Multi-Scale Analysis of Green Space Patterns in Thermal Regulation Using Boosted Regression Tree Model: A Case Study in Central Urban Area of Shijiazhuang, China
Abstract
:1. Introduction
- To reveal the scale-specific characteristics and nonlinear dynamics of landscape regulation indicators;
- To decipher the scale dependency of green space cooling mechanisms;
- To formulate adaptive optimization strategies for green space configurations in central urban areas, addressing multi-level green space system planning needs.
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Datasets
2.2. Methods
2.2.1. Research Process
2.2.2. Green Space Extraction and Landscape Metric Selection
2.2.3. Land Surface Temperature Retrieval Methodology
2.2.4. BRT Model Construction
3. Results
3.1. Spatial Distribution of Green Spaces in Shijiazhuang
3.2. Analysis of Thermal Environment in Shijiazhuang
3.3. Multi-Scale Thermal Regulation Mechanisms of Urban Green Space Configuration in Shijiazhuang
3.3.1. Cooling Contributions of Green Space Landscape Metrics Across Grid Scales
3.3.2. Marginal Effects Analysis of Key Green Space Landscape Metrics
4. Discussion
4.1. Multi-Scale Cooling Mechanisms of Summer Green Spaces in Central Shijiazhuang
4.1.1. Vegetation-Driven Physiological Regulation
4.1.2. Scale-Dependent Synergy of Green Space Morphology and Patterns
- Micro-scale (100–300 m): implement “vegetation optimization–patch dispersion” strategies, leveraging vertical greening systems and pocket parks to enhance local thermal resilience;
- Meso-scale (300–900 m): establish “cold source patch–blue-green corridor” networks, integrating riverine and road greenways to connect park systems and block heat island expansion;
- Macro-scale (>900 m): deploy “cold source anchoring–edge enhancement” tactics, designating peri-urban blue-green spaces as structural cold sources and aligning wedge-shaped ventilation corridors with dominant wind directions for systemic thermal mitigation.
- The vertical axis represents the cooling contribution rates of green space landscape metrics (based on BRT model results); the horizontal axis indicates planning implementation priorities (determined by metric threshold sensitivity);
- A color gradient from dark to light illustrates strategic intervention priority intensity;
- Arrow directions reflect the logic of “scale progression-strategy synergy”: micro-scale (FVC/PD-dominated) focuses on green space’s quality enhancement, meso-scale (AREA/AI-dominated) emphasizes green space system connectivity reinforcement, and macro-scale (ED/AI-synergized) anchors suburbs cold source networks;
- Asterisks denote strategies requiring cross-scale coordination.
4.2. Climate-Adaptive Mechanisms of Summer Green Spaces in Central Shijiazhuang
4.3. Coordinated Mechanisms and Implementation Pathways for Green Space Planning
4.3.1. Collaborative Mechanisms for Green Space Planning and Construction
- Cross-departmental evaluation platform: Integrate multi-source data (natural resources, ecology, urban development) and embed BRT-derived thresholds (e.g., FVC ≥ 70%, AREA ≥ 3.5 ha) into mandatory urban renewal checklists;
- “Heat Mitigation Quota” system: This policy links green space contributions to land rights through the Green Tax mechanism that incentivizes environmental accountability [59]. It mandates developers in high-temperature zones to construct cooling-source green spaces or offset environmental impacts from urban development via carbon credit trading;
- Green-industrial synergy: Prioritize temperature-sensitive industries (e.g., data centers, tech hubs) in cooling corridors, achieving industrial decarbonization and thermal environment improvement.
4.3.2. Fiscal Policy Incentives and Market-Based Regulation
- Fiscal leverage: Provide “cooling subsidies” to enterprises meeting multi-scale thresholds, such as property tax reductions (up to 30%) for communities achieving vegetation coverage standards (FVC > 70%) and special bond interest discounts for green infrastructure projects in cooling corridors;
- Development rights trading: Establish a “Green Space Bank” mechanism, allowing high-density development zones to invest in large-scale green space construction in peripheral areas through transfer payments [60]. Upon remote sensing verification of cooling efficacy, these investments qualify for floor area ratio (FAR) incentives;
- Green finance innovation: Issue Cooling Performance Bonds (CPBs) to guide private capital participation in multi-scale green network development [60].
4.4. Limitations and Future Research Directions
4.4.1. Limitations and Constraints
4.4.2. Future Research Directions
5. Conclusions
- The cooling efficiency of green spaces exhibits pronounced spatial heterogeneity and scale dependence, with quality metrics (e.g., FVC and AREA) showing declining contributions at larger scales, while configuration metrics (e.g., AI and ED) demonstrate positive scale responses, validating the “micro-scale quality dominance vs. macro-scale pattern regulation” mechanism;
- The BRT model quantitatively identifies critical thresholds: FVC achieves peak marginal cooling efficiency (0.8–1.2 °C per 10% increase) within the 30–70% range, while AREA’s minimum effective cooling threshold escalates from 0.6 ha (micro-scale) to 3.5 ha (macro-scale);
- Based on multi-scale cooling mechanism analysis, a three-tier matrix optimization framework for green space strategies is established, integrating “micro-level regulation, meso-level connectivity, and macro-level anchoring”.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Green Space Indicator | Green Space Quality | Green Space Pattern | Green Space Shape | |||||
---|---|---|---|---|---|---|---|---|
FVC | AREA | ED | PD | AREA-CV | LSI | AI | ||
2022 | 100 m | 38.66 | 13.37 | 11.64 | 13.57 | 6.52 | 7.47 | 8.77 |
300 m | 41.01 | 11.18 | 13.09 | 8.86 | 7.33 | 7.44 | 11.09 | |
600 m | 36.01 | 14.48 | 12.11 | 6.14 | 9.3 | 8.81 | 13.15 | |
900 m | 32.14 | 18.13 | 13.21 | 2.1 | 11.22 | 9.17 | 14.03 | |
2023 | 100 m | 43.75 | 13.09 | 9.64 | 12.84 | 8.07 | 5.74 | 6.87 |
300 m | 39.09 | 15.14 | 11.66 | 10.38 | 10.17 | 7.38 | 6.18 | |
600 m | 36.91 | 14.34 | 11.42 | 4.92 | 9.52 | 11.07 | 11.82 | |
900 m | 38.8 | 17.34 | 12.53 | 1.68 | 8.13 | 10.01 | 11.51 | |
2024 | 100 m | 45.45 | 15.26 | 7.04 | 10.02 | 8.94 | 4.73 | 8.56 |
300 m | 36.8 | 19.66 | 7.62 | 11.11 | 8.77 | 5.72 | 10.32 | |
600 m | 37.55 | 20.32 | 11.45 | 4.04 | 7.72 | 11.66 | 7.26 | |
900 m | 31.21 | 25.06 | 11.42 | 1.86 | 4.2 | 12.31 | 13.94 |
Appendix B
Parameter | Formula |
---|---|
R2 | |
MSE | |
RMSE | |
MAE |
References
- Briegel, F.; Makansi, O.; Brox, T.; Matzarakis, A.; Christen, A. Modelling long-term thermal comfort conditions in urban environments using a deep convolutional encoder-decoder as a computational shortcut. Urban Clim. 2023, 47, 101359. [Google Scholar] [CrossRef]
- Kuang, W.; Dou, Y. Investigating the Patterns and Dynamics of Urban Green Space in China’s 70 Major Cities Using Satellite Remote Sensing. Remote Sens. 2020, 12, 1929. [Google Scholar] [CrossRef]
- Safarrad, T.; Ghadami, M.; Dittmann, A.G. Effects of COVID-19 Restriction Policies on Urban Heat Islands in Some European Cities: Berlin, London, Paris, Madrid, and Frankfurt. Int. J. Environ. Res. Public Health 2022, 19, 6579. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Yu, D.; Georgescu, M.; Wu, J.; Wang, W. Impacts of future urban expansion on summer climate and heat-related human health in eastern China. Environ. Int. 2018, 112, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Sippel, S.; Meinshausen, N.; Fischer, E.M.; Székely, E.; Knutti, R. Climate change now detectable from any single day of weather at global scale. Nat. Clim. Change 2020, 10, 35–41. [Google Scholar] [CrossRef]
- Liu, H.; Huang, B.; Zhan, Q.; Gao, S.; Li, R.; Fan, Z. The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China. Sustain. Cities Soc. 2021, 71, 102987. [Google Scholar] [CrossRef]
- Yao, L.; Li, T.; Xu, M.; Xu, Y. How the landscape features of urban green space impact seasonal land surface temperatures at a city-block-scale: An urban heat island study in Beijing, China. Urban For. Urban Green. 2020, 52, 126704. [Google Scholar] [CrossRef]
- Tan, X.; Sun, X.; Huang, C.; Yuan, Y.; Hou, D. Comparison of cooling effect between green space and water body. Sustain. Cities Soc. 2021, 67, 102711. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y.; Liew, S.C. Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecol. Indic. 2019, 98, 200–213. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Yu, K. Effects of block morphology on the surface thermal environment and the corresponding planning strategy using the geographically weighted regression model. Build. Environ. 2022, 216, 109037. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, X.; Zeng, Y.; Koga, M.; Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban For. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, J.; Wang, S.; Dong, C. Optimizing urban green space configurations for enhanced heat island mitigation: A geographically weighted machine learning approach. Sustain. Cities Soc. 2025, 119, 106087. [Google Scholar] [CrossRef]
- Liu, F.; Liu, J.; Zhang, Y.; Hong, S.; Fu, W.; Wang, M.; Dong, J. Construction of a cold island network for the urban heat island effect mitigation. Sci. Total Environ. 2024, 915, 169950. [Google Scholar] [CrossRef]
- Park, S.; Park, J.; Lee, S. Unpacking the nonlinear relationships and interaction effects between urban environment factors and the urban nighttime heat index. J. Clean. Prod. 2023, 428, 139407. [Google Scholar] [CrossRef]
- Shao, L.; Liao, W.; Li, P.; Luo, M.; Xiong, X.; Liu, X. Drivers of global surface urban heat islands: Surface property, climate background, and 2D/3D urban morphologies. Build. Environ. 2023, 242, 110581. [Google Scholar] [CrossRef]
- Shen, Z.; Xu, X.; Xu, S.; Sun, D. A comparative study of land development patterns and regional thermal environments (RTEs) in typical urban agglomerations of China and America: A case study of Beijing-Tianjin-Hebei (BTH) and Boswash. Sci. Total Environ. 2022, 803, 149735. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, X.; Liu, Y. Impact of urban renewal on urban heat island: Study of renewal processes and thermal effects. Sustain. Cities Soc. 2023, 99, 104995. [Google Scholar] [CrossRef]
- Hou, H.; Longyang, Q.; Su, H.; Zeng, R.; Xu, T.; Wang, Z.-H. Prioritizing environmental determinants of urban heat islands: A machine learning study for major cities in China. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103411. [Google Scholar] [CrossRef]
- Bansal, P.; Quan, S.J. Examining temporally varying nonlinear effects of urban form on urban heat island using explainable machine learning: A case of Seoul. Build. Environ. 2024, 247, 110957. [Google Scholar] [CrossRef]
- Chen, P. Inequality in heat: The role of spatial patterns of urban green infrastructure. Urban Clim. 2024, 53, 101820. [Google Scholar] [CrossRef]
- Zhang, Z.; Luan, W.; Yang, J.; Guo, A.; Su, M.; Tian, C. The influences of 2D/3D urban morphology on land surface temperature at the block scale in Chinese megacities. Urban Clim. 2023, 49, 101553. [Google Scholar] [CrossRef]
- Lu, L.; Fu, P.; Dewan, A.; Li, Q. Contrasting determinants of land surface temperature in three megacities: Implications to cool tropical metropolitan regions. Sustain. Cities Soc. 2023, 92, 104505. [Google Scholar] [CrossRef]
- Sun, L.; Xie, C.; Qin, Y.; Zhou, R.; Wu, H.; Che, S. Study on temperature regulation function of green spaces at community scale in high-density urban areas and planning design strategies. Urban For. Urban Green. 2024, 101, 128511. [Google Scholar] [CrossRef]
- Li, W.; Han, C.; Li, W.; Zhou, W.; Han, L. Multi-scale effects of urban agglomeration on thermal environment: A case of the Yangtze River Delta Megaregion, China. Sci. Total Environ. 2020, 713, 136556. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Cao, W.; Liu, Y.; Lu, B. The impacts of landscape patterns spatio-temporal changes on land surface temperature from a multi-scale perspective: A case study of the Yangtze River Delta. Sci. Total Environ. 2022, 821, 153381. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Richards, D.R.; Fung, T.K.; Belcher, R.N.; Edwards, P.J. Differential air temperature cooling performance of urban vegetation types in the tropics. Urban For. Urban Green. 2020, 50, 126651. [Google Scholar] [CrossRef]
- Teshnehdel, S.; Akbari, H.; Di Giuseppe, E.; Brown, R.D. Effect of tree cover and tree species on microclimate and pedestrian comfort in a residential district in Iran. Build. Environ. 2020, 178, 106899. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; James, P.; Hutyra, L.R.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Xie, M.; Wang, Y.; Chang, Q.; Fu, M.; Ye, M. Assessment of landscape patterns affecting land surface temperature in different biophysical gradients in Shenzhen, China. Urban Ecosyst. 2013, 16, 871–886. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Xu, J.; Yu, Y.; Zhou, W.; Yu, W.; Wu, T. Effects of the Spatial Pattern of Forest Vegetation on Urban Cooling in Large Metropolitan Areas of China: A Multi-Scale Perspective. Forests 2024, 15, 1778. [Google Scholar] [CrossRef]
- Jimenez, J.-C.; Sobrino, J. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. 2003, 108. Correction in J. Geophys. Res. 2004, 109, D08112. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1974. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Ridgeway, G. Generalized Boosted Models: A Guide to the gbm Package. Update 2007, 1. 2007. Available online: http://www.saedsayad.com/docs/gbm2.pdf (accessed on 24 January 2025).
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.; De Wolf, E.; Paul, P.; Madden, L. Predicting Fusarium Head Blight Epidemics with Boosted Regression Trees. Phytopathology 2014, 104. [Google Scholar] [CrossRef] [PubMed]
- De’ath, G. Boosted Trees for Ecological Modeling and Prediction. Ecology 2007, 88, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Reich, P. Forest productivity increases with evenness, species richness and trait. J. Ecol. 2012, 100, 742–749. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, H.; Wang, R.; Murayama, Y.; Wang, L.; Hu, T. Effects of landscape patterns on the morphological evolution of surface urban heat island in Hangzhou during 2000–2020. Sustain. Cities Soc. 2022, 79, 103717. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Jing, C.; Li, S.; Cao, S.; Ma, X. Study on influencing factors and influencing strength of urban green space relieving heat island effect—Taking Beijing as an example. IOP Conf. Ser. Earth Environ. Sci. 2020, 601, 012033. [Google Scholar] [CrossRef]
- Gioia, A.; Paolini, L.; Malizia, A.; Oltra-Carrió, R.; Sobrino, J.A. Size matters: Vegetation patch size and surface temperature relationship in foothills cities of northwestern Argentina. Urban Ecosyst. 2014, 17, 1161–1174. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H. Effects of urban parks on the local urban thermal environment. Urban For. Urban Green. 2014, 13, 672–681. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Wang, T.; Wang, Z.; Gao, M.; Shen, H. Quantifying 3D building form effects on urban land surface temperature and modeling seasonal correlation patterns. Build. Environ. 2021, 204, 108132. [Google Scholar] [CrossRef]
- Ezimand, K.; Aghighi, H.; Ashourloo, D.; Shakiba, A. The analysis of the spatio-temporal changes and prediction of built-up lands and urban heat islands using multi-temporal satellite imagery. Sustain. Cities Soc. 2024, 103, 105231. [Google Scholar] [CrossRef]
- Rahimi, E.; Barghjelveh, S.; Dong, P. Quantifying how urban landscape heterogeneity affects land surface temperature at multiple scales. J. Ecol. Environ. 2021, 45, 22. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: Extending understanding from local to the city scale. Urban For. Urban Green. 2019, 41, 255–263. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, N. The perception, optimization strategies and prospects of outdoor thermal comfort in China: A review. Build. Environ. 2020, 170, 106614. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, W.; Zhang, Z.; Cao, W.; Wu, T. How can urban green spaces be planned to mitigate urban heat island effect under different climatic backgrounds? A threshold-based perspective. Sci. Total Environ. 2023, 890, 164422. [Google Scholar] [CrossRef]
- Yan, L.; Jia, W.; Zhao, S. The Cooling Effect of Urban Green Spaces in Metacities: A Case Study of Beijing, China’s Capital. Remote Sens. 2021, 13, 4601. [Google Scholar] [CrossRef]
- Yao, B.; Li, C.; Huang, R. Study on the Dynamic Analysis of the Evolutionary Game and Influence Effect of Green Taxation in Promoting the Development of New Energy Industry. J. Compr. Bus. Adm. Res. 2024, 1–10. [Google Scholar] [CrossRef]
- Nureen; Nuta, A.C. Envisioning the Invisible: Unleashing the Interplay Between Green Supply Chain Management and Green Human Resource Management: An Ability-Motivation-Opportunity Theory Perspective Towards Environmental Sustainability. J. Compr. Bus. Adm. Res. 2024, 1, 55–64. [Google Scholar] [CrossRef]
- Bressane, A.; Loureiro, A.I.S. Political and socioeconomic drivers of urban green space management: Insights from a case study in a Metropolitan Region of an Emerging Economy. Urban For. Urban Green. 2025, 104, 128591. [Google Scholar] [CrossRef]
Data Sources | Image Number/NAME | Cloud Cover | Date | Resolution |
---|---|---|---|---|
Landsat8 data | LC81240342022164LGN00 | 4.90% | 13 June 2022 | 30 m |
LC81240342023199LGN00 | 4.64% | 18 July 2023 | ||
LC81240342024202LGN00 | 0.79% | 20 July 2024 | ||
Sentinel2 data | Remote sensing image of Shijiazhuang City in 2022 | 0.48% | 21 July 2022 | 10 m |
Remote sensing image of Shijiazhuang City in 2023 | 0.01% | 16 July 2023 | ||
Remote sensing image of Shijiazhuang City in 2024 | 0.42% | 20 July 2024 |
Indicator Type | Indicator Name | Calculation |
---|---|---|
Green space quality | FVC | |
Green space pattern | AREA | Conducted statistics using ArcGIS 10.8 |
ED | , Where S is the circumference of green patch | |
PD | Calculated through Fragstats 4.2 | |
Green space shape | AREA-CV | Calculated through Fragstats 4.2 |
LSI | Calculated through Fragstats 4.2 | |
AI | Calculated through Fragstats 4.2 |
Year | Grid Scale | RMSE | MAE | MSE | R2 |
---|---|---|---|---|---|
2022 | 100 m | 1.0032 | 0.7955 | 1.0064 | 0.1542 |
300 m | 1.2637 | 0.9942 | 1.5969 | 0.1619 | |
600 m | 1.3915 | 1.0714 | 1.9363 | 0.1619 | |
900 m | 1.2995 | 0.9198 | 1.6887 | 0.1619 | |
2023 | 100 m | 1.0370 | 0.8273 | 1.0753 | 0.2770 |
300 m | 1.2038 | 0.8879 | 1.4491 | 0.3057 | |
600 m | 1.1836 | 0.9523 | 1.4009 | 0.3057 | |
900 m | 1.2019 | 0.9601 | 1.4446 | 0.4674 | |
2024 | 100 m | 2.0651 | 1.6205 | 4.2647 | 0.3209 |
300 m | 1.2637 | 0.9941 | 1.5967 | 0.3860 | |
600 m | 1.1335 | 0.7763 | 1.2848 | 0.4210 | |
900 m | 1.0032 | 0.0714 | 1.0064 | 0.5289 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Qian, Y. Multi-Scale Analysis of Green Space Patterns in Thermal Regulation Using Boosted Regression Tree Model: A Case Study in Central Urban Area of Shijiazhuang, China. Sustainability 2025, 17, 4874. https://doi.org/10.3390/su17114874
Liu H, Qian Y. Multi-Scale Analysis of Green Space Patterns in Thermal Regulation Using Boosted Regression Tree Model: A Case Study in Central Urban Area of Shijiazhuang, China. Sustainability. 2025; 17(11):4874. https://doi.org/10.3390/su17114874
Chicago/Turabian StyleLiu, Haotian, and Yun Qian. 2025. "Multi-Scale Analysis of Green Space Patterns in Thermal Regulation Using Boosted Regression Tree Model: A Case Study in Central Urban Area of Shijiazhuang, China" Sustainability 17, no. 11: 4874. https://doi.org/10.3390/su17114874
APA StyleLiu, H., & Qian, Y. (2025). Multi-Scale Analysis of Green Space Patterns in Thermal Regulation Using Boosted Regression Tree Model: A Case Study in Central Urban Area of Shijiazhuang, China. Sustainability, 17(11), 4874. https://doi.org/10.3390/su17114874