Spatiotemporal Analysis of Urban Heat Islands in Kisangani City Using MODIS Imagery: Exploring Interactions with Urban–Rural Gradient, Building Volume Density, and Vegetation Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Flowchart
2.3. Data Used
2.4. Data-Processing
2.5. Land Surface Temperature (LST) and Urban Heat Island (UHI) Derivation
2.6. Spatial Analysis and Delineation of Urban–Rural Gradient Zones
3. Results
3.1. Spatiotemporal Patterns of Urban Heat Island (UHI)
3.2. Variation in LST and UHI Across the Urban–Rural Gradient in 2024
3.3. Historical Variations in LST and UHI Across the Urban–Rural Gradient
3.4. Building Volume Density (BVD) and Vegetation Effects
4. Discussion
4.1. Spatiotemporal Patterns of Urban Heat Island
4.2. Impact of Building Architecture on the LST
4.3. Effective and Resilient Mitigation Strategies of UHI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jato-Espino, D. Spatiotemporal Statistical Analysis of the Urban Heat Island e Ff Ect in a Mediterranean Region. Sustain. Cities Soc. 2019, 46, 101427. [Google Scholar] [CrossRef]
- Dwivedi, A.; Khire, M.V. Application of Split- Window Algorithm to Study Urban Heat Island e Ff Ect in Mumbai through Land Surface Temperature Approach. Sustain. Cities Soc. 2018, 41, 865–877. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Giannitsaris, I.; Watkins, R. The Effect of the London Urban Heat Island on Building Summer Cooling Demand and Night Ventilation Strategies. Sol. Energy 2006, 80, 383–392. [Google Scholar] [CrossRef]
- Liu, K.; Su, H.; Zhang, L.; Yang, H.; Zhang, R.; Li, X. Analysis of the Urban Heat Island Effect in Shijiazhuang, China Using Satellite and Airborne Data. Remote Sens. 2015, 7, 4804–4833. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island. Int. J. Clim. 2003, 26, 1–26. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: Abingdon, UK, 2002. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Taha, H. Urban Climates and Heat Islands: Albedo, Evapotranspiration, and Anthropogenic Heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef]
- Candra, A.; Lecturer, K.; Nitivattananon, V. Factors Influencing Urban Heat Island in Surabaya, Indonesia. Sustain. Cities Soc. 2016, 27, 99–105. [Google Scholar] [CrossRef]
- Prilandita, N. Perceptions and Responses to Warming in an Urban Environment: A Case Study of Bandung City, Indonesia. J. Infrastruct. Built Environ. 2009, 1, 51–58. [Google Scholar]
- Martínez, F.; Fernando, N.; Aragonés, N.; Benítez, P.; Buitrago, M.J.; Casas, I.; Cortés, M.; Dürr, U.; Herrera, D.; Izquierdo, A.; et al. Assessment of the Impact of the Summer 2003 Heat Wave on Mortality. Gac. Sanit. 2004, 18 (Suppl. 1), 250–258. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Garcia-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A Review of the European Summer Heat Wave of 2003 A Review of the European Summer Heat Wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Z.; Ye, X.; Cai, Y.; Ma, W.; Chen, M. Analysis of Land Use/Land Cover Change, Population Shift, and Their Effects on Spatiotemporal Patterns of Urban Heat Islands in Metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Mandal, J.; Pravin, P.; Samanta, S. Examining the Expansion of Urban Heat Island Effect in the Kolkata Metropolitan Area and Its Vicinity Using Multi-Temporal MODIS Satellite Data. Adv. Sp. Res. 2022, 69, 1960–1977. [Google Scholar] [CrossRef]
- Malley, C.O.; Piroozfarb, P.A.E.; Farr, E.R.P.; Gates, J. An Investigation into Minimizing Urban Heat Island (UHI) Effects: A UK Perspective. Energy Procedia 2014, 62, 72–80. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Chapman, S.; Id, M.D. How Urbanisation Alters the Intensity of the Urban Heat Island in a Tropical African City. PLoS ONE 2021, 16, e0254371. [Google Scholar] [CrossRef]
- Wemegah, C.S.; Yamba, E.I.; Aryee, J.N.A.; Sam, F.; Amekudzi, L.K. Assessment of Urban Heat Island Warming in the Greater Accra Region. Sci. Afr. 2020, 8, e00426. [Google Scholar] [CrossRef]
- Balandi, J.B.; To Hulu, J.P.; Sambieni, K.R.; Sikuzani, Y.U.; Bastin, J.-F.; Musavandalo, C.M.; Nguba, T.B.; Molo, J.E.; Selemani, T.M.; Mweru, J.P.; et al. Urban Sprawl and Changes in Landscape Patterns: The Case of Kisangani City and Its Periphery (DR Congo). Land 2023, 12, 2066. [Google Scholar] [CrossRef]
- Balandi, J.B.; Meniko, J.-P.P.T.H.; Sambieni, K.R.; Sikuzani, Y.U.; Bastin, J.-F.; Musavandalo, C.M.; Nguba, T.B.; Jesuka, R.; Sodalo, C.; Pika, L.M.; et al. Anthropogenic Effects on Green Infrastructure Spatial Patterns in Kisangani City and Its Urban—Rural Gradient. Land 2024, 13, 1794. [Google Scholar] [CrossRef]
- UN-Habitat. Habitat III RD Congo: Rapport Final; UN-Habitat: Nairobi, Kenya, 2015; pp. 1–93. [Google Scholar]
- Sabongo, P.Y. Etude Comparative de La Structure et de La Diversité Des Forêts à Gilbertiodendron Dewevrei (De Wild) J.Léonard Des Régions de Kisangani et de l’Ituri (RD Congo). Ph.D. Thesis, Université de Kisangani, Kisangani, Democratic Republic of the Congo, 2015. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Gabriel, K.B.; Omer, N.T. Etude Socio-Économique Des Conflits Des Guerres Armées Dans La Ville de Kisangani et Sa Périphérie En Province de La Tshopo (1997 à 2006). IJRDO-J. Soc. Sci. Humanit. Res. 2022, 7, 318–324. [Google Scholar]
- European Commission. GHSL Data Package 2023; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Wan, Z. MODIS Land Surface Temperature Products Users’ Guide; ERI, University of California: Santa Barbara, CA, USA, 2013. [Google Scholar]
- Lu, L.; Zhang, T.; Wang, T. Evaluation of Collection-6 MODIS Land Surface Temperature Product Using Multi-Year Ground Measurements in an Arid Area of Northwest China. Remote Sens. 2018, 10, 1852. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z. Validation of the Land-Surface Temperature Products Retrieved from Terra Moderate Resolution Imaging Spectroradiometer Data. Remote Sens. Environ. 2002, 83, 163–180. [Google Scholar] [CrossRef]
- Azizi, S.; Azizi, T. Urban Climate Dynamics: Analyzing the Impact of Green Cover and Air Pollution on Land Surface Temperature—A Comparative Study Across Chicago, San Francisco, and Phoenix, USA. Atmosphere 2024, 15, 917. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); University of Arizona: Tucson, AZ, USA, 2015. [Google Scholar]
- Rendana, M.; Mohd, W.; Idris, R.; Rahim, S.A.; Abdo, H.G.; Almohamad, H.; Abdullah, A.; Dughairi, A.; Al-mutiry, M. Relationships between Land Use Types and Urban Heat Island Intensity in Hulu Langat District, Selangor, Malaysia. Ecol. Process. 2023, 12, 33. [Google Scholar] [CrossRef]
- Jain, S.; Sannigrahi, S.; Sen, S.; Bhatt, S. Urban Heat Island Intensity and Its Mitigation Strategies in the Fast-Growing Urban Area. J. Urban Manag. 2019, 9, 54–66. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, J.; Yang, X.; Fang, C.; Liang, Y. Quantifying the Seasonal Contribution of Coupling Urban Land Use Types on Urban Heat Island Using Land Contribution Index: A Case Study in Wuhan. Sustain. Cities Soc. 2018, 44, 666–675. [Google Scholar] [CrossRef]
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island Effect Mitigation in the Municipality of Rome, Italy. Ecol. Model. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Salomon, W.; Sikuzani, Y.U.; Sambieni, K.R.; Barima, Y.S.S.; Théodat, J.M.; Bogaert, J. Land Cover Dynamics along the Urban-Rural Gradient of the Port-Au-Prince Agglomeration (Republic of Haiti) from 1986 to 2021. Land 2022, 11, 355. [Google Scholar] [CrossRef]
- André, M.; Mahy, G.; Lejeune, P.; Bogaert, J. Vers Une Synthèse de La Conception et Une Définition Des Zones Dans Le Gradient Urbain-Rural. Biotechnol. Agron. Soc. Environ. 2014, 18, 61–74. [Google Scholar]
- Sambieni, K.R. Dynamique Du Paysage de La Ville Province de Kinshasa Sous La Pression de La Périurbanisation: L’infrastructure Verte Comme Moteur d’aménagement. Ph.D. Thesis, Université de Liège, Liège, Belgium, 2019. [Google Scholar]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000-2050. Prog. Plann. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Bogaert, J.; Biloso, A.; Vranken, I.; André, M. Peri-Urban Dynamics: Landscape Ecology Perspectives. In Territoires Périurbains. Développement, Enjeux et Perspectives dans les pays du Sud; Bogaert, J., Halleux, J.-M., Eds.; Les presses agronomiques de gembloux asbL: Gembloux, Belgium, 2015; pp. 59–69. [Google Scholar]
- Wen, C.; Mamtimin, A.; Feng, J.; Wang, Y.; Yang, F.; Huo, W.; Zhou, C.; Li, R.; Song, M.; Gao, J.; et al. Diurnal Variation in Urban Heat Island Intensity in Birmingham: The Relationship between Nocturnal Surface and Canopy Heat Islands. Land 2023, 12, 2062. [Google Scholar] [CrossRef]
- Dutta, D.; Rahman, A.; Paul, S.K.; Kundu, A. Urban Climate Impervious Surface Growth and Its Inter-Relationship with Vegetation Cover and Land Surface Temperature in Peri-Urban Areas of Delhi. Urban Clim. 2021, 37, 100799. [Google Scholar] [CrossRef]
- INS. Population de La Ville de Kisangani Repartie En Sexe, de 1990 à 2021; INS: Kisangani, Democratic Republic Congo, 2022. [Google Scholar]
- Haodong, L.; Zheng, H.; Wu, L.; Deng, Y.; Chen, J.; Zhang, J. Spatiotemporal Evolution in the Thermal Environment and Impact Analysis of Drivers in the Beijing—Tianjin—Hebei Urban Agglomeration of China from 2000 to 2020. Remote Sens. 2024, 16, 2601. [Google Scholar] [CrossRef]
- Ren, J.; Shi, K.; Kong, X.; Zhou, H. On-Site Measurement and Numerical Simulation Study on Characteristic of Urban Heat Island in a Multi-Block Region in Beijing, China. Sustain. Cities Soc. 2023, 95, 104615. [Google Scholar] [CrossRef]
- Lima, I.; Scalco, V.; Lamberts, R. Energy & Buildings Estimating the Impact of Urban Densification on High-Rise Office Building Cooling Loads in a Hot and Humid Climate. Energy Build. 2019, 182, 30–44. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Maximum Urban Heat Island Intensity in Seoul. J. Appl. Meteorol. 2002, 41, 651–659. [Google Scholar] [CrossRef]
- Cheung, P.K.; Jim, C.Y.; Siu, C.T. Effects of Urban Park Design Features on Summer Air Temperature and Humidity in Compact-City Milieu. Appl. Geogr. 2021, 129, 102439. [Google Scholar] [CrossRef]
- Yan, M.; Chen, L.; Leng, S.; Sun, R. Effects of Local Background Climate on Urban Vegetation Cooling and Humidification: Variations and Thresholds. Urban For. Urban Green. 2023, 80, 127840. [Google Scholar] [CrossRef]
- Ziyan; Paschalis, A.; Mijic, A.; Meili, N.; Manoli, G.; Van Reeuwijk, M.; Fatichi, S. Urban Climate A Mechanistic Assessment of Urban Heat Island Intensities and Drivers across Climates. Urban Clim. 2022, 44, 101215. [Google Scholar] [CrossRef]
- Omidvar, H.; Bou-zeid, E.; Li, Q.; Mellado, J. Plume or Bubble? Mixed-Convection Flow Regimes and City-Scale Circulations. J. Fluid Mech. 2020, 897, A5. [Google Scholar] [CrossRef]
- Koluwa, S.K. De La Reparation Des Victimes de La Guerre de Six Jours à Kisangani. J. Soc. Sci. Humaniyies Res. 2020, 5, 44–56. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Cui, F.; Shao, F.; Qi, F.; Wang, Y.; Zhang, T.; Yu, H. Research Advances in the Influence of Vegetation on Urban Heat Island Effect. J. Zhejiang A F Univ. 2020, 37, 171–181. [Google Scholar]
- Kwan, P.; Fung, C.K.W.; Jim, C.Y. Seasonal and Meteorological Effects on the Cooling Magnitude of Trees in Subtropical Climate. Build. Environ. 2020, 177, 106911. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The Cooling Effect of Green Spaces as a Contribution to the Mitigation of Urban Heat: A Case Study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
Product ID | Layer | Spatial Resolution | Time Scale |
---|---|---|---|
MOD11A2 V6.1 | LST Emissivity | 1 Km | 2000–2024 |
MOD13A2 | NDVI | 1 Km | 2000–2024 |
GHS-BUILT-V | Building Volume | 1 Km | 1975–2030 |
GHS-POP | Population Density | 1 Km | 1975–2030 |
Google Earth | GE Images | 1 m | 2000–2024 |
UHI | Level | Description |
---|---|---|
HI ≤ 0 | Very low | Extreme low-temperature zone, meaning that there is no difference in LST between urban and rural areas. |
0 < UHI ≤ 0.1 | Low | Low-temperature zones mean minimal LST variation between urban and rural areas. |
0.1 < UHI ≤ 0.2 | Medium | Medium-temperature region, meaning that the LST differs moderately between urban and rural areas. |
0.2 < UHI ≤ 0.3 | High | High-temperature zone, meaning large urban/rural LST difference. |
0.3 < UHI | Very high | An extremely high-temperature zone, meaning a huge urban/rural LST difference. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balandi, J.B.; Selemani, T.M.; To Hulu, J.-P.P.M.; Sambieni, K.R.; Sikuzani, Y.U.; Bastin, J.-F.; Wola, P.T.; Molo, J.E.; Tiko, J.M.; Agassounon, B.M.; et al. Spatiotemporal Analysis of Urban Heat Islands in Kisangani City Using MODIS Imagery: Exploring Interactions with Urban–Rural Gradient, Building Volume Density, and Vegetation Effects. Climate 2025, 13, 89. https://doi.org/10.3390/cli13050089
Balandi JB, Selemani TM, To Hulu J-PPM, Sambieni KR, Sikuzani YU, Bastin J-F, Wola PT, Molo JE, Tiko JM, Agassounon BM, et al. Spatiotemporal Analysis of Urban Heat Islands in Kisangani City Using MODIS Imagery: Exploring Interactions with Urban–Rural Gradient, Building Volume Density, and Vegetation Effects. Climate. 2025; 13(5):89. https://doi.org/10.3390/cli13050089
Chicago/Turabian StyleBalandi, Julien Bwazani, Trésor Mbavumoja Selemani, Jean-Pierre Pitchou Meniko To Hulu, Kouagou Raoul Sambieni, Yannick Useni Sikuzani, Jean-François Bastin, Prisca Tshomba Wola, Jacques Elangilangi Molo, Joël Mobunda Tiko, Bill Mahougnon Agassounon, and et al. 2025. "Spatiotemporal Analysis of Urban Heat Islands in Kisangani City Using MODIS Imagery: Exploring Interactions with Urban–Rural Gradient, Building Volume Density, and Vegetation Effects" Climate 13, no. 5: 89. https://doi.org/10.3390/cli13050089
APA StyleBalandi, J. B., Selemani, T. M., To Hulu, J.-P. P. M., Sambieni, K. R., Sikuzani, Y. U., Bastin, J.-F., Wola, P. T., Molo, J. E., Tiko, J. M., Agassounon, B. M., & Bogaert, J. (2025). Spatiotemporal Analysis of Urban Heat Islands in Kisangani City Using MODIS Imagery: Exploring Interactions with Urban–Rural Gradient, Building Volume Density, and Vegetation Effects. Climate, 13(5), 89. https://doi.org/10.3390/cli13050089