Noncovalently Immobilized Glucose Oxidase/Horseradish Peroxidase Cascade on Polyamide Supports for Eco-Friendly Polyaniline Synthesis
Abstract
1. Introduction
2. Results
2.1. Synthesis of PA MPs and Their Morphology by SEM
2.2. Noncovalent Immobilization of GOx/HRP on PA MPs
2.3. Comparative Activity Studies
2.4. Comparative Kinetic Studies
2.5. Oxidative Polymerization of ANI by GOx/HRP Cascades
2.5.1. Reaction Scheme
2.5.2. UV–VIS Investigation of the Water-Soluble Fractions
2.5.3. Characterization of the Water-Insoluble PANI Fractions
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis of Polyamide Microparticles
3.3. Characterization Methods
3.4. Adsorption Immobilization of HRP and GOx on PA MPs
3.5. Determination of the Total Protein Content in PA6 Microparticles
3.6. Activity Measurements by UV–VIS
3.7. Cascade Kinetics Studies
3.8. Enzyme-Mediated Polymerization of Aniline
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANI | Aniline |
PANI | Polyaniline |
GOx | Glucose oxidase |
HRP | Horseradish peroxidase |
PA MPs | Polyamide microparticles |
PA4 | Polyamide 4 |
PA6 | Polyamide 6 |
TMB | 3,3′,5,5′-tetramethylbenzidine |
PA12 | Polyamide 12 |
ATR | Attenuated Total Reflection |
SEM | Scanning electron microscopy |
TGA | Thermogravimetric analysis |
FTIR | Infrared spectroscopy with Fourier transform |
RT | Room temperature (21 ± 2) °C |
AAROP | Activated anionic ring-opening polymerization |
GOx/HRP@PA | Generic name of immobilized GOx/HRP cascades |
References
- Gross, R.A.; Kumar, A.; Kalra, B. Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. 2001, 101, 2097–2124. [Google Scholar] [CrossRef] [PubMed]
- Zavada, S.R.; Battsengel, T.; Scott, T.F. Radical-Mediated Enzymatic Polymerizations. Int. J. Mol. Sci. 2016, 17, 195. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S. Green polymer chemistry: New methods of polymer synthesis using renewable starting materials. Struct. Chem. 2016, 28, 461–474. [Google Scholar] [CrossRef]
- Parravano, G. Chain Chain reactions induced by enzymic systems. J. Am. Chem. Soc. 1951, 73, 183–184. [Google Scholar] [CrossRef]
- Kobayashi, S. Enzymatic Polymerization. In Encyclopedia of Polymer Science and Technology, 4th ed.; John Wiley & Sons: Chichester, UK, 2014; pp. 1–73. [Google Scholar] [CrossRef]
- Wang, H.; Hu, X.; Hu, Y.; Zhu, N.; Guo, K. Enzyme-catalyzed atom transfer radical polymerization. Prog. Chem. 2022, 34, 1796–1808. [Google Scholar] [CrossRef]
- Vera, M.; Silva, C.; Li, N.; García, Y.; Jiménez, V.A.; Urbano, B.F. Laccase-mediated polymerization of tannins from a pine bark extract: Toward an eco-friendly valorization of forest wastes. J. Appl. Polym. Sci. 2024, 141, e55437. [Google Scholar] [CrossRef]
- Athanasiou, P.E.; Gkountela, C.I.; Patila, M.; Fotiadou, R.; Chatzikonstantinou, A.V.; Vouyiouka, S.N.; Stamatis, H. Laccase-mediated oxidation of phenolic compounds from wine lees extract towards the synthesis of polymers with potential applications in food packaging. Biomolecules 2024, 14, 323. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, X.; Liao, C.; Wei, Q.; Wang, Q. Microgel coating of magnetic nanoparticles via bienzyme-mediated free-radical polymerization for colorimetric detection of glucose. Nanoscale 2015, 7, 16578–16582. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.P.S.; Mozafari, M.; Chundawat, N.S.; Meghwal, K.; Ameta, R.; Ameta, S.C. High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities. J. Ind. Eng. Chem. 2016, 36, 13–29. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.; Epstein, A.J. Polyanilines: A novel class of conducting polymers. Faraday Discuss. Chem. Soc. 1989, 88, 317–332. [Google Scholar] [CrossRef]
- Chauhan, N.P.; Mozafari, M. Synthetic route of PANI (II): Enzymatic method. In Fundamentals and Emerging Applications of Polyaniline; Mozafari, M., Singh Chauhan, N.P., Eds.; Elsevier: New York, NY, USA, 2019; pp. 43–65. ISBN 9780128179154. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchova, M.; Bober, P.; Humpoliček, P.; Kašparkova, V.; Sapurina, I.; Shishov, M.A.; Varga, M. Conducting polymers: Polyaniline. In Encyclopedia of Polymer Science and Technology, 4th ed.; Mark, H.F., Ed.; John Wiley & Sons: Chichester, UK, 2014; pp. 1–44. [Google Scholar]
- Junker, K.; Kissner, R.; Rakvin, B.; Guo, Z.; Willeke, M.; Busato, S.; Weber, T.; Walde, P. The use of Trametes versicolor laccase for the polymerization of aniline in the presence of vesicles as templates. Enzym. Microb. Technol. 2014, 55, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Walde, P.; Kashima, K.; Ćirić-Marjanović, G. Synthesizing polyaniline with laccase/O2 as catalyst. Front. Bioeng. Biotechnol. 2019, 7, 165. [Google Scholar] [CrossRef] [PubMed]
- Junker, K.; Gitsov, I.; Quande, N.; Walde, P. Preparation of aqueous polyaniline−vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzym C and soybean peroxidase. Chem. Pap. 2013, 67, 1028–1047. [Google Scholar] [CrossRef]
- Junker, K.; Zandomeneghi, G.; Guo, Z.; Kissner, R.; Ishikawa, T.; Kohlbrecher, J.; Walde, P. Mechanistic aspects of the horseradish peroxidase-catalysed polymerisation of aniline in the presence of AOT vesicles as templates. RSC Adv. 2012, 2, 6478–6495. [Google Scholar] [CrossRef]
- Pašti, I.; Milojević-Rakić, M.; Junker, K.; Bajuk-Bogdanović, D.; Walde, P.; Ćirić-Marjanović, G. Superior capacitive properties of polyaniline produced by a one-pot peroxidase/H2O2-triggered polymerization of aniline in the presence of AOT vesicles. Electrochim. Acta 2017, 258, 834–841. [Google Scholar] [CrossRef]
- Kurisu, M.; Kissner, R.; Imai, M.; Walde, P. Application of an enzymatic cascade reaction for the synthesis of the emeraldine salt form of polyaniline. Chem. Pap. 2021, 75, 5071–5085. [Google Scholar] [CrossRef]
- Arana-Peña, S.; Carballares, D.; Morellon-Sterlling, R.; Berenguer-Murcia, Á.; Alcántara, A.R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Enzyme co-immobilization: Always the biocatalyst designers’ choice…or not? Biotechnol. Adv. 2021, 51, 107584. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef]
- Xu, K.; Chen, X.; Zheng, R.; Zheng, Y. Immobilization of multienzymes on support materials for efficient biocatalysis. Front. Bioeng. Biotechnol. 2020, 8, 660. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Li, C.; Jiao, X.; Jia, S.; Jiang, Y.; Bilal, M.; Cui, J. Recent progress in multienzymes co-immobilization and multienzyme system applications. Chem. Eng. J. 2019, 373, 1254–1278. [Google Scholar] [CrossRef]
- Bauler, P.; Huber, G.; Leyh, T.; McCammon, J.A. Channeling by proximity: The catalytic advantages of active site colocalization using Brownian dynamics. J. Phys. Chem. Lett. 2010, 1, 1332–1335. [Google Scholar] [CrossRef] [PubMed]
- Wheeldon, I.; Minteer, S.D.; Banta, S.; Barton, S.C.; Atanassov, P.; Sigman, M. Substrate channeling as an approach to cascade reactions. Nat. Chem. 2016, 8, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Yang, Y.R.; Johnson-Buck, A.; Liu, M.; Liu, Y.; Walter, N.G.; Woodbury, N.W.; Yan, H. Multienzyme complexes on DNA scaffolds capable of substrate channeling with an artificial swinging arm. Nat. Nanotechnol. 2014, 9, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Idan, O.; Hess, H. Origins of activity enhancement in enzyme cascades on scaffolds. ACS Nano 2013, 7, 8658–8665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tsitkov, S.; Hess, H. Proximity does not contribute to activity enhancement in the glucose oxidase–horseradish peroxidase cascade. Nat. Commun. 2016, 7, 13982. [Google Scholar] [CrossRef] [PubMed]
- Chado, G.R.; Stoykovich, M.P.; Kaar, J.L. Role of dimension and spatial arrangement on the activity of biocatalytic cascade reactions on scaffolds. ACS Catal. 2016, 6, 5161–5169. [Google Scholar] [CrossRef]
- Braz, J.F.; Dencheva, N.V.; Malfois, M.; Denchev, Z.Z. Synthesis of novel polymer-assisted organic-inorganic hybrid nanoflowers and their application in cascade biocatalysis. Molecules 2023, 28, 839. [Google Scholar] [CrossRef] [PubMed]
- Braz, J.F.; Dencheva, N.V.; Tohidi, S.D.; Denchev, Z.Z. Fast, multiple-use optical biosensor for point-of-care glucose detection with mobile devices based on bienzyme cascade supported on polyamide 6 microparticles. Polymers 2023, 15, 2802. [Google Scholar] [CrossRef] [PubMed]
- Josephy, P.D.; Eling, T.; Mason, R.P. The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine—Free radical and charge-transfer complex intermediates. J. Biol. Chem. 1982, 257, 3669–3675. [Google Scholar] [CrossRef] [PubMed]
- Misono, Y.; Ohkata, Y.; Morikawa, T.; Itoh, K. Resonance Raman and absorption spectroscopic studies on the electrochemical oxidation processes of 3,3′,5,5′-tetramethylbenzidine. J. Electroanal. Chem. 1997, 436, 203–212. [Google Scholar] [CrossRef]
- Mackey, D.; Killard, A.J.; Ambrosi, A.; Smyth, M.R. Optimizing the ratio of horseradish peroxidase and glucose oxidase on a bienzyme electrode: Comparison of a theoretical and experimental approach. Sens. Actuators B Chem. 2007, 122, 395–402. [Google Scholar] [CrossRef]
- Lin, J.-L.; Palomec, L.; Wheeldon, I. Design and analysis of enhanced catalysis in scaffolded multienzyme cascade reactions. ACS Catal. 2014, 4, 505–511. [Google Scholar] [CrossRef]
- Jo, S.; Kim, J.; Lee, J.E.; Wurm, F.R.; Landfester, K.; Wooh, S. Multimodal enzyme-carrying suprastructures for rapid and sensitive biocatalytic cascade reactions. Adv. Sci. 2022, 9, 2104884. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wen, L.; Svec, F.; Tan, T.; Lv, Y. Magnetic metal–organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis. RSC Adv. 2017, 7, 21205–21213. [Google Scholar] [CrossRef]
- Hemker, H.C.; Hemker, P.W. H. The kinetics of enzyme cascade systems. General kinetics of enzyme cascade. Proc. R. Soc. London. Ser. B Biol. Sci. 1969, 173, 411–420. [Google Scholar] [CrossRef]
- Şenkul, S.; Taş, R.; Sönmezoğlu, S.; Can, M. The chemical and physical characterizations of aniline-co-3-methyl thiophene copolymer synthesized by a new oxidant. Int. J. Polym. Anal. Charact. 2012, 17, 257–267. [Google Scholar] [CrossRef]
- Padmapriya, S.; Harinipriya, S.; Jaidev, K.; Sudha, V.; Kumar, D.; Pal, S. Storage and evolution of hydrogen in acidic medium by polyaniline. Int. J. Energy Res. 2017, 42, 1196–1209. [Google Scholar] [CrossRef]
- Goswami, S.; Nandy, S.; Fortunato, E.; Martins, R. Polyaniline and its composites engineering: A class of multifunctional smart energy materials. J. Solid State Chem. 2022, 317, 123679. [Google Scholar] [CrossRef]
- Subramanian, S.; Narayanasastri, S.; Reddy, A.R.K. Doping-induced detection and determination of propellant grade hydrazines by a kinetic spectrophotometric method based on nano and conventional polyaniline using halide ion releasing additives. RSC Adv. 2014, 4, 27404–27413. [Google Scholar] [CrossRef]
- Dencheva, N.; Braz, J.; Nunes, T.G.; Oliveira, F.D.; Denchev, Z. One-pot low temperature synthesis and characterization of hybrid poly(2-pyrrolidone) (PA4) microparticles suitable for protein immobilization. Polymer 2018, 145, 402–415. [Google Scholar] [CrossRef]
- Dencheva, N.; Denchev, Z.; Lanceros-Méndez, S.; Sanz, T.E. One-step in situ synthesis of polyamide microcapsules with inorganic payload and their transformation into responsive thermoplastic composite materials. Macromol. Mater. Eng. 2016, 301, 119–124. [Google Scholar] [CrossRef]
- Dencheva, N.V.; Braz, J.F.B.; Denchev, Z.Z. Synthesis and properties of neat, hybrid, and copolymeric polyamide 12 microparticles and composites on their basis. J. Appl. Polym. Sci. 2022, 139, e51784. [Google Scholar] [CrossRef]
- Kohan, M.I. Nylon Plastics Handbook; Hanser: New York, NY, USA, 1995; pp. 112–118. [Google Scholar]
- Novitsky, T.F., Jr. Random and Block Copolymers of PA12. Ph.D. Dissertation, University of Southern Mississippi, Hattiesburg, MS, USA, November 2009. Chapter 1. p. 4. Available online: https://aquila.usm.edu/dissertations/1092 (accessed on 30 April 2025).
Sample | Yield of Polymer [%] | Oligomers 1 [wt.%] | Mη [kDa] 2 | Average Particle Size [µm] | Average Pore Size 3 [nm] | Fe Content 4 [wt.%] |
---|---|---|---|---|---|---|
PA4-Fe | 61.2 | 5.0 | 18.0 | 10–30 | 120–300 | 1.0 [1.9] |
PA6 | 56.0 | 2.0 | 29.7 | 100–200 | 100–1000 | - |
PA6-Fe | 58.8 | 2.5 | 22.8 | 30–150 | 100–1000 | 3.0 [5.6] |
PA12-Fe | 58.5 | 3.0 | 25.0 | 20–100 | 200–800 | 2.0 [4.8] |
Sample | Total Protein [mg] | Slope [Abs652 s−1] | Specific Activity [µkat.mg−1] | Relative Activity [%] |
---|---|---|---|---|
Native GOx/HRP | 0.02000 | 0.1785 | 4.577 | 100.0 |
GOx/HRP@PA6 | 0.00862 | 0.0447 | 1.147 | 25.1 |
GOx/HRP@PA6-Fe | 0.00845 | 0.0988 | 2.533 | 55.3 |
GOx/HRP@PA4-Fe | 0.00206 | 0.2767 | 7.094 | 155.0 |
GOx/HRP@PA12-Fe | 0.01195 | 0.0182 | 0.467 | 10.2 |
System Designation | Km [µM] | Vmax [µM s−1·mg−1] | CE × 102 [s−1] |
---|---|---|---|
GOx/HRP | 275 | 11.6 | 4.22 |
GOx/HRP@PA6-Fe | 397 | 20.1 | 5.06 |
GOx/HRP@PA4-Fe | 1643 | 73.9 | 4.50 |
GOx/HRP@PA12-Fe | 1286 | 13.3 | 1.03 |
GOx/HRP@PA6 | 254 | 11.0 | 4.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dencheva, N.V.; Braz, J.F.; Guimarães, S.A.; Denchev, Z.Z. Noncovalently Immobilized Glucose Oxidase/Horseradish Peroxidase Cascade on Polyamide Supports for Eco-Friendly Polyaniline Synthesis. Molecules 2025, 30, 3003. https://doi.org/10.3390/molecules30143003
Dencheva NV, Braz JF, Guimarães SA, Denchev ZZ. Noncovalently Immobilized Glucose Oxidase/Horseradish Peroxidase Cascade on Polyamide Supports for Eco-Friendly Polyaniline Synthesis. Molecules. 2025; 30(14):3003. https://doi.org/10.3390/molecules30143003
Chicago/Turabian StyleDencheva, Nadya V., Joana F. Braz, Sofia A. Guimarães, and Zlatan Z. Denchev. 2025. "Noncovalently Immobilized Glucose Oxidase/Horseradish Peroxidase Cascade on Polyamide Supports for Eco-Friendly Polyaniline Synthesis" Molecules 30, no. 14: 3003. https://doi.org/10.3390/molecules30143003
APA StyleDencheva, N. V., Braz, J. F., Guimarães, S. A., & Denchev, Z. Z. (2025). Noncovalently Immobilized Glucose Oxidase/Horseradish Peroxidase Cascade on Polyamide Supports for Eco-Friendly Polyaniline Synthesis. Molecules, 30(14), 3003. https://doi.org/10.3390/molecules30143003