coupling synergy. (2) The coordination of light and heat in the study area exhibits significant non-equilibrium development, with a dynamic trend of urban development space shifting towards the southwest. It confirms the typical regional response law of rapid urbanization. (3) The Moran’s I index of the photothermal system in the study area increased from 0.289 to 0.335, an increase of 15.9%. The proportion of “high–high” (H-H)/“low–low” (L-L)-type regions with clustering distribution of cold and hot spots reaches 58.01%, and their spatial continuity characteristics are significantly enhanced, indicating a significant trend of spatial structural integration between urban heat island effect and construction land expansion. Full article
Show Figures

Graphical abstract

15 pages, 2121 KiB  
Article
The Seasonality and Spatial Landscape of the Historical Climate-Based Suitability of Aedes-Borne Viruses in Four Atlantic Archipelagos
by Martim A. Geraldes, Marta Giovanetti, Mónica V. Cunha and José Lourenço
Viruses 2025, 17(6), 799; https://doi.org/10.3390/v17060799 - 30 May 2025
Viewed by 618
Abstract
While archipelagos have a demonstrated role in the stepping-stone process of the global dissemination of Aedes-borne viruses, they are often neglected in epidemiological and modelling studies. Over the past 20 years, some Atlantic archipelagos have witnessed a series of Aedes-borne viral [...] Read more.
While archipelagos have a demonstrated role in the stepping-stone process of the global dissemination of Aedes-borne viruses, they are often neglected in epidemiological and modelling studies. Over the past 20 years, some Atlantic archipelagos have witnessed a series of Aedes-borne viral outbreaks, prompting inquiries into the local historical suitability for transmission. In this study, the climate-based suitability for transmission of Aedes-borne viruses between 1980 and 2019 across Madeira, the Canaries, Cape Verde, and São Tomé e Príncipe archipelagos was estimated. For each island, we characterized the seasonality of climate-based suitability, mapped the spatial landscape of suitability, and quantified the historical effects of climate change. Results show that both island-level suitability and the historical impact of climate change decrease with distance from the equator, while significant seasonality patterns are observed only in subtropical climates. This study provides a unique historical perspective on the role of climate in shaping Aedes-borne virus transmission potential in Atlantic archipelagos. The findings herein described can inform local public health initiatives, including human-based prevention, targeted viral surveillance, and mosquito control programs. Full article
(This article belongs to the Special Issue Arboviruses and Climate, 2nd Edition)
Show Figures

Figure 1

22 pages, 11587 KiB  
Article
Multi-Scale Analysis of Green Space Patterns in Thermal Regulation Using Boosted Regression Tree Model: A Case Study in Central Urban Area of Shijiazhuang, China
by Haotian Liu and Yun Qian
Sustainability 2025, 17(11), 4874; https://doi.org/10.3390/su17114874 - 26 May 2025
Viewed by 427
Abstract
Multi-scale thermal regulation of urban green spaces is critical for climate-adaptive planning. Addressing the limited research on key indicators and cross-scale synergies in high-density areas, this study developed an integrated framework combining multi-granularity grids and boosted regression tree (BRT) modeling to investigate nonlinear [...] Read more.
Multi-scale thermal regulation of urban green spaces is critical for climate-adaptive planning. Addressing the limited research on key indicators and cross-scale synergies in high-density areas, this study developed an integrated framework combining multi-granularity grids and boosted regression tree (BRT) modeling to investigate nonlinear scale-dependent relationships between landscape parameters and land surface temperature (LST) in the central urban area of Shijiazhuang. Key findings: (1) Spatial heterogeneity and scale divergence: Vegetation coverage (FVC) and green space area (AREA) showed decreasing contributions at larger scales, while configuration metrics (e.g., aggregation index (AI), edge density (ED)) exhibited positive scale responses, confirming a dual mechanism with micro-scale quality dominance and macro-scale pattern regulation. (2) Threshold effects quantification: The BRT model revealed peak marginal cooling efficiency (0.8–1.2 °C per 10% FVC increment) within 30–70% FVC ranges, with minimum effective green patch area thresholds increasing from 0.6 ha (micro-scale) to 3.5 ha (macro-scale). (3) Based on multi-scale cooling mechanism analysis, a three-tier matrix optimization framework for green space strategies is established, integrating “micro-level regulation, meso-level connectivity, and macro-level anchoring”. This study develops a green space optimization paradigm integrating machine learning-driven analysis, multi-scale coupling, and threshold-based management, providing methodological tools for mitigating urban heat islands and enhancing climate resilience in high-density cities. Full article
(This article belongs to the Special Issue A Systems Approach to Urban Greenspace System and Climate Change)
Show Figures

Figure 1

20 pages, 2416 KiB  
Article
Examination of Runs of Homozygosity Distribution Patterns and Relevant Candidate Genes of Potential Economic Interest in Russian Goat Breeds Using Whole-Genome Sequencing
by Tatiana E. Deniskova, Arsen V. Dotsev, Olga A. Koshkina, Anastasia D. Solovieva, Nadezhda A. Churbakova, Sergey N. Petrov, Alexey N. Frolov, Stanislav A. Platonov, Alexandra S. Abdelmanova, Maxim A. Vladimirov, Elena A. Gladyr, Igor V. Gusev, Svyatoslav V. Lebedev, Darren K. Griffin, Michael N. Romanov and Natalia A. Zinovieva
Genes 2025, 16(6), 631; https://doi.org/10.3390/genes16060631 - 24 May 2025
Viewed by 510
Abstract
Background/Objectives: Whole-genome sequencing (WGS) data provide valuable information about the genetic architecture of local livestock but have not yet been applied to Russian native goats, in particular, the Orenburg and Karachay breeds. A preliminary search for selection signatures based on single nucleotide polymorphism [...] Read more.
Background/Objectives: Whole-genome sequencing (WGS) data provide valuable information about the genetic architecture of local livestock but have not yet been applied to Russian native goats, in particular, the Orenburg and Karachay breeds. A preliminary search for selection signatures based on single nucleotide polymorphism (SNP) genotype data in these breeds was not informative. Therefore, in this study, we aimed to address runs of homozygosity (ROHs) patterns and find the respective signatures of selection overlapping candidate genes in Orenburg and Karachay goats using the WGS approach. Methods: Paired-end libraries (150 bp reads) were constructed for each animal. Next-generation sequencing was performed using a NovaSeq 6000 sequencer (Illumina, Inc., San Diego, CA, USA), with ~20X genome coverage. ROHs were identified in sliding windows, and ROH segments shared by at least 50% of the samples were considered as ROH islands. Results: ROH islands were identified on chromosomes CHI3, CHI5, CHI7, CHI12, CHI13, and CHI15 in Karachay goats; and CHI3, CHI11, CHI12, CHI15, and CHI16 in Orenburg goats. Shared ROH islands were found on CHI12 (containing the PARP4 and MPHOSPH8 candidate genes) and on CHI15 (harboring STIM1 and RRM1). The Karachay breed had greater ROH length and higher ROH number compared to the Orenburg breed (134.13 Mb and 695 vs. 78.43 Mb and 438, respectively). The genomic inbreeding coefficient (FROH) varied from 0.032 in the Orenburg breed to 0.054 in the Karachay breed. Candidate genes associated with reproduction, milk production, immunity-related traits, embryogenesis, growth, and development were identified in ROH islands in the studied breeds. Conclusions: Here, we present the first attempt of elucidating the ROH landscape and signatures of selection in Russian local goat breeds using WGS analysis. Our findings will pave the way for further insights into the genetic mechanisms underlying adaption and economically important traits in native goats. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

26 pages, 5643 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Surface Urban Heat Island Effect in Nanjing, China (2000–2020)
by Quan An, Ge Shi, Jiahang Liu, Chuang Chen, Xinyu Li, Xiaoyu Tao, Zhuang Tian and Yunpeng Zhang
Remote Sens. 2025, 17(11), 1837; https://doi.org/10.3390/rs17111837 - 24 May 2025
Viewed by 673
Abstract
This study integrates the analysis of surface temperature data with natural and anthropogenic factors closely related to the urban thermal environment in Nanjing from 2000 to 2020, exploring the spatiotemporal variation characteristics of the urban heat island effect and the interactive relationships among [...] Read more.
This study integrates the analysis of surface temperature data with natural and anthropogenic factors closely related to the urban thermal environment in Nanjing from 2000 to 2020, exploring the spatiotemporal variation characteristics of the urban heat island effect and the interactive relationships among its influencing factors. The research findings are as follows: (1) Between 2000 and 2020, the urban heat island effect in Nanjing exhibited an expansion trend radiating from the city center to the periphery, with the heat island phenomenon primarily concentrated in the old urban areas characterized by developed commerce, industry, and dense populations. Surface temperatures gradually decreased from the city center to the suburbs, forming a distinct spatial distribution gradient. Both the standard deviation ellipse and the centroid of high-temperature areas showed a southward shift. (2) Significant differences in surface temperatures were observed across different land use types, with built-up areas and arable land maintaining relatively stable and higher surface temperatures, while water bodies and forests exhibited lower and stable surface temperatures. (3) Vegetation coverage, normalized water body index, elevation, dispersion, and the Shannon diversity index were negatively correlated with surface temperature, while the normalized difference bare land index, building index, dispersion index, and patch cohesion index were positively correlated with surface temperature. In Nanjing, the interactive effects of dual factors on the urban heat island effect were found to be greater than those of individual factors, with vegetation coverage identified as the most critical factor affecting surface temperature. Considering multidimensional factors together enhances the understanding of the spatial patterns and causes of the urban heat island effect, clarifies the interrelationships and degrees of influence among natural, socio-economic, and landscape pattern factors, and provides a scientific basis for improving the quality of the living environment in Nanjing. Full article
(This article belongs to the Special Issue GeoAI and EO Big Data Driven Advances in Earth Environmental Science)
Show Figures

Figure 1

32 pages, 11121 KiB  
Article
Construction of a Cold Island Spatial Pattern from the Perspective of Landscape Connectivity to Alleviate the Urban Heat Island Effect
by Qianli Ouyang, Bohong Zheng, Junyou Liu, Xi Luo, Shengyan Wu and Zhaoqian Sun
ISPRS Int. J. Geo-Inf. 2025, 14(6), 209; https://doi.org/10.3390/ijgi14060209 - 23 May 2025
Viewed by 694
Abstract
This study presents an innovative approach to mitigating the urban heat island (UHI) effect by constructing a cold island spatial pattern (CSP) from the perspective of landscape connectivity, integrating three-dimensional (3D) urban morphology and meteorological factors for the first time. Unlike traditional studies [...] Read more.
This study presents an innovative approach to mitigating the urban heat island (UHI) effect by constructing a cold island spatial pattern (CSP) from the perspective of landscape connectivity, integrating three-dimensional (3D) urban morphology and meteorological factors for the first time. Unlike traditional studies that focus on isolated patches or single-city scales, we propose a hierarchical framework for urban agglomerations, combining morphological spatial pattern analysis (MSPA), landscape connectivity assessment, and circuit theory to a construct CSP at the scale of urban agglomeration. By incorporating wind environment data and 3D building features (e.g., height, density) into the resistance surface, we enhance the accuracy of cooling network identification, revealing 39 cold island sources, 89 cooling corridors, and optimal corridor widths (600 m) in the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXUA). Ultimately, a three-tiered heat island mitigation framework for urban agglomerations was established based on the CSP. This study offers an innovative perspective on urban climate adaptability planning within the context of contemporary urbanization. Our methodology and findings provide critical insights for future studies to integrate multiscale, multidimensional, and climate-adaptive approaches in urban thermal environment governance, fostering sustainable urbanization under escalating climate challenges. Full article
Show Figures

Figure 1

20 pages, 4743 KiB  
Article
Spatiotemporal Analysis of Urban Heat Islands in Kisangani City Using MODIS Imagery: Exploring Interactions with Urban–Rural Gradient, Building Volume Density, and Vegetation Effects
by Julien Bwazani Balandi, Trésor Mbavumoja Selemani, Jean-Pierre Pitchou Meniko To Hulu, Kouagou Raoul Sambieni, Yannick Useni Sikuzani, Jean-François Bastin, Prisca Tshomba Wola, Jacques Elangilangi Molo, Joël Mobunda Tiko, Bill Mahougnon Agassounon and Jan Bogaert
Climate 2025, 13(5), 89; https://doi.org/10.3390/cli13050089 - 29 Apr 2025
Viewed by 1290
Abstract
The urban heat island (UHI) effect has emerged in the literature as a major challenge to urban well-being, primarily driven by increasing urbanization. To address this challenge, this study investigates the spatiotemporal pattern of the UHI in the fast-growing city of Kisangani and [...] Read more.
The urban heat island (UHI) effect has emerged in the literature as a major challenge to urban well-being, primarily driven by increasing urbanization. To address this challenge, this study investigates the spatiotemporal pattern of the UHI in the fast-growing city of Kisangani and within its urban–rural gradient from 2000 to 2024 using land surface temperature (LST) data from the MODIS 11A2 V6.1 product. Inferential and descriptive statistics were applied to examine the patterns of UHI and the relationships between the LST, building volume density (BVD), and vegetation density expressed by the Normalized Difference Vegetation Index (NDVI). The results showed that the spatial extent of the moderate UHI gradually increased from 16 km2 to 38 km2, while the high UHI increased from 9 km2 to 19 km2. Furthermore, although high UHI values (0.2 < UHI ≤ 0.3) are observed in urban areas and significant differences in UHI variations are detected across urban, peri-urban, and rural zones, the results indicate that the mean UHI in Kisangani’s urban areas remains below 0.2. Therefore, based on average UHI variations, Kisangani’s urban zones exhibit moderate disparities in LST compared to rural areas. Moreover, the LST variations significantly correlate with the building volume and vegetation densities. However, the influence of vegetation density as a predictor of LST gradually decreases while the influence of building volume density increases over time, suggesting the need to implement a synergistic development pathway to manage the interactions between urbanization, landscape change, and ecosystem service provision. This integrated approach may represent a crucial solution for mitigating the UHI effect in regions categorized as high-temperature zones. Full article
Show Figures

Figure 1

26 pages, 4524 KiB  
Article
Spatiotemporal Dynamics and Simulation of Landscape Ecological Risk and Ecological Zoning Under the Construction of Free Trade Pilot Zones: A Case Study of Hainan Island, China
by Yixi Ma, Mingjiang Mao, Zhuohong Xie, Shijie Mao, Yongshi Wang, Yuxin Chen, Jinming Xu, Tiedong Liu, Wenfeng Gong and Lingbing Wu
Land 2025, 14(5), 940; https://doi.org/10.3390/land14050940 - 25 Apr 2025
Viewed by 698
Abstract
Free trade zones are key regions experiencing rapid economic growth, urbanization, and a sharp increase in population density. During the development of free trade zones, these areas undergo drastic transformations in landscape types, large-scale urban construction, heightened resource consumption, and other associated challenges. [...] Read more.
Free trade zones are key regions experiencing rapid economic growth, urbanization, and a sharp increase in population density. During the development of free trade zones, these areas undergo drastic transformations in landscape types, large-scale urban construction, heightened resource consumption, and other associated challenges. These factors have led to severe landscape ecological risk (LER). Therefore, conducting comprehensive assessments and implementing effective management strategies for LER is crucial in advancing ecological civilization and ensuring high-quality development. This study takes Hainan Island (HI), China, as a case study and utilizes multi-source data to quantitatively evaluate land use and land cover change (LULCC) and the evolution of the LER in the study area from 2015 to 2023. Additionally, it examines the spatial patterns of LER under three future scenarios projected for 2033: a natural development scenario (NDS), an economic priority scenario (EPS), and an ecological conservation scenario (ECS). Adopting a spatiotemporal dynamic perspective framed by the “historical–present–future” approach, this research constructs a zoning framework for LER management to examine the temporal and spatial processes of risk evolution, its characteristics, future trends, and corresponding management strategies. The results indicate that, over an eight-year period, the area of built-up land expanded by 40.31% (504.85 km2). Specifically, between 2015 and 2018, built-up land increased by 95.85 km2, while, from 2018 to 2023, the growth was significantly larger at 409.00 km2, highlighting the widespread conversion of cropland into built-up land. From 2015 to 2023, the spatial distribution of LER in the study area exhibited a pattern of high-risk peripheries (central mountainous areas) and low-risk central regions (coastal areas). Compared to 2023, projections for 2033 under different scenarios indicate a decline in cropland (by approximately 17.8–19.45%) and grassland (by approximately 24.06–24.22%), alongside an increase in forestland (by approximately 4.5–5.35%) and built-up land (by approximately 23.5–41.35%). Under all three projected scenarios, high-risk areas expand notably, accounting for 4.52% (NDS), 3.33% (ECS), and 5.75% (EPS) of the total area. The LER maintenance area (65.25%) accounts for the largest proportion, primarily distributed in coastal economic development areas and urban–rural transition areas. In contrast, the LER mitigation area (7.57%) has the smallest proportion. Among the driving factors, the GDP (q = 0.1245) and year-end resident population (q = 0.123) were identified as the dominant factors regarding the spatial differentiation of LER. Furthermore, the interaction between economic factors and energy consumption further amplifies LER. This study proposes a policy-driven dynamic risk assessment framework, providing decision-making support and scientific guidance for LER management in tropical islands and the optimization of regional land spatial planning. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

27 pages, 3476 KiB  
Article
Where to Protect? Spatial Ecology and Conservation Prioritization of the Persian Squirrel at the Westernmost Edge of Its Distribution
by Yiannis G. Zevgolis, Alexandros D. Kouris, Apostolos Christopoulos, Marios Leros, Maria Loupou, Dimitra-Lida Rammou, Dionisios Youlatos and Andreas Y. Troumbis
Land 2025, 14(4), 876; https://doi.org/10.3390/land14040876 - 16 Apr 2025
Cited by 1 | Viewed by 956
Abstract
Understanding fine-scale spatial ecology is essential for defining effective conservation priorities, particularly at the range margins of vulnerable species. Here, we investigate the spatial ecology and habitat associations of the Persian squirrel (Sciurus anomalus) on Lesvos Island, Greece, representing the species’ [...] Read more.
Understanding fine-scale spatial ecology is essential for defining effective conservation priorities, particularly at the range margins of vulnerable species. Here, we investigate the spatial ecology and habitat associations of the Persian squirrel (Sciurus anomalus) on Lesvos Island, Greece, representing the species’ westernmost distribution. Using a randomized grid-based survey, we recorded 424 presence records across the island and applied a suite of spatial analyses, including Kernel Density Estimation, Getis-Ord Gi*, and Anselin Local Moran’s I, to detect hotspots, coldspots, and spatial outliers. Binomial Logistic Regression, supported by Principal Component Analysis, identified key ecological drivers of habitat use, while spatial regression models (Spatial Lag and Spatial Error Models) quantified the influence of land-use characteristics and spatial dependencies on hotspot intensity and clustering dynamics. Our results showed that hotspots were primarily associated with olive-dominated and broadleaved landscapes, while coldspots and Low–Low clusters were concentrated in fragmented or degraded habitats, often outside protected areas. Spatial outliers revealed fine-scale deviations from broader patterns, indicating local habitat disruptions and emerging conservation risks not captured by existing Natura 2000 boundaries. Spatial regression confirmed that both hotspot intensity and clustering patterns were shaped by specific land-use features and spatially structured processes. Collectively, our findings underscore the fragmented nature of suitable habitats and the absence of cohesive population cores, reinforcing the need for connectivity-focused, landscape-scale conservation. Full article
(This article belongs to the Section Land, Biodiversity, and Human Wellbeing)
Show Figures

Figure 1

29 pages, 7740 KiB  
Article
Analyzing the Spatial-Temporal Patterns of Urban Heat Islands in Nanjing: The Role of Urbanization and Different Land Uses
by Ji-Yu Deng, Hua Lao, Chenyang Mei, Yizhen Chen, Yueyang He and Kaihuai Liao
Buildings 2025, 15(8), 1289; https://doi.org/10.3390/buildings15081289 - 14 Apr 2025
Viewed by 436
Abstract
This study explores the spatiotemporal distribution and formation mechanisms of urban heat islands (UHIs) in Nanjing during summer, utilizing temperature data from 82 automatic weather stations (AWSs) distributed across five concentric zones. The results demonstrate the substantial impact of urbanization on UHI patterns, [...] Read more.
This study explores the spatiotemporal distribution and formation mechanisms of urban heat islands (UHIs) in Nanjing during summer, utilizing temperature data from 82 automatic weather stations (AWSs) distributed across five concentric zones. The results demonstrate the substantial impact of urbanization on UHI patterns, with industrial and densely populated areas exhibiting higher UHI intensity (UHII), while regions with natural landscapes such as mountains and water bodies display lower temperatures. The analysis reveals that the most pronounced night-time UHI effect occurs in the highly urbanized central zones, whereas the weakest effect is observed during midday. Transitional UHI phases are identified around sunrise and sunset, with increased long-wave radiation post-sunset amplifying the UHI effect. Additionally, this study underscores the directional characteristics of UHI distribution in Nanjing. Notably, Hexi New Town has emerged as a new high-temperature hotspot due to rapid urbanization, while Jiangning New Town and Xianlin Sub-City maintain lower temperatures owing to their proximity to agricultural and forested areas. By selecting representative AWSs from different zones, this study introduces a novel and practical method for calculating UHII. Although the approach has limitations in precision, it provides an accessible tool for UHI analysis and can be adapted for use in other cities. This research offers valuable insights into the influence of urban development on local climate and presents a practical framework for future UHI studies and urban planning strategies aimed at mitigating UHI effects. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop