Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,098)

Search Parameters:
Keywords = HRMS analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2475 KB  
Article
Design, Synthesis, and In Vitro and In Silico Study of New Hybrid 1-(2-(4-Arylthiazol-2-yl)hydrazineylidene)-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2-ones as Factor Xa and Factor XIa Inhibitors
by Anna A. Skoptsova, Athina Geronikaki, Anthi Petrou, Nadezhda P. Novichikhina, Nadezhda A. Podoplelova, Georgii A. Bykov, Aleksandr A. Anis’kov, Svetlana A. Soloveva and Khidmet S. Shikhaliev
Molecules 2025, 30(17), 3544; https://doi.org/10.3390/molecules30173544 - 29 Aug 2025
Abstract
To develop efficient and structurally novel anticoagulants, a library of new hybrid molecules—(Z)-1-(2-(4-arylthiazol-2-yl)hydrazineylidene)-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2-ones—was designed and synthesized through a two-step approach. The reaction of pyrrolo[3,2,1-ij]quinoline-1,2-diones with thiosemicarbazide produced thiosemicarbazones, which were subsequently reacted with α-bromoacetophenones. The structure of the resulting [...] Read more.
To develop efficient and structurally novel anticoagulants, a library of new hybrid molecules—(Z)-1-(2-(4-arylthiazol-2-yl)hydrazineylidene)-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2-ones—was designed and synthesized through a two-step approach. The reaction of pyrrolo[3,2,1-ij]quinoline-1,2-diones with thiosemicarbazide produced thiosemicarbazones, which were subsequently reacted with α-bromoacetophenones. The structure of the resulting compounds was determined by HPLC-HRMS-ESI analysis, 1H NMR spectroscopy, and 13C NMR spectroscopy. X-ray diffraction analysis unambiguously confirmed the structure of the resulting substances. The synthesized compounds were tested for their anticoagulant activity in vitro. Among the tested derivatives, two substances have a dual effect and exhibit 98–100% inhibitory ability against blood coagulation factors Xa and XIa at 30 μM. IC50 values were also evaluated for these compounds. The results obtained show the high potential of the synthesized derivatives in the development of new multitarget anticoagulant drugs. The docking studies confirmed the experimental results. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

12 pages, 3474 KB  
Article
Visualization-Based Rapid Screening and Quantitative Analysis of Target Peptides for Meat Authentication
by Yingying Zhang, Chaodi Kang, Mengyao Liu, Siyu Jiang, Yingying Li, Wenping Guo, Weiheng Kong and Shouwei Wang
Foods 2025, 14(17), 3048; https://doi.org/10.3390/foods14173048 - 29 Aug 2025
Abstract
Amidst growing demand for meat products, concerns regarding their authenticity and safety have intensified, primarily due to potential fraudulent substitutions of cheaper meats, which are not accurately labeled. This study presents a novel strategy for the rapid screening and validation of target peptides [...] Read more.
Amidst growing demand for meat products, concerns regarding their authenticity and safety have intensified, primarily due to potential fraudulent substitutions of cheaper meats, which are not accurately labeled. This study presents a novel strategy for the rapid screening and validation of target peptides for accurate quantitative analysis using high-resolution mass spectrometry (HRMS) coupled with multivariate statistical analysis. By integrating hierarchical clustering analysis (HCA) with parallel reaction monitoring (PRM), five species-specific peptides were validated as reliable biomarkers for pork quantification. These peptides demonstrated accurate quantification in simulated meat products with known accurate contents, achieving recoveries of 78–128%, with RSD less than 12%. This methodology markedly enhances screening efficiency by excluding 80% of non-quantitative peptides, providing a robust solution for meat authenticity verification. Full article
(This article belongs to the Section Meat)
Show Figures

Graphical abstract

24 pages, 2706 KB  
Article
Functionalized Indolizines as Potential Anticancer Agents: Synthetic, Biological and In Silico Investigations
by Roxana Ciorteanu, Catalina Ionica Ciobanu, Narcis Cibotariu, Sergiu Shova, Vasilichia Antoci, Ionel I. Mangalagiu and Ramona Danac
Int. J. Mol. Sci. 2025, 26(17), 8368; https://doi.org/10.3390/ijms26178368 - 28 Aug 2025
Abstract
Three new series of indolizines (5af, 6af and 7ag), functionalized with bromine or ethyl ester substituents on the pyridine ring, were designed and synthesized as promising anticancer agents. The synthesis of indolizine derivatives was [...] Read more.
Three new series of indolizines (5af, 6af and 7ag), functionalized with bromine or ethyl ester substituents on the pyridine ring, were designed and synthesized as promising anticancer agents. The synthesis of indolizine derivatives was carried out using the 1,3-dipolar cycloaddition of pyridinium N-ylides to ethyl propiolate as a key step. Spectral characterization (using NMR, FT-IR, HRMS and X-ray diffraction) showed that two types of cycloadducts 5af and 6af were obtained when the ylides generated by the 3-bromopyridinium salts were used as 1,3-dipoles in Huisgen cycloaddition reactions to ethyl propiolate. The anticancer effect of selected compounds was in vitro assessed against the National Cancer Institute (NCI) panel of 60 human tumor cells, at 10 μM concentration, with three compounds (5c, 6c and 7g) showing promising inhibitory activity on the growth of several cell lines including lung, brain, renal cancer and melanoma, as well as a cytotoxic effect against HOP-62 non-small cell lung cells (34% for compound 5c and 15% for compound 7g) and SNB-75 glioblastoma cells (15% for compound 5c and 14% for derivative 7c). Molecular docking revealed favorable binding affinities for 5c, 6c and 7g (–9.22 to –9.88 kcal/mol) at the colchicine-binding site of tubulin with key interactions involving βASN-258, βALA-317, and βLYS-352 residues for 5c, βASN-258 in case of 6c, and αVAL-181 and βLYS-254 for derivative 7g. According to the in silico ADMET analysis, the active compounds are predicted to exhibit good oral bioavailability, promising drug-like qualities and low toxicity risks. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

15 pages, 1646 KB  
Article
Phytochemical Characterization and Anti-Helicobacter pylori Potential of Haloxylon articulatum Extracts: Antioxidant Activity and Molecular Docking Insights
by Reyadh Al-Rashidi, Hana Nasrallah, Amal Bouazzi and Amira Zaïri
Molecules 2025, 30(17), 3520; https://doi.org/10.3390/molecules30173520 - 28 Aug 2025
Abstract
Haloxylon articulatum is traditionally used for treating infections, digestive issues, and oxidative stress. Despite its ethnopharmacological relevance, its phytochemistry and biological activities, particularly in Iraq, are underexplored. This study investigated the phytochemical composition of H. articulatum extracts and evaluated their antioxidant and anti- [...] Read more.
Haloxylon articulatum is traditionally used for treating infections, digestive issues, and oxidative stress. Despite its ethnopharmacological relevance, its phytochemistry and biological activities, particularly in Iraq, are underexplored. This study investigated the phytochemical composition of H. articulatum extracts and evaluated their antioxidant and anti-Helicobacter pylori activities, supported by molecular docking and in silico ADMET analysis. Methanol/water and ethyl acetate extracts from roots and aerial parts were analyzed using LC-HRMS/MS. Antioxidant capacity was measured via DPPH assay, and anti-H. pylori activity was assessed using broth microdilution. Molecular docking targeted bacterial isoleucyl-tRNA synthetase, and ADMET predictions were carried out with SwissADME and ADMETlab. Phytochemical profiling identified 32 compounds, including phenolamides, flavonoids, alkaloids, and triterpenoid glycosides. Root extracts exhibited stronger antioxidant and antibacterial effects than aerial parts. Ethyl acetate extracts were inactive. Phenolamides, N-caffeoyltyramine, and sinapoyltyramine, present in the extract, showed significant activity (MICs = 54 ± 0.92 and 74 ± 1.05 µg/mL). Docking supported their strong binding to the target enzyme. ADMET results indicated good oral bioavailability and low toxicity. This study is the first to report the anti-H. pylori activity of H. articulatum and to characterize its Iraqi chemotype through advanced metabolomics. The findings highlight the plant’s potential as a source of multifunctional phytochemicals with antioxidant and antibacterial applications, warranting further preclinical development and toxicological investigation. Full article
Show Figures

Figure 1

17 pages, 671 KB  
Article
Application of Targeted and Suspect Screening Workflows for Cyclic Peptide Cyanotoxin Profiling in Spirulina- and Klamath-Based Food Supplements
by Laura Carbonell-Rozas, M. Mar Aparicio-Muriana, Roberto Romero-González, Antonia Garrido Frenich, Ana M. García-Campaña and Monsalud del Olmo-Iruela
Foods 2025, 14(17), 2969; https://doi.org/10.3390/foods14172969 - 26 Aug 2025
Viewed by 254
Abstract
Spirulina (Arthrospira spp.) and klamath (Aphanizomenon flos-aquae) are widely consumed cyanobacteria-based food supplements valued for their nutritional and health-promoting properties. However, these products are susceptible to contamination by cyanotoxins, which are potent toxins produced by co-occurring cyanobacteria that may pose [...] Read more.
Spirulina (Arthrospira spp.) and klamath (Aphanizomenon flos-aquae) are widely consumed cyanobacteria-based food supplements valued for their nutritional and health-promoting properties. However, these products are susceptible to contamination by cyanotoxins, which are potent toxins produced by co-occurring cyanobacteria that may pose health risks to consumers. In this study, we applied an integrated targeted and suspect screening approach to comprehensively assess the presence of cyanotoxins in commercial spirulina- and klamath-based food supplements. Targeted analysis was performed using UHPLC-QqQ under dynamic multiple reaction-monitoring conditions optimized for the determination of twelve cyclic peptide cyanotoxins. Suspect screening was conducted using high-resolution mass spectrometry (HRMS) with a Q-Orbitrap analyser, applying a specific workflow to detect additional related compounds lacking analytical standards. The method enabled the detection and identification of multiple cyanotoxins, including microcystins, nodularin, and anabaenopeptins. The combination of targeted and suspect workflows allowed for a broader coverage of potential related cyanotoxins. Several cyanotoxins were detected in a klamath-based supplement, with high concentrations of microcystin-RR, while additional variants were identified through suspect screening. These findings highlight the need for routine monitoring and stricter regulatory oversight of cyanobacteria-based supplements to ensure consumer safety. Full article
Show Figures

Graphical abstract

17 pages, 3177 KB  
Article
Sakuranetin, A Laxative Component from Peach Leaves and Its Intervention in Metabolism
by Ping Wang, Yi Song, Haixin Jiang, Chenyuan Qi, Xubo Zhang, Disheng Wang, Luqi Li and Qiang Zhang
Int. J. Mol. Sci. 2025, 26(17), 8112; https://doi.org/10.3390/ijms26178112 - 22 Aug 2025
Viewed by 413
Abstract
Peach (Prunus persica) leaves, usually discarded in traditional Chinese medicine, were explored as a source of laxative agents. Using zebrafish larvae for bioactivity-guided fractionation, we isolated a single active flavanone that was identified by NMR and HR-MS as Sakuranetin. In vivo [...] Read more.
Peach (Prunus persica) leaves, usually discarded in traditional Chinese medicine, were explored as a source of laxative agents. Using zebrafish larvae for bioactivity-guided fractionation, we isolated a single active flavanone that was identified by NMR and HR-MS as Sakuranetin. In vivo assays demonstrated that Sakuranetin (10–25 µM) accelerated intestinal transit in a dose-dependent fashion; at 25 µM, 64.8% of the fluorescent intestinal content was expelled. Untargeted LC-MS metabolomic analysis revealed significant perturbations in serine biosynthesis and N-glycan precursor biosynthesis, suggesting energetic rewiring of enterocytes. RNA-Seq analysis highlighted gnat1 as the most responsive gene, and molecular docking predicted a stable Sakuranetin–Gnat1 complex with a binding free energy of −8.7 kcal/mol. Concurrent down-regulation of rho transcripts indicated suppression of inflammatory signaling that often accompanies constipation. Our findings identified Sakuranetin as a potent promoter of gut motility and position the otherwise wasted peach leaves as an untapped botanical resource for developing anti-constipation therapeutics. Full article
(This article belongs to the Special Issue New Insights in Natural Bioactive Compounds: 3rd Edition)
Show Figures

Graphical abstract

14 pages, 772 KB  
Article
Development and Validation of a Fast UHPLC–HRMS Method for the Analysis of Amino Acids and Biogenic Amines in Fermented Beverages
by Simone Delaiti, Roberto Larcher, Stefano Pedò and Tiziana Nardin
Beverages 2025, 11(5), 124; https://doi.org/10.3390/beverages11050124 - 22 Aug 2025
Viewed by 432
Abstract
Considering the importance of free amino acids (FAAs) and biogenic amines (BAs) in the production of fermented beverages (FB), the interest in the quantification of these compounds has been growing. So far, most of the analytical methods developed entail a derivatization step. While [...] Read more.
Considering the importance of free amino acids (FAAs) and biogenic amines (BAs) in the production of fermented beverages (FB), the interest in the quantification of these compounds has been growing. So far, most of the analytical methods developed entail a derivatization step. While this technique allows for the detection of several compounds, it is often associated with scarce accuracy and poor resolution. To counteract the drawbacks, in this study, we aimed to develop a fast, simple, and effective method that combines the use of ultra-high-performance liquid chromatography (UHPLC) and high-resolution mass spectrometry (HRMS) to quantify underivatized FAAs and BAs in FBs. The method was successfully developed and validated: it allowed for the accurate and precise quantification of 20 FAAs—including leucine and isoleucine—and 12 BAs in just 12 min. Its applicability was demonstrated on commercial samples of wines, beers, ciders, saké, and vinegars. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Figure 1

33 pages, 375 KB  
Review
The Contribution of Sustainable Human Resource Management to International Trade Governance
by Francesco Ceresia
Sustainability 2025, 17(16), 7550; https://doi.org/10.3390/su17167550 - 21 Aug 2025
Viewed by 395
Abstract
In the last 30 years, many scholars have proposed multilevel regulatory systems that go beyond the mere management of duties, tariffs, and non-tariff barriers, seeking instead to promote ethical, environmental, and social principles in international trade. A literature review shows that no detailed [...] Read more.
In the last 30 years, many scholars have proposed multilevel regulatory systems that go beyond the mere management of duties, tariffs, and non-tariff barriers, seeking instead to promote ethical, environmental, and social principles in international trade. A literature review shows that no detailed studies have examined whether, or how, sustainable human resource management (SHRM) practices can contribute to the development of effective international trade governance models. The role of human resource management (HRM) in major international trade agreements proposed by the World Trade Organization, USA, and EU is analyzed and discussed. Adopting a narrative review method, this study formulates and discusses six propositions on the potential contribution of SHRM practices to enhancing the effectiveness of international trade governance. A model to carry out a construct and criterion validation of such SHRM practices to increase the efficacy of international trade governance is proposed. Finally, critical issues arising from the constraints imposed by the current international context—marked by high levels of uncertainty and conflict—are analyzed. This analysis provides a realistic assessment of the actual contribution of SHRM practices to the effective governance of international trade. Full article
24 pages, 1620 KB  
Article
Novel Indole-Based Sulfonylhydrazones as Potential Anti-Breast Cancer Agents: Synthesis, In Vitro Evaluation, ADME, and QSAR Studies
by Violina T. Angelova, Rositsa Mihaylova, Zvetanka Zhivkova, Nikolay Vassilev, Boris Shivachev and Irini Doytchinova
Pharmaceuticals 2025, 18(8), 1231; https://doi.org/10.3390/ph18081231 - 20 Aug 2025
Viewed by 382
Abstract
Background: Breast cancer continues to pose a significant global health challenge despite advances in early detection and targeted therapies. The development of novel chemotherapeutic agents remains crucial, particularly those with selective cytotoxicity toward specific breast cancer subtypes. Methods: A series of [...] Read more.
Background: Breast cancer continues to pose a significant global health challenge despite advances in early detection and targeted therapies. The development of novel chemotherapeutic agents remains crucial, particularly those with selective cytotoxicity toward specific breast cancer subtypes. Methods: A series of ten hybrid indolyl-methylidene phenylsulfonylhydrazones and one bis-indole derivative were designed, synthesized, and structurally characterized using NMR and high-resolution mass spectrometry (HRMS). Prior to synthesis, in silico screening was performed to assess drug likeness and ADME-related properties. Single-crystal X-ray diffraction was conducted for compound 3e. The cytotoxic potential of the synthesized compounds was evaluated using the MTT assay against MCF-7 (ER-α⁺) and MDA-MB-231 (triple-negative) breast cancer cell lines. Additionally, quantitative structure–activity relationship (QSAR) analysis was conducted to identify key structural features contributing to activity. Results: Most compounds exhibited selective cytotoxicity against MCF-7 cells. Notably, compound 3b demonstrated the highest potency with an IC50 of 4.0 μM and a selectivity index (SI) of 20.975. Compound 3f showed strong activity against MDA-MB-231 cells (IC50 = 4.7 μM). QSAR analysis revealed that the presence of a non-substituted phenyl ring and specific indolyl substituents (5-methoxy, 1-acetyl, 5-chloro) significantly contributed to enhanced cytotoxic activity and ligand efficiency. Conclusion: The synthesized phenylsulfonylhydrazone hybrids exhibit promising and selective cytotoxicity, particularly against ER-α⁺ breast cancer cells. Structural insights from QSAR analysis provide a valuable foundation for the further optimization of this scaffold as a potential source of selective anticancer agents. Full article
(This article belongs to the Special Issue Advances in Hydrazone Compounds with Anticancer Activity)
Show Figures

Graphical abstract

22 pages, 747 KB  
Article
Unpacking the Black Box: How AI Capability Enhances Human Resource Functions in China’s Healthcare Sector
by Xueru Chen, Maria Pilar Martínez-Ruiz, Elena Bulmer and Benito Yáñez-Araque
Information 2025, 16(8), 705; https://doi.org/10.3390/info16080705 - 19 Aug 2025
Viewed by 636
Abstract
Artificial intelligence (AI) is transforming organizational functions across sectors; however, its application to human resource management (HRM) within healthcare remains underexplored. This study aims to unpack the black-box nature of AI capability’s impact on HR functions within China’s healthcare sector, a domain undergoing [...] Read more.
Artificial intelligence (AI) is transforming organizational functions across sectors; however, its application to human resource management (HRM) within healthcare remains underexplored. This study aims to unpack the black-box nature of AI capability’s impact on HR functions within China’s healthcare sector, a domain undergoing rapid digital transformation, driven by national innovation policies. Grounded in resource-based theory, the study conceptualizes AI capability as a multidimensional construct encompassing tangible resources, human resources, and organizational intangibles. Using a structural equation modeling approach (PLS-SEM), the analysis draws on survey data from 331 professionals across five hospitals in three Chinese cities. The results demonstrate a strong, positive, and statistically significant relationship between AI capability and HR functions, accounting for 75.2% of the explained variance. These findings indicate that AI capability enhances HR performance through smarter recruitment, personalized training, and data-driven talent management. By empirically illuminating the mechanisms linking AI capability to HR outcomes, the study contributes to theoretical development and offers actionable insights for healthcare administrators and policymakers. It positions AI not merely as a technological tool but as a strategic resource to address talent shortages and improve equity in workforce distribution. This work helps to clarify a previously opaque area of AI application in healthcare HRM. Full article
(This article belongs to the Special Issue Emerging Research in Knowledge Management and Innovation)
Show Figures

Figure 1

14 pages, 1685 KB  
Article
Targeted LC-MS Orbitrap Method for the Analysis of Azaarenes, and Nitrated and Oxygenated PAHs in Road Paving Emissions
by Maria Bou Saad, Sylvain Ravier, Amandine Durand, Brice Temime-Roussel, Vincent Gaudefroy, Audrey Pevere, Henri Wortham and Pierre Doumenq
Molecules 2025, 30(16), 3397; https://doi.org/10.3390/molecules30163397 - 16 Aug 2025
Viewed by 485
Abstract
Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted [...] Read more.
Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted from bituminous mixtures, remains challenging due to limitations of conventional analytical techniques. To address this, an advanced methodology was developed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS Orbitrap Eclipse) equipped with an APCI source for the simultaneous identification and quantification of 14 PAH derivatives. Chromatographic and ionization parameters were optimized to ensure maximum sensitivity and selectivity. Following ICH Q2(R2) guidelines, the method was validated, demonstrating excellent linearity (R2 > 0.99), high mass accuracy (≤5 ppm), strong precision (<15%), and excellent sensitivity. Limits of detection (LODs) ranged from 0.1 µg L−1 to 0.6 µg L−1 and limits of quantification (LOQs) ranged from 0.26 µg L−1 to 1.87 µg L−1. The validated method was successfully applied to emissions from asphalt pavement materials collected on quartz filters under controlled conditions, enabling the identification and quantification of all 14 targeted compounds. These results confirm the method’s robustness and suitability for trace-level analysis of PAH derivatives in complex environmental matrices. Full article
Show Figures

Figure 1

26 pages, 6488 KB  
Article
Electron Beam Irradiation for Efficient Antibiotic Degradation in Aqueous Solutions
by Anastasia Oprunenko, Ulyana Bliznyuk, Victoria Ipatova, Alexander Nikitchenko, Igor Gloriozov, Arcady Braun, Timofey Bolotnik, Polina Borshchegovskaya, Elena Kozlova, Irina Ananieva and Igor Rodin
Antibiotics 2025, 14(8), 833; https://doi.org/10.3390/antibiotics14080833 - 15 Aug 2025
Viewed by 408
Abstract
Background: Recently, extensive use of antibiotics has increased the amount of antibiotic residues in the natural water environment. Methods: This study presents an experimental investigation into the degradation of penicillins, tetracyclines, streptomycin and chloramphenicol in aqueous solutions when exposed to 1 MeV accelerated [...] Read more.
Background: Recently, extensive use of antibiotics has increased the amount of antibiotic residues in the natural water environment. Methods: This study presents an experimental investigation into the degradation of penicillins, tetracyclines, streptomycin and chloramphenicol in aqueous solutions when exposed to 1 MeV accelerated electrons with doses of 0.1, 1, 3 and 7 kGy using HPLC-HRMS analysis. Results: It was found that electron beam irradiation with a dose of 7 kGy ensures 98–99% removal of antibiotics, with the initial concentrations ranging from 15 mg/L to 30 mg/L depending on the class of antibiotic. The mathematical model proposed in the study, which estimates the dose dependencies of the relative concentrations of antibiotics and their degradation products in aqueous solutions, reveals different decomposition rates of antibiotics of different classes due to the different radiosensitivities of antibiotics. It has been found that tetracycline has a considerably higher radiation–chemical yield compared to the other antibiotics when exposed to accelerated electrons. Conclusions: Using density functional theory in combination with the mathematical model, we have developed a novel approach to establishing a quantitative irradiation marker of antibiotic degradation as a result of irradiation, which involves finding the degradation product whose formation requires a minimum number of ionization events. Using such an approach, it is possible to establish the extent of antibiotic degradation in water after irradiation with different doses and find the optimal irradiation doses for industrial water treatment. Full article
Show Figures

Graphical abstract

19 pages, 1078 KB  
Article
Antioxidant Activity and Phytochemical Profiling of Steam-Distilled Oil of Flaxseed (Linum usitatissimum): Therapeutic Targeting Against Glaucoma, Oxidative Stress, Cholinergic Imbalance, and Diabetes
by İlhami Gulcin, Muzaffer Mutlu, Zeynebe Bingol, Eda Mehtap Ozden, Ziba Mirzaee, Ahmet C. Goren and Ekrem Köksal
Molecules 2025, 30(16), 3384; https://doi.org/10.3390/molecules30163384 - 14 Aug 2025
Viewed by 493
Abstract
This investigation explored the chemical constituents and biological activities of the steam-distilled oil of L. usitatissimum (SDOLU), employing sophisticated techniques including LC-HRMS, GC-MS, and GC-FID. The analysis identified a diverse array of 17 phenolic compounds, with linoleoyl chloride (64.05%) and linoleic acid (10.39%) [...] Read more.
This investigation explored the chemical constituents and biological activities of the steam-distilled oil of L. usitatissimum (SDOLU), employing sophisticated techniques including LC-HRMS, GC-MS, and GC-FID. The analysis identified a diverse array of 17 phenolic compounds, with linoleoyl chloride (64.05%) and linoleic acid (10.39%) as the major fatty acid components. The SDOLU demonstrated remarkable antioxidant capacity, effectively neutralizing free radicals in both DPPH (IC50: 19.80 μg/mL) and ABTS•+ (IC50: 57.75 μg/mL) scavenging assays, alongside robust electron-donating activity in reducing ability tests. Moreover, the SDOLU showed significant inhibition of key enzymes implicated in metabolic and neurodegenerative disorders, including α-amylase (IC50: 531.44 μg/mL), acetylcholinesterase (IC50: 13.23 μg/mL), and carbonic anhydrase II (IC50: 281.02 μg/mL). Collectively, these results highlight the SDOLU as a valuable natural source of multifunctional bioactivities with potential applications in combating oxidative stress and enzyme-related global diseases. Further studies are warranted to validate its therapeutic efficacy and expand its industrial utilization. Full article
(This article belongs to the Special Issue The Application of LC-MS in Pharmaceutical Analysis—2nd Edition)
Show Figures

Figure 1

37 pages, 1330 KB  
Article
Digital HRM Practices and Perceived Digital Competence: An Analysis of Organizational Culture’s Role
by Ioannis Zervas and Sotiria Triantari
Digital 2025, 5(3), 34; https://doi.org/10.3390/digital5030034 - 14 Aug 2025
Viewed by 543
Abstract
This study explores the relationship between digital human resource management (HRM) practices, organizational culture, and employees’ perceived digital competence within Greek organizations. While digitalization has become a central priority in human resource management (HRM), there is still limited understanding of how cultural context [...] Read more.
This study explores the relationship between digital human resource management (HRM) practices, organizational culture, and employees’ perceived digital competence within Greek organizations. While digitalization has become a central priority in human resource management (HRM), there is still limited understanding of how cultural context shapes the effectiveness of digital HR interventions. Using a quantitative approach, data were collected via an online questionnaire from 257 employees across various sectors. The research employed the method of Partial Least Squares Structural Equation Modeling (PLS-SEM) and Multi-Group Analysis (MGA) to examine the structural relationships between digital HRM practices—such as e-learning, onboarding, and performance management—and digital competence, taking into account different organizational culture profiles. The results show that digital HRM practices have a positive, but modest, impact on employees’ digital skills, with e-learning emerging as the most influential factor. Importantly, the effect of HRM practices varies significantly according to the cultural environment: supportive and innovative cultures foster stronger development of digital competence compared to hierarchical settings. The findings underline the necessity for organizations to adapt digital HR strategies to their specific cultural context and not to rely solely on technological solutions. This research contributes to the growing literature by demonstrating the interplay between technology and culture in shaping employees’ digital capabilities and suggests that a balanced focus on both is essential for successful digital transformation. Full article
Show Figures

Figure 1

19 pages, 3393 KB  
Article
Integrated Phytochemical Profiling, UPLC-HRMS Characterization, and Bioactivity Evaluation of Zingiber officinale and Piper nigrum
by Aicha Boubker, Abdelmoula El Ouardi, Taha El Kamli, Mohammed Kaicer, Faouzi Kichou, Khaoula Errafii, Adnane El Hamidi, Rachid Ben Aakame and Aicha Sifou
Int. J. Mol. Sci. 2025, 26(16), 7782; https://doi.org/10.3390/ijms26167782 - 12 Aug 2025
Viewed by 359
Abstract
The phytochemical profiles, antioxidant capacities, mineral composition, and antibacterial activities of Zingiber officinale (Z. officinal) and Piper nigrum (P. nigrum) were explored through aqueous, ethanolic, and methanolic extractions. The extracts were analyzed for polyphenols, flavonoids, and tannins, and their [...] Read more.
The phytochemical profiles, antioxidant capacities, mineral composition, and antibacterial activities of Zingiber officinale (Z. officinal) and Piper nigrum (P. nigrum) were explored through aqueous, ethanolic, and methanolic extractions. The extracts were analyzed for polyphenols, flavonoids, and tannins, and their antioxidant potential was assessed using the DPPH assay. UPLC-HRMS identified major bioactive compounds, including 6-gingerol and shogaol in Z. officinale, and piperine and piperlonguminine in P. nigrum. Mineral analysis showed that P. nigrum was particularly rich in essential elements, including calcium (Ca), magnesium (Mg), and iron (Fe). In antibacterial testing, P. nigrum demonstrated wider zones of inhibition against E. coli, whereas Z. officinale was more active at lower concentrations, showing MICs as low as 3.91 µg/mL against Salmonella and S. aureus. PCA analysis revealed strong correlations between phenolic content and biological effects. These results underscore the potential of both spices as effective natural agents for use in food preservation and health-promoting applications. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Antioxidant Role: 2nd Edition)
Show Figures

Figure 1

Back to TopTop