Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,626)

Search Parameters:
Keywords = Immobilized enzymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1677 KiB  
Review
Sustainable, Targeted, and Cost-Effective Laccase-Based Bioremediation Technologies for Antibiotic Residues in the Ecosystem: A Comprehensive Review
by Rinat Ezra, Gulamnabi Vanti and Segula Masaphy
Biomolecules 2025, 15(8), 1138; https://doi.org/10.3390/biom15081138 (registering DOI) - 7 Aug 2025
Abstract
Widespread antibiotic residues are accumulating in the environment, potentially causing adverse effects for humans, animals, and the ecosystem, including an increase in antibiotic-resistant bacteria, resulting in worldwide concern. There are various commonly used physical, chemical, and biological treatments for the degradation of antibiotics. [...] Read more.
Widespread antibiotic residues are accumulating in the environment, potentially causing adverse effects for humans, animals, and the ecosystem, including an increase in antibiotic-resistant bacteria, resulting in worldwide concern. There are various commonly used physical, chemical, and biological treatments for the degradation of antibiotics. However, the elimination of toxic end products generated by physicochemical methods and the need for industrial applications pose significant challenges. Hence, environmentally sustainable, green, and readily available approaches for the transformation and degradation of these antibiotic compounds are being sought. Herein, we review the impact of sustainable fungal laccase-based bioremediation strategies. Fungal laccase enzyme is considered one of the most active enzymes for biotransformation and biodegradation of antibiotic residue in vitro. For industrial applications, the low laccase yields in natural and genetically modified hosts may constitute a bottleneck. Methods to screen for high-laccase-producing sources, optimizing cultivation conditions, and identifying key genes and metabolites involved in extracellular laccase activity are reviewed. These include advanced transcriptomics, proteomics, and metagenomics technologies, as well as diverse laccase-immobilization technologies with different inert carrier/support materials improving enzyme performance whilst shifting from experimental assays to in situ monitoring of residual toxicity. Still, more basic and applied research on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics that are recalcitrant and prevalent, is needed. Full article
(This article belongs to the Special Issue Recent Advances in Laccases and Laccase-Based Bioproducts)
Show Figures

Figure 1

20 pages, 1316 KiB  
Article
Immunocapture RT-qPCR Method for DWV-A Surveillance: Eliminating Hazardous Extraction for Screening Applications
by Krisztina Christmon, Eugene V. Ryabov, James Tauber and Jay D. Evans
Appl. Biosci. 2025, 4(3), 40; https://doi.org/10.3390/applbiosci4030040 - 6 Aug 2025
Abstract
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method [...] Read more.
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method for screening DWV-A infections by capturing intact virus particles from bee homogenates using immobilized antibodies. Validation demonstrated strong correlation with TRIzol®-based extraction (r = 0.821), with approximately 6 Ct reduced sensitivity, consistent with other published immunocapture methods. Performance was adequate for moderate–high viral loads, while TRIzol® showed superior detection for low-dose infections. Laboratory-produced reverse transcriptase showed equivalent performance to commercial enzymes, providing cost savings. IC-RT-PCR eliminates hazardous chemicals and offers a streamlined workflow for surveillance screening where the safety and cost benefits outweigh the sensitivity reduction. This method provides a practical alternative for large-scale DWV-A surveillance programs, while TRIzol® remains preferable for low-level detection and diagnostic confirmation. Full article
Show Figures

Figure 1

15 pages, 1040 KiB  
Article
Alcalase Specificity by Different Substrate Proteins Under Different Conditions: The Enzyme Immobilization on Carrageenan Beads Strongly Affects the pH/Activity Curve Depending on the Substrate Protein
by Alan Portal D’Almeida, Pedro Abellanas-Perez, Luciana Rocha Barros Gonçalves, Tiago Lima de Albuquerque, Ivanildo José da Silva Junior and Roberto Fernandez-Lafuente
Catalysts 2025, 15(8), 750; https://doi.org/10.3390/catal15080750 - 5 Aug 2025
Abstract
Alcalase was immobilized–stabilized on carrageenan beads following a previously described protocol. Then, the activities of free and immobilized enzymes were compared using different protein substrates (casein, (CS), bovine serum albumin (BSA), or hemoglobin (HG)) at different pH values and temperatures. The observed activity [...] Read more.
Alcalase was immobilized–stabilized on carrageenan beads following a previously described protocol. Then, the activities of free and immobilized enzymes were compared using different protein substrates (casein, (CS), bovine serum albumin (BSA), or hemoglobin (HG)) at different pH values and temperatures. The observed activity depended on the substrate protein and enzyme formulation used. The highest enzyme activity could be observed at pHs 5, 7, or 10, depending on the substrate protein and the Alcalase formulation. The effect of the temperature at these pHs on the activity versus the different substrate proteins showed a common pattern. At low temperatures, the immobilized enzyme presented higher (mainly at acidic-neutral pH values and using BSA) or similar specific activity than the free enzyme. At temperatures near the optimal for the free enzyme, it became the most active, while at higher temperatures, the immobilized enzyme recovered the lead, although differences in the optimal temperature were not very significant. This may be explained by the lower mobility of the immobilized–stabilized enzyme. The immobilized enzyme could be much more active than the free enzyme or slightly less active, even using mild conditions, depending on the substrate protein, pH, and temperature used to determine the enzyme activity. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

30 pages, 2603 KiB  
Review
Sugarcane Industry By-Products: A Decade of Research Using Biotechnological Approaches
by Serafín Pérez-Contreras, Francisco Hernández-Rosas, Manuel A. Lizardi-Jiménez, José A. Herrera-Corredor, Obdulia Baltazar-Bernal, Dora A. Avalos-de la Cruz and Ricardo Hernández-Martínez
Recycling 2025, 10(4), 154; https://doi.org/10.3390/recycling10040154 - 2 Aug 2025
Viewed by 256
Abstract
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original [...] Read more.
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original research articles published in JCR-indexed journals between 2015 and 2025, of which over 50% focus specifically on sugarcane-derived agroindustrial residues. The biotechnological approaches discussed include submerged fermentation, solid-state fermentation, enzymatic biocatalysis, and anaerobic digestion, highlighting their potential for the production of biofuels, enzymes, and high-value bioproducts. In addition to identifying current advances, this review addresses key technical challenges such as (i) the need for efficient pretreatment to release fermentable sugars from lignocellulosic biomass; (ii) the compositional variability of by-products like vinasse and molasses; (iii) the generation of metabolic inhibitors—such as furfural and hydroxymethylfurfural—during thermochemical processes; and (iv) the high costs related to inputs like hydrolytic enzymes. Special attention is given to detoxification strategies for inhibitory compounds and to the integration of multifunctional processes to improve overall system efficiency. The final section outlines emerging trends (2024–2025) such as the use of CRISPR-engineered microbial consortia, advanced pretreatments, and immobilization systems to enhance the productivity and sustainability of bioprocesses. In conclusion, the valorization of sugarcane by-products through biotechnology not only contributes to waste reduction but also supports circular economy principles and the development of sustainable production models. Full article
Show Figures

Graphical abstract

35 pages, 2193 KiB  
Review
How Mechanistic Enzymology Helps Industrial Biocatalysis: The Case for Kinetic Solvent Viscosity Effects
by Gabriel Atampugre Atampugbire, Joanna Afokai Quaye and Giovanni Gadda
Catalysts 2025, 15(8), 736; https://doi.org/10.3390/catal15080736 - 1 Aug 2025
Viewed by 413
Abstract
Biocatalysis is one of the oldest fields that has been used in industrial applications, with one of the earliest purposeful examples being the mass production of acetic acid from an immobilized Acinetobacter strain in the year 1815. Efficiency, specificity, reduced reaction times, lower [...] Read more.
Biocatalysis is one of the oldest fields that has been used in industrial applications, with one of the earliest purposeful examples being the mass production of acetic acid from an immobilized Acinetobacter strain in the year 1815. Efficiency, specificity, reduced reaction times, lower overall costs, and environmental friendliness are some advantages biocatalysis has over conventional chemical synthesis, which has made biocatalysis increasingly used in industry. We highlight three necessary fields that are fundamental to advancing industrial biocatalysis, including biocatalyst engineering, solvent engineering, and mechanistic engineering. However, the fundamental mechanism of enzyme function is often overlooked or given less attention, which can limit the engineering process. In this review, we describe how mechanistic enzymology benefits industrial biocatalysis by elucidating key fundamental principles, including the kcat and kcat/Km parameters. Mechanistic enzymology presents a unique field that provides in-depth insights into the molecular mechanisms of enzyme activity and includes areas such as reaction kinetics, catalytic mechanisms, structural analysis, substrate specificity, and protein dynamics. In line with the objective of protein engineering to optimize enzyme activity, we summarize a range of strategies reported in the literature aimed at improving the product release rate, the chemical step of catalysis, and the overall catalytic efficiency of enzymes. Further into this review, we delineate kinetic solvent viscosity effects (KSVEs) as a very efficient, cost-effective, and easy-to-perform method to probe different aspects of enzyme reaction mechanisms, including diffusion-dependent kinetic steps and rate-limiting steps. KSVEs are cost-effective because simple kinetic enzyme assays, such as the Michaelis–Menten kinetic approach, can be combined with them without the need for specialized and costly equipment. Other techniques in protein engineering and genetic engineering are also covered in this review. Additionally, we provide information on solvent systems in enzymatic reactions, details on immobilized biocatalysts, and common misconceptions that misguide enzyme design and optimization processes. Full article
(This article belongs to the Special Issue Enzyme Engineering—the Core of Biocatalysis)
Show Figures

Graphical abstract

23 pages, 2345 KiB  
Article
From Waste to Biocatalyst: Cocoa Bean Shells as Immobilization Support and Substrate Source in Lipase-Catalyzed Hydrolysis
by Luciana Lordelo Nascimento, Bruna Louise de Moura Pita, César de Almeida Rodrigues, Paulo Natan Alves dos Santos, Yslaine Andrade de Almeida, Larissa da Silveira Ferreira, Maira Lima de Oliveira, Lorena Santos de Almeida, Cleide Maria Faria Soares, Fabio de Souza Dias and Alini Tinoco Fricks
Molecules 2025, 30(15), 3207; https://doi.org/10.3390/molecules30153207 - 30 Jul 2025
Viewed by 173
Abstract
This study reports the development of a sustainable biocatalyst system for free fatty acid (FFA) production from cocoa bean shell (CBS) oil using Burkholderia cepacia lipase (BCL). CBS was explored as both a support material and a reaction substrate. Six immobilized [...] Read more.
This study reports the development of a sustainable biocatalyst system for free fatty acid (FFA) production from cocoa bean shell (CBS) oil using Burkholderia cepacia lipase (BCL). CBS was explored as both a support material and a reaction substrate. Six immobilized systems were prepared using organic (CBS), inorganic (silica), and hybrid (CBS–silica) supports via physical adsorption or covalent binding. Among them, the covalently immobilized enzyme on CBS (ORG-CB) showed the most balanced performance, achieving a catalytic efficiency (Ke) of 0.063 mM−1·min−1 (18.6% of the free enzyme), broad pH–temperature tolerance, and over 50% activity retention after eight reuse cycles. Thermodynamic analysis confirmed enhanced thermal resistance for ORG-CB (Ed = 32.3 kJ mol−1; ΔH‡ = 29.7 kJ mol−1), while kinetic evaluation revealed that its thermal deactivation occurred faster than for the free enzyme under prolonged heating. In application trials, ORG-CB reached 60.1% FFA conversion from CBS oil, outperforming the free enzyme (49.9%). These findings validate CBS as a dual-function material for enzyme immobilization and valorization of agro-industrial waste. The results also reinforce the impact of immobilization chemistry and support composition on the operational and thermal performance of biocatalysts, contributing to the advancement of green chemistry strategies in enzyme-based processing. Full article
(This article belongs to the Special Issue Biotechnology and Biomass Valorization)
Show Figures

Figure 1

16 pages, 2078 KiB  
Article
Optimizing Yeast Surface-Displayed Unspecific Peroxygenase Production for Sustainable Biocatalysis
by Niklas Teetz, Luc Zuhse and Dirk Holtmann
Bioengineering 2025, 12(8), 822; https://doi.org/10.3390/bioengineering12080822 - 30 Jul 2025
Viewed by 277
Abstract
Unspecific peroxygenases (UPOs) are promising biocatalysts for oxyfunctionalizations in future sustainable economies and can be efficiently immobilized on the cell surface of their heterologous production yeast. This immobilization has versatile uses, ranging from the mL to m3 scale; but the production of [...] Read more.
Unspecific peroxygenases (UPOs) are promising biocatalysts for oxyfunctionalizations in future sustainable economies and can be efficiently immobilized on the cell surface of their heterologous production yeast. This immobilization has versatile uses, ranging from the mL to m3 scale; but the production of the yeast surface displayed UPOs, and their handling has yet to be optimized to advance sustainable industrial processes in light of the UN’s sustainable development goals. Here, we present optimized production protocols for surface-displayed UPOs for shaken and stirred systems in different scales and describe suitable storage conditions and a sterilization method. We utilized one-factor-at-a-time and design of experiments approaches. We were able to streamline published protocols for shaken flask cultivations to achieve a 60% increase in volumetric activity, using reduced amounts of media. We also show at least a doubling of final activity for bioreactor cultivations by utilizing a different medium than the industry standard. Finally, we present a novel, robust protocol for parallelized methanol-induced enzyme production in Komagataella phaffii in a BioLector XT® reactor. Enzyme activity did not decrease and even increased by our recommended sterilization method and during storage over 87 days. This study aims to advance the yeast surface display immobilization method by providing methods for efficient production, storage and utilization of this promising biocatalyst. Full article
Show Figures

Figure 1

20 pages, 7039 KiB  
Article
Development of a Rapid and Sensitive Visual Pesticide Detection Card Using Crosslinked and Surface-Decorated Electrospun Nanofiber Mat
by Yunshan Wei, Huange Zhou, Jingxuan Kang, Yongmei Wu and Kun Feng
Foods 2025, 14(15), 2628; https://doi.org/10.3390/foods14152628 - 26 Jul 2025
Viewed by 446
Abstract
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and [...] Read more.
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and surface-decorated polyvinyl alcohol/citric acid nanofiber mat (PCNM) was employed as a novel immobilization matrix for acetylcholinesterase (AChE). The PCNM, crosslinked at 130 °C for 50 min, exhibited appropriate microstructure and water stability, making it suitable for AChE immobilization. The activation of carboxyl groups by surface decoration resulted in a 2.5-fold increase in enzyme loading capacity. Through parameter optimization, the detection limits for phoxim and methomyl were determined to be 0.007 mg/L and 0.10 mg/L, respectively. The detection card exhibited superior sensitivity and a reduced detection time (11 min) when compared to a commercially available pesticide detection card. Furthermore, the detection results of pesticide residues in fruit and vegetable samples confirmed its feasibility and superiority over commercial alternatives, suggesting its great potential for practical application in the on-site detection of pesticide residues. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

27 pages, 1900 KiB  
Review
A Review of Biochar-Industrial Waste Composites for Sustainable Soil Amendment: Mechanisms and Perspectives
by Feng Tian, Yiwen Wang, Yawen Zhao, Ruyu Sun, Man Qi, Suqing Wu and Li Wang
Water 2025, 17(15), 2184; https://doi.org/10.3390/w17152184 - 22 Jul 2025
Viewed by 246
Abstract
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis [...] Read more.
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis conditions, it may contain potentially harmful substances. Industrial wastes such as fly ash, steel slag, red mud, and phosphogypsum are rich in minerals and show potential for soil improvement, but direct application may pose environmental risks. The co-application of biochar with these wastes can produce composite amendments that enhance pH buffering capacity, nutrient availability, and pollutant immobilization. Therefore, a review of biochar-industrial waste composites as soil amendments is crucial for addressing soil degradation and promoting resource utilization of wastes. In this study, the literature was retrieved from Web of Science, Scopus, and Google Scholar using keywords including biochar, fly ash, steel slag, red mud, phosphogypsum, combined application, and soil amendment. A total of 144 articles from 2000 to 2025 were analyzed. This review summarizes the physicochemical properties of biochar and representative industrial wastes, including pH, electrical conductivity, surface area, and elemental composition. It examines their synergistic mechanisms in reducing heavy metal release through adsorption, complexation, and ion exchange. Furthermore, it evaluates the effects of these composites on soil health and crop productivity, showing improvements in soil structure, nutrient balance, enzyme activity, and metal immobilization. Finally, it identifies knowledge gaps as well as future prospects and recommends long-term field trials and digital agriculture technologies to support the sustainable application of these composites in soil management. Full article
Show Figures

Figure 1

20 pages, 1471 KiB  
Article
A New Approach for Interferent-Free Amperometric Biosensor Production Based on All-Electrochemically Assisted Procedures
by Rosanna Ciriello, Maria Assunta Acquavia, Giuliana Bianco, Angela Di Capua and Antonio Guerrieri
Biosensors 2025, 15(8), 470; https://doi.org/10.3390/bios15080470 - 22 Jul 2025
Viewed by 299
Abstract
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). [...] Read more.
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). Analogously, the poor selectivity of the transducer was dramatically improved by the electrosynthesis of non-conducting polymers with built-in permselectivity, permitting the formation of a thin permselective film onto the transducer surface, able to reject common interferents usually found in real samples. Since both approaches required a proper and distinct electrochemical perturbation (a pulsed current sequence for electrophoretic protein deposition and cyclic voltammetry for the electrosynthesis of non-conducting polymers), an appropriate coupling of the two all-electrochemical approaches was assured by a thorough study of the likely combinations of the electrosynthesis of permselective polymers with enzyme immobilization by electrophoretic protein deposition and by the use of several electrosynthesized polymers. For each investigated combination and for each polymer, the analytical performances and the rejection capabilities of the resulting biosensor were acquired so to gain information about their sensing abilities eventually in real sample analysis. This study shows that the proper coupling of the two all-electrochemical approaches and the appropriate choice of the electrosynthesized, permselective polymer permits the easy fabrication of novel glucose oxidase biosensors with good analytical performance and low bias in glucose measurement from typical interferent in serum. This novel approach, resembling classical electroplating procedures, is expected to allow all the advantages expected from such procedures like an easy preparation biosensor, a bi-dimensional control of enzyme immobilization and thickness, interferent- and fouling-free transduction of the electrodic sensor and, last but not the least, possibility of miniaturization of the biosensing device. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

16 pages, 2014 KiB  
Article
CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium
by Joanna Siódmiak, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson and Tomasz Siódmiak
Int. J. Mol. Sci. 2025, 26(14), 6961; https://doi.org/10.3390/ijms26146961 - 20 Jul 2025
Viewed by 282
Abstract
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often [...] Read more.
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often among the substantial limitations to the wide application of biocatalysis. Therefore, to overcome these obstacles, new technological procedures are being designed. In this study, we present optimized protocols for the immobilization of Candida antarctica lipase B (CALB) on an octyl- agarose support, ensuring high enantioselectivity in an organic reaction medium. The immobilization procedures (with drying step), including buffers with different pH values and concentrations, as well as the study of the influence of temperature and immobilization time, were presented. It was found that the optimal conditions were provided by citrate buffer with a pH of 4 and a concentration of 300 mM. The immobilized CALB on the octyl-agarose support exhibited high catalytic activity in the kinetic resolution of (R,S)-1-phenylethanol via enantioselective transesterification with isopropenyl acetate in 1,2-dichloropropane (DCP), as a model reaction for lipase activity monitoring on an analytical scale. HPLC analysis demonstrated that the (R)-1-phenylethyl acetate was obtained in an enantiomeric excess of eep > 99% at a conversion of approximately 40%, and the enantiomeric ratio was E > 200. Thermal and storage stability studies performed on the immobilized CALB octyl-agarose support confirmed its excellent stability. After 7 days of thermal stability testing at 65 °C in a climatic chamber, the (R)-1-phenylethyl acetate was characterized by enantiomeric excess of eep > 99% at a conversion of around 40% (similar values of catalytic parameters to those achieved using a non-stored lipase). The documented high catalytic activity and stability of the developed CALB-octyl-agarose support allow us to consider it as a useful tool for enantioselective transesterification in organic medium. Full article
Show Figures

Figure 1

26 pages, 1247 KiB  
Review
Recent Progress in the Application of Electrospinning Technology in the Biomedical Field
by Qun Wang, Peng Ji, Tian Bu, Yating Mao, Hailun He and Naijing Ge
J. Funct. Biomater. 2025, 16(7), 266; https://doi.org/10.3390/jfb16070266 - 18 Jul 2025
Cited by 1 | Viewed by 713
Abstract
Electrospinning has emerged as a highly effective technique for fabricating micro- and nanofibers, which are characterized by high porosity, large surface area, and structural mimicry of the extracellular matrix (ECM). These properties render it particularly suitable for biomedical applications. This review provides a [...] Read more.
Electrospinning has emerged as a highly effective technique for fabricating micro- and nanofibers, which are characterized by high porosity, large surface area, and structural mimicry of the extracellular matrix (ECM). These properties render it particularly suitable for biomedical applications. This review provides a comprehensive overview of recent developments in electrospinning-based strategies across various biomedical fields, including tissue engineering, drug delivery, wound healing, enzyme immobilization, biosensing, and protective materials. The distinctive advantages of electrospun fibers—such as excellent biocompatibility, tunable architecture, and facile surface functionalization—are discussed, alongside challenges such as the toxicity of organic solvents and limitations in scalability. Emerging approaches, including environmentally benign electrospinning techniques and integration with advanced technologies such as 3D printing and microfluidics, present promising solutions for intelligent and personalized biomedical applications. Full article
Show Figures

Figure 1

19 pages, 2897 KiB  
Article
Noncovalently Immobilized Glucose Oxidase/Horseradish Peroxidase Cascade on Polyamide Supports for Eco-Friendly Polyaniline Synthesis
by Nadya V. Dencheva, Joana F. Braz, Sofia A. Guimarães and Zlatan Z. Denchev
Molecules 2025, 30(14), 3003; https://doi.org/10.3390/molecules30143003 - 17 Jul 2025
Viewed by 304
Abstract
This study discloses the noncovalent immobilization of a bienzyme cascade composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto magnetically responsive polyamide microparticles (PA MPs). Porous PA6, PA4, and PA12 MPs containing iron fillers were synthesized via activated anionic ring-opening polymerization in [...] Read more.
This study discloses the noncovalent immobilization of a bienzyme cascade composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto magnetically responsive polyamide microparticles (PA MPs). Porous PA6, PA4, and PA12 MPs containing iron fillers were synthesized via activated anionic ring-opening polymerization in suspension, alongside neat PA6 MPs used as a reference. Four hybrid catalytic systems (GOx/HRP@PA) were prepared through sequential adsorption of HRP and GOx onto the various PA MP supports. The initial morphologies of the supports and the hybrid biocatalysts were characterized by SEM, followed by evaluation of the catalytic performance using a two-step glucose oxidation cascade process. Among all systems, the GOx/HRP@PA4-Fe complex exhibited the highest activity, being approximately 1.5 times greater than the native enzyme dyad, followed by the PA6-supported system with slightly inferior performance. All systems obeyed Michaelis–Menten kinetics, with the immobilized cascades displaying higher Kₘ and Vₘₐₓ values than the non-immobilized enzyme pair while maintaining comparable catalytic efficiencies, CE (CE = kcat/Kₘ). Subsequently, the immobilized and native enzyme systems were employed for the polymerization of aniline. According to UV–VIS, complete monomer conversion was achieved within 24 h for selected catalysts, and FTIR analysis confirmed the formation of polyaniline in the emeraldine base form without the use of template molecules. These findings highlight the potential of Fe-containing polyamide microparticles as efficient supports for the sustainable, enzyme-mediated synthesis of intrinsically conductive aromatic polymers. Full article
Show Figures

Graphical abstract

16 pages, 2888 KiB  
Article
Vitamin K Epoxide Reductase Complex (VKORC1) Electrochemical Genosensors: Towards the Identification of 1639 G>A Genetic Polymorphism
by Tiago Barbosa, Stephanie L. Morais, Renato Carvalho, Júlia M. C. S. Magalhães, Valentina F. Domingues, Cristina Delerue-Matos, Hygor Ferreira-Fernandes, Giovanny R. Pinto, Marlene Santos and Maria Fátima Barroso
Chemosensors 2025, 13(7), 248; https://doi.org/10.3390/chemosensors13070248 - 10 Jul 2025
Viewed by 407
Abstract
Anticoagulants, including warfarin, are often administered to patients who are exhibiting early symptoms of thromboembolic episodes or who have already experienced such episodes. However, warfarin has a limited therapeutic index and might cause bleeding and other clinical problems. Warfarin inhibits the vitamin K [...] Read more.
Anticoagulants, including warfarin, are often administered to patients who are exhibiting early symptoms of thromboembolic episodes or who have already experienced such episodes. However, warfarin has a limited therapeutic index and might cause bleeding and other clinical problems. Warfarin inhibits the vitamin K epoxide reductase complex subunit 1 (VKORC1), an enzyme essential for activating vitamin K, in the coagulation cascade. Genetic factors, such as polymorphisms, can change the natural function of VKORC1, causing variations in the medication reaction among individuals. Hence, before prescribing warfarin, the patient’s genetic profile should also be considered. In this study, an electrochemical genosensor capable of detecting the VKORC1 1639 G>A polymorphism was designed and optimized. This analytical approach detects the electric current obtained during the hybridization reaction between two 52 base pair complementary oligonucleotide sequences. Investigating public bioinformatic platforms, two DNA sequences with the A and G single-nucleotide variants were selected and designed. The experimental protocol of the genosensor implied the formation of a bilayer composed of a thiolate DNA and an alkanethiol immobilized onto gold electrodes, as well as the formation of a DNA duplex using a sandwich-format hybridization reaction through a fluorescein labelled DNA signalling probe and the enzymatic amplification of the electrochemical signal, detected by chronoamperometry. A detection limit of 20 pM and a linear range of 0.05–1.00 nM was obtained. A clear differentiation between A/A, G/A and G/G genotypes in biological samples was successfully identified by his novel device. Full article
Show Figures

Figure 1

15 pages, 2102 KiB  
Article
MXene-Based Flexible Paper Chip for Glucose Detection in Sweat in Low-Temperature Environments
by Yandong Yang, Yajun Zhu, Yifei Wu, Fan Chang, Xu Zhu, Xinyue Zhang, Ning Ma, Yushu Wang and Alaa S. Abd-El-Aziz
Sensors 2025, 25(14), 4273; https://doi.org/10.3390/s25144273 - 9 Jul 2025
Viewed by 416
Abstract
In enzymatic reaction glucose detection chips, the enzyme can easily dislodge from the electrode, which harms both the chip and test stability. Additionally, enzyme activity significantly decreases at low temperatures. Consequently, immobilizing the enzyme at the appropriate substrate and ambient temperature is a [...] Read more.
In enzymatic reaction glucose detection chips, the enzyme can easily dislodge from the electrode, which harms both the chip and test stability. Additionally, enzyme activity significantly decreases at low temperatures. Consequently, immobilizing the enzyme at the appropriate substrate and ambient temperature is a critical step for improving the chip. To address this issue, an electrochemical detection chip was modified using the nanomaterial MXene, known for its large specific surface area, excellent adsorption, good dispersion, and high conductivity. Meanwhile, AgNO3 solution was added to the Ti3C2Tx MXene nanosheet solution, and the AgNP@MXene material was prepared by heating in a water bath. This process further enhances photothermal conversion efficiency due to the localized surface plasmon resonance effect of silver nanoparticles and MXene. This MXene-based photothermally enhanced paper chip exhibits outstanding photothermal conversion performance and sensitive photoelectrochemical responsiveness, along with good cycling stability. Moreover, improved glucose detection sensitivity at low winter temperatures has been achieved, and the ambient temperature range of the paper chip has been expanded to 25–37 °C. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

Back to TopTop