Spatiotemporal Evolution and Influencing Factors of Surface Urban Heat Island Effect in Nanjing, China (2000–2020)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Method
2.3.1. Urban Heat Island Ratio Index (URI)
2.3.2. Surface Information Acquisition
2.3.3. Spatial Principal Component Analysis
2.3.4. Geographic Detector Model
2.3.5. Surface Temperature Classification
2.3.6. Spatial Autocorrelation Analysis Model
3. Results
3.1. Spatiotemporal Patterns of Heat Island
3.2. Hotspot of Heat Island
3.3. Characteristics of Surface Temperature for Different Land Use Types
3.4. Spatial Autocorrelation Analysis
3.5. Influencing Factors
3.5.1. Pearson Correlation Analysis
3.5.2. PCA and Geodetector Analysis
4. Discussion
4.1. Distribution and Influencing of Urban Heat Island Effect
4.2. Recommendation for Future Policy
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.X.; Wang, L.Q.; Xu, H.; Zhang, S.H.; Zhang, Z.Q. Impact of Vegetation Cover on Summer Urban Heat Island Effects in China from 2001 to 2021. Acta Ecol. Sin. 2024, 44, 11020–11034. [Google Scholar] [CrossRef]
- Han, H.; Zeeshan, Z.; Talpur, B.A.; Sadiq, T.; Bhatti, U.A.; Awwad, E.M.; Al-Razgan, M.; Ghadi, Y.Y. Studying Long Term Relationship Between Carbon Emissions, Soil, and Climate Change: Insights from a Global Earth Modeling Framework. Int. J. Appl. Earth Obs. Geoinform. 2024, 130, 103902. [Google Scholar] [CrossRef]
- Goh, K.C.; Kurniawan, T.A.; Othman, M.H.D.; Anouzla, A.; Aziz, F.; Ali, I.; Casila, J.C.C.; Khan, M.I.; Zhang, D.; Dai, W.; et al. Reinforcing Urban Resilience Through Sound Landfill Management: Addressing Global Climatic Challenges with Novel Solutions. Process. Saf. Environ. Prot. 2025, 195, 106789. [Google Scholar] [CrossRef]
- Xu, L.L.; Wang, J.; Zhou, W.Q. Impacts of Urban Agglomeration Development on the Spatial Evolution of Regional Heat Islands. Acta Ecol. Sin. 2024, 44, 11035–11048. [Google Scholar] [CrossRef]
- Fang, Y.H.; Gu, K.K.; Ma, Q. Construction and Efficiency Evaluation of Urban Ventilation Corridors Based on Multi-source Data: A Case Study of Hefei Main Urban Area. Prog. Geogr. 2024, 43, 1597–1608. [Google Scholar]
- Tao, Y.; Liu, W. Spatiotemporal Evolution Characteristics and Spatial Heterogeneity of Driving Factors of Surface Urban Heat Island Intensity in Beijing Main Urban Area. Environ. Sci. 2024, 1–15. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, S.P.; Yang, Q.W. Spatiotemporal Evolution Characteristics of Heat Island Effects in Mountainous New Urbanization Processes. J. China Agric. Univ. 2024, 29, 290–304. [Google Scholar]
- Nie, J.D.; Zhang, J.H.; Huang, B. A Review on the Impact of Urban Heat Island Effect on Human Health. Ecol. Sci. 2021, 40, 200–208. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, S.-P.; Lu, J.-M.; Aihemaiti, N.; Zeng, J. Gradient Differences in the Impact of Urban Morphology on Heat Island Intensity During Zhengzhou’s Urban Development. Environ. Sci. 2025, 46, 1924–1936. [Google Scholar] [CrossRef]
- Xiong, Y.; Xie, X.Y.; Yang, Y.F. Cooling Benefits of Urban Parks Based on Landscape Patterns and Cumulative Impacts: A Case Study of Nanjing. Resour. Environ. Yangtze Basin 2024, 33, 1055–1065. [Google Scholar]
- Mao, C.C. Multi-scale Impacts of Mining and Industrial Land Use on Urban Heat Island Effects in Mining Cities. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2021. [Google Scholar] [CrossRef]
- Sheng, L.; Tang, X.; You, H.; Gu, Q.; Hu, H. Comparison of the Urban Heat Island Intensity Quantified by Using Air Temperature and Landsat Land Surface Temperature in Hangzhou, China. Ecol. Indic. 2017, 72, 738–746. [Google Scholar] [CrossRef]
- Hao, M. Study on Global Urban Heat Island Effects Under Different City Sizes and Background Climates. Ph.D. Thesis, East China Normal University, Shanghai, China, 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Zhang, M.; Liu, J. Urban Heat Island Effects of Various Urban Morphologies under Regional Climate Conditions. Sci. Total Environ. 2020, 743, 140589. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, Y.; He, H.; Wang, J.; Zhao, L.; Cai, Y. Assessing the Synergies Between Heat Waves and Urban Heat Islands of Different Local Climate Zones in Guangzhou, China. Build. Environ. 2023, 240, 110434. [Google Scholar] [CrossRef]
- Xi, C.; Han, L.; Wang, J.; Feng, Z.; Kumar, P.; Cao, S.-J. How Can Greenery Space Mitigate Urban Heat Island? An Analysis of Cooling Effect, Carbon Sequestration, and Nurturing Cost at the Street Scale. J. Clean. Prod. 2023, 419, 138230. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef]
- Qin, M.; Ouyang, H.; Jiang, H.; Luo, T.; Zhou, Y.; Liu, Y. Spatiotemporal Evolution Characteristics and Driving Factors of Heat Island Effect Based on Territorial Perspective: A Case Study of Beibu Gulf Urban Agglomeration, China. Ecol. Indic. 2024, 166, 112197. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, H.; Hu, X.; Liu, Z.; Yao, X.; Zhu, Z. Characterizing the Seasonal Relationships Between Urban Heat Island and Surface Energy Balance Fluxes Considering the Impact of Three-Dimensional Urban Morphology. Build. Environ. 2024, 265, 112017. [Google Scholar] [CrossRef]
- Gallo, K.P.; Owen, T.W. Satellite-Based Adjustments for the Urban Heat Island Temperature Bias. J. Appl. Meteorol. Clim. 1999, 38, 806–813. [Google Scholar] [CrossRef]
- Gallo, K.; Tarpley, J.; McNab, A.; Karl, T. Assessment of Urban Heat Islands: A Satellite Perspective. Atmos. Res. 1995, 37, 37–43. [Google Scholar] [CrossRef]
- Zargari, M.; Mofidi, A.; Entezari, A.; Baaghideh, M. Climatic Comparison of Surface Urban Heat Island Using Satellite Remote Sensing in Tehran and Suburbs. Sci. Rep. 2024, 14, 643. [Google Scholar] [CrossRef]
- Huang, M.; Zhong, S.; Mei, X.; He, J. Spatiotemporal Patterns in the Urban Heat Island Effect of Several Contemporary and Historical Chinese “Stove Cities”. Sustainability 2024, 16, 3091. [Google Scholar] [CrossRef]
- Shen, H.; Huang, L.; Zhang, L.; Wu, P.; Zeng, C. Long-term and Fine-scale Satellite Monitoring of the Urban Heat Island Effect by the Fusion of Multi-temporal and Multi-sensor Remote Sensed Data: A 26-year Case Study of the City of Wuhan in China. Remote Sens. Environ. 2016, 172, 109–125. [Google Scholar] [CrossRef]
- Rech, B.; Moreira, N.R.; Mello, G.A.T.; Klouček, T.; Komárek, J. Assessment of Daytime and Nighttime Surface Urban Heat Islands Across Local Climate Zones—A Case Study in Florianópolis, Brazil. Urban Clim. 2024, 55, 101954. [Google Scholar] [CrossRef]
- Kandel, H.; Melesse, A.; Whitman, D. An Analysis on the Urban Heat Island Effect Using Radiosonde Profiles and Landsat Imagery with Ground Meteorological Data in South Florida. Int. J. Remote Sens. 2016, 37, 2313–2337. [Google Scholar] [CrossRef]
- Xu, L.; Xie, X.; Li, S. Correlation Analysis of the Urban Heat Island Effect and the Spatial and Temporal Distribution of Atmospheric Particulates Using TM Images in Beijing. Environ. Pollut. 2013, 178, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Bhati, S.; Mohan, M.; Sahoo, N.R.; Dash, S. Numerical Simulation of the Impact of Urban Canopies and Anthropogenic Emissions on Heat Island Effect in an Industrial Area: A Case Study of Angul-Talcher Region in India. Atmospheric Res. 2022, 277, 106320. [Google Scholar] [CrossRef]
- Xi, Y.; Wang, S.; Zou, Y.; Zhou, X.; Zhang, Y. Seasonal Surface Urban Heat Island Analysis Based on Local Climate Zones. Ecol. Indic. 2024, 159, 111669. [Google Scholar] [CrossRef]
- Rajagopal, P.; Priya, S.R. Comprehensive Analysis of the Impact of Elevated Metro Line Infrastructure on the Urban Heat Island Effect in Chennai: A Multi-model Approach. Energy Build. 2024, 319, 114541. [Google Scholar] [CrossRef]
- Cai, X.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J. Cooling Island Effect in Urban Parks from the Perspective of Internal Park Landscape. Humanit. Soc. Sci. Commun. 2023, 10, 674. [Google Scholar] [CrossRef]
- Han, D.; Xu, X.; Qiao, Z.; Wang, F.; Cai, H.; An, H.; Jia, K.; Liu, Y.; Sun, Z.; Wang, S.; et al. The Roles of Surrounding 2D/3D Landscapes in Park Cooling Effect: Analysis from Extreme Hot and Normal Weather Perspectives. Build. Environ. 2023, 231, 110053. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Altamura, P.; Giampaoletti, M.; Hemeida, F.A.; Mohamed, A.F.A. Optimizing Human Thermal Comfort and Mitigating the Urban Heat Island Effect on Public Open Spaces in Rome, Italy Through Sustainable Design Strategies. Sci. Rep. 2024, 14, 19931. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Jamal, M.N. Unraveling the Complexities of Land-Use–Land Cover Transformation and Its Impact on Land Surface Temperature and Urban Heat Island Effect: A Study of Nowshera District, Pakistan. J. Urban Plan. Dev. 2024, 4, 150. [Google Scholar]
- Zhu, Y.F.; Wang, H.; Qin, S.H.; Yang, Y.; Wang, Y. Research on Cooling Effects of Urban Parks in Nanjing Based on Multi-source Data. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2024, 48, 285–294. [Google Scholar]
- Zhu, J.F.; Ma, M.M.; Geng, L.Y. Spatiotemporal Evolution Analysis of Urban Heat Islands in Nanjing Based on Remote Sensing Indices. Geomat. World 2021, 28, 52–57. [Google Scholar]
- Nanjing Municipal People’s Government. Natural Conditions. 2019. Available online: https://www.nanjing.gov.cn/zjnj/zrzk/201910/t20191014_1676314.html (accessed on 11 September 2024).
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2024. Available online: http://www.stats.gov.cn/ (accessed on 23 March 2025).
- Nanjing Municipal Bureau of Ecology and Environment. Notice on Issuing the “14th Five-Year Plan” for Ecological Environmental Protection in Nanjing [EB/OL]. 2022. Available online: https://sthjj.nanjing.gov.cn/njshjbhj/202202/t20220209_3285947.html (accessed on 23 March 2024).
- Nanjing Municipal Bureau of Planning and Natural Resources. Detailed Planning of Greenways in Nanjing (2020–2035) [EB/OL]. 2022. Available online: https://ghj.nanjing.gov.cn/ghbz/zxgh/202206/P020241127550610603822.pdf (accessed on 23 March 2024).
- Xu, X.L. Annual 1-km Land Surface Temperature Dataset of China. Resour. Environ. Sci. Data Cent. 2022. [Google Scholar] [CrossRef]
- Weng, Q.; Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Alavipanah, S.K. Statistical Analysis of Surface Urban Heat Island Intensity Variations: A Case Study of Babol City, Iran. GISci. Remote Sens. 2019, 56, 576–604. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban Heat Island (UHI) Intensity and Magnitude Estimations: A Systematic Literature Review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote Sensing Algorithms for Estimation of Fractional Vegetation Cover Using Pure Vegetation Index Values: A Review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef]
- Zelkan, E. Water Body Detection Analysis Using NDWI Indices Derived from Landsat-8 OLI. Pol. J. Environ. Stud. 2020, 29, 1759–1769. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J. The Correlation Analysis on the Landscape Pattern Index and Hydrological Processes in the Yanhe Watershed, China. J. Hydrol. 2015, 524, 417–426. [Google Scholar] [CrossRef]
- Jia, Y.; Tang, L.; Xu, M.; Yang, X. Landscape Pattern Indices for Evaluating Urban Spatial Morphology—A Case Study of Chinese Cities. Ecol. Indic. 2019, 99, 27–37. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Zhang, S. Investigating Landscape Pattern and Its Dynamics in Daqing, China. Int. J. Remote Sens. 2005, 26, 2259–2280. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Pramanik, M.; Chaudhary, S.; Maurya, A.K.; Kumar, M. Watershed Prioritization for Soil Erosion Mapping in the Lesser Himalayan Indian Basin Using PCA and WSA Methods in Conjunction with Morphometric Parameters and GIS-Based Approach. Environ. Dev. Sustain. 2022, 24, 3723–3761. [Google Scholar] [CrossRef]
- Khan, J.; Gupta, G.; Singh, N.K.; Bhave, V.N.; Bhardwaj, V.; Upreti, P.; Singh, R.; Sinha, A.K. Geophysical and Geostatistical Assessment of Groundwater and Soil Quality Using GIS, VES, and PCA Techniques in the Jaipur Region of Western India. Environ. Sci. Pollut. Res. 2023, 30, 77713–77728. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Z.; Wang, C.; Zhao, X.; Liu, B.; Yi, L. Urban Expansion Monitoring and Driving Forces Analysis: A Case Study of Jiangsu Province, China. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Philippe, P.J.; Malet-Damour, B.; Radanielina, M.H.; Fontaine, L.; Rivière, G. GIS-Based Approach to Identify Climatic Zoning: A Hierarchical Clustering on Principal Component Analysis. Build. Environ. 2019, 164, 106330. [Google Scholar]
- Richmond, A.; Peng, C.; Jiang, Z.; Liu, X.; Zhou, Z.; Guo, Z.; Xiao, X. Identifying Sources and Transport Routes of Heavy Metals in Soil with Different Land Uses Around a Smelting Site by GIS Based PCA and PMF. Sci. Total Environ. 2022, 823, 153759. [Google Scholar]
- Nanjing Municipal People’s Government. Implementation Opinions on the Concentration of Farmers in Suburban Counties to Towns and Rural Residential Areas. 2005. Available online: https://www.nanjing.gov.cn/zdgk/200805/t20080528_1054465.html (accessed on 23 March 2024).
- Nanjing Municipal Bureau of Statistics. Nanjing Statistical Yearbook; Nanjing Statistical Press: Nanjing, China, 2024. Available online: https://tjj.nanjing.gov.cn (accessed on 23 March 2024).
- Cai, G.; Du, M.; Xue, Y. Monitoring of Urban Heat Island Effect in Beijing Combining ASTER and TM Data. Int. J. Remote Sens. 2011, 32, 1213–1232. [Google Scholar] [CrossRef]
- Cai, Z.; Tang, Y.; Zhan, Q. A Cooled City? Comparing Human Activity Changes on the Impact of Urban Thermal Environment Before and After City-Wide Lockdown. Build. Environ. 2021, 195, 107729. [Google Scholar] [CrossRef]
- Jiangsu Provincial People’s Government. Approval of the Master Plan for the Development of Nanjing Jiangbei New District; Jiangsu Provincial People’s Government: Nanjing, China, 2017. Available online: https://www.jiangsu.gov.cn/art/2017/8/25/art_46143_5585095.html (accessed on 23 March 2024).
- Xu, Y.; Jia, R.; Liu, J.; Han, D.; He, T.; Xu, X.; Liu, L.; Sun, Z.; Qiao, Z. The Population Exposure Risk of Urban Heat Island Effect: From the Perspective of Urban Spatial Expansion in China. Build. Environ. 2024, 258, 111565. [Google Scholar] [CrossRef]
- Ma, X.; Peng, S. Research on the Spatiotemporal Coupling Relationships Between Land Use/Land Cover Compositions or Patterns and the Surface Urban Heat Island Effect. Environ. Sci. Pollut. Res. 2022, 29, 39723–39742. [Google Scholar] [CrossRef]
- Zou, Z.; Yan, C.; Yu, L.; Jiang, X.; Ding, J.; Qin, L.; Wang, B.; Qiu, G. Impacts of Land Use/Land Cover Types on Interactions Between Urban Heat Island Effects and Heat Waves. Build. Environ. 2021, 204, 108138. [Google Scholar] [CrossRef]
- Shao, L.; Liao, W.; Li, P.; Luo, M.; Xiong, X.; Liu, X. Drivers of Global Surface Urban Heat Islands: Surface Property, Climate Background, and 2D/3D Urban Morphologies. Build. Environ. 2023, 242, 110581. [Google Scholar] [CrossRef]
- Stache, E.; Schilperoort, B.; Ottelé, M.; Jonkers, H. Comparative Analysis in Thermal Behaviour of Common Urban Building Materials and Vegetation and Consequences for Urban Heat Island Effect. Build. Environ. 2022, 213, 108489. [Google Scholar] [CrossRef]
- Calhoun, Z.D.; Willard, F.; Ge, C.; Rodriguez, C.; Bergin, M.; Carlson, D. Estimating the Effects of Vegetation and Increased Albedo on the Urban Heat Island Effect with Spatial Causal Inference. Sci. Rep. 2024, 14, 540. [Google Scholar] [CrossRef]
- Ribeiro, A.P.; Bollmann, H.A.; de Oliveira, A.; Rakauskas, F.; Cortese, T.T.P.; Rodrigues, M.S.C.; Quaresma, C.C.; Ferreira, M.L. The Role of Tree Landscape to Reduce Effects of Urban Heat Islands: A Study in Two Brazilian Cities. Trees 2023, 37, 17–30. [Google Scholar] [CrossRef]
- Jiangsu Provincial People’s Government. Approval on the Adjustment of Water Function Zoning in the Jiangning Section of the Qinhuai River; Jiangsu Provincial People’s Government: Nanjing, China, 2016. Available online: https://www.jiangsu.gov.cn/art/2016/11/21/art_46143_2543249.html (accessed on 23 March 2024).
- Peng, J.; Cheng, X.; Hu, Y.; Corcoran, J. A Landscape Connectivity Approach to Mitigating the Urban Heat Island Effect. Landsc. Ecol. 2022, 37, 1707–1719. [Google Scholar] [CrossRef]
Surface Temperature Grades | Range of Temperatures |
---|---|
Lower | Tni < Tmean − 1.5S |
Low | Tmean − 1.5S ≤ Tni < Tmean − 0.5S |
Moderate | Tmean − 0.5S ≤ Tni < Tmean + 0.5S |
High | Tmean + 0.5S ≤ Tni < Tmean + 1.5S |
Higher | Tni ≥ Tmean + 1.5S |
2000 | 2004 | 2008 | 2012 | 2016 | 2020 | |
---|---|---|---|---|---|---|
Lower | 6.43% | 7.01% | 5.62% | 5.86% | 5.79% | 6.14% |
Low | 14.60% | 15.57% | 19.81% | 18.61% | 19.18% | 19.63% |
Moderate | 53.99% | 59.65% | 49.20% | 48.93% | 48.50% | 47.45% |
High | 20.98% | 13.33% | 18.64% | 19.96% | 19.74% | 20.23% |
Higher | 4.01% | 4.44% | 6.71% | 6.63% | 6.79% | 6.56% |
URI | 0.21 | 0.15 | 0.22 | 0.23 | 0.23 | 0.23 |
FVC | MNDWI | NDBBI | Topography | SLOPE | CONTAG | SHDI | COHESION | DIVISION |
---|---|---|---|---|---|---|---|---|
−0.292 | −0.367 | 0.285 | −0.173 | −0.082 | 0.103 | −0.148 | 0.112 | −0.162 |
Component | Eigenvalue | Variance Explained (%) | Cumulative Variance Explained (%) |
---|---|---|---|
Vegetation coverage | 3.201 | 35.568 | 35.568 |
Normalized water body index | 1.945 | 21.606 | 57.174 |
Normalized built-up index | 1.239 | 13.765 | 70.939 |
Patch cohesion index | 0.956 | 10.626 | 81.565 |
Dispersion index | 0.911 | 10.127 | 91.692 |
Spread index | 0.655 | 7.279 | 98.97 |
Shannon diversity index | 0.061 | 0.676 | 99.647 |
Elevation | 0.019 | 0.216 | 99.863 |
Slope | 0.012 | 0.137 | 100 |
Component | C1 | C2 | C3 | C4 | C5 | Communality |
---|---|---|---|---|---|---|
Vegetation coverage | −0.358 | −0.912 | −0.033 | −0.076 | 0.13 | 0.983 |
Normalized water body index | 0.388 | −0.889 | 0.095 | −0.088 | −0.181 | 0.991 |
Normalized built-up index | −0.103 | −0.122 | −0.487 | 0.836 | 0.16 | 0.987 |
Patch cohesion index | −0.936 | −0.244 | 0.054 | −0.019 | −0.057 | 0.942 |
Dispersion index | 0.945 | 0.262 | −0.112 | −0.016 | −0.004 | 0.976 |
Spread index | −0.261 | 0.107 | 0.757 | 0.199 | 0.139 | 0.711 |
Shannon diversity index | 0.95 | 0.244 | 0.000 | −0.005 | 0.035 | 0.963 |
Elevation | 0.353 | −0.214 | 0.448 | 0.159 | 0.636 | 0.801 |
Slope | 0.216 | 0.251 | 0.45 | 0.422 | −0.639 | 0.899 |
Synergistic Influencing Factors | Influence Result | Result |
---|---|---|
FVC∩MNDWI | 0.64 | Bifactorial enhancement |
FVC∩NDBBI | 0.53 | Bifactorial enhancement |
FVC∩CONTAG | 0.52 | Bifactorial enhancement |
FVC∩COHESION | 0.57 | Bifactorial enhancement |
FVC∩DIVISION | 0.59 | Bifactorial enhancement |
FVC∩SHDI | 0.46 | Bifactorial enhancement |
FVC∩topography | 0.45 | Bifactorial enhancement |
FVC∩slope | 0.47 | Bifactorial enhancement |
MNDWI∩NDBBI | 0.26 | Single-factor nonlinear weakening |
MNDWI∩CONTAG | 0.32 | Nonlinear enhancement |
MNDWI∩COHESION | 0.28 | Nonlinear enhancement |
MNDWI∩DIVISION | 0.27 | Nonlinear enhancement |
MNDWI∩SHDI | 0.34 | Nonlinear enhancement |
MNDWI∩topography | 0.23 | Nonlinear enhancement |
MNDWI∩slope | 0.29 | Nonlinear enhancement |
NDBBI∩CONTAG | 0.35 | Bifactorial enhancement |
NDBBI∩COHESION | 0.40 | Nonlinear enhancement |
NDBBI∩DIVISION | 0.38 | Nonlinear enhancement |
NDBBI∩SHDI | 0.31 | Nonlinear enhancement |
NDBBI∩topography | 0.34 | Nonlinear enhancement |
NDBBI∩slope | 0.29 | Bifactorial enhancement |
CONTAG∩COHESION | 0.37 | Nonlinear enhancement |
CONTAG∩DIVISION | 0.40 | Nonlinear enhancement |
CONTAG∩SHDI | 0.32 | Bifactorial enhancement |
CONTAG∩topography | 0.34 | Nonlinear enhancement |
CONTAG∩slope | 0.41 | Bifactorial enhancement |
COHESION∩DIVISION | 0.33 | Nonlinear enhancement |
COHESION∩SHDI | 0.32 | Nonlinear enhancement |
COHESION∩topography | 0.18 | Bifactorial enhancement |
COHESION∩slope | 0.14 | Nonlinear enhancement |
DIVISION∩SHDI | 0.30 | Nonlinear enhancement |
DIVISION∩topography | 0.37 | Bifactorial enhancement |
DIVISION∩slope | 0.23 | Nonlinear enhancement |
SHDI∩topography | 0.16 | Bifactorial enhancement |
SHDI∩slope | 0.21 | Bifactorial enhancement |
topography∩slope | 0.18 | Nonlinear enhancement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Q.; Shi, G.; Liu, J.; Chen, C.; Li, X.; Tao, X.; Tian, Z.; Zhang, Y. Spatiotemporal Evolution and Influencing Factors of Surface Urban Heat Island Effect in Nanjing, China (2000–2020). Remote Sens. 2025, 17, 1837. https://doi.org/10.3390/rs17111837
An Q, Shi G, Liu J, Chen C, Li X, Tao X, Tian Z, Zhang Y. Spatiotemporal Evolution and Influencing Factors of Surface Urban Heat Island Effect in Nanjing, China (2000–2020). Remote Sensing. 2025; 17(11):1837. https://doi.org/10.3390/rs17111837
Chicago/Turabian StyleAn, Quan, Ge Shi, Jiahang Liu, Chuang Chen, Xinyu Li, Xiaoyu Tao, Zhuang Tian, and Yunpeng Zhang. 2025. "Spatiotemporal Evolution and Influencing Factors of Surface Urban Heat Island Effect in Nanjing, China (2000–2020)" Remote Sensing 17, no. 11: 1837. https://doi.org/10.3390/rs17111837
APA StyleAn, Q., Shi, G., Liu, J., Chen, C., Li, X., Tao, X., Tian, Z., & Zhang, Y. (2025). Spatiotemporal Evolution and Influencing Factors of Surface Urban Heat Island Effect in Nanjing, China (2000–2020). Remote Sensing, 17(11), 1837. https://doi.org/10.3390/rs17111837