Visualization-Based Rapid Screening and Quantitative Analysis of Target Peptides for Meat Authentication
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Sample Pretreatment
2.4. Data Acquisition
2.4.1. High-Resolution Mass (HRMS) Analysis
2.4.2. Liquid Chromatography-Tandem Mass (LC-MS/MS) Analysis
2.5. Data Analysis
2.5.1. Proteome Discoverer Software (PD) Analysis
2.5.2. Multivariate Statistical Analysis
3. Results and Discussion
3.1. Label-Free Quantitative Analysis
3.2. Hierarchical Clustering Analysis
3.3. Screening of Target Quantitative Peptides by PRM Method
3.4. Validation of Target Quantitative Peptides by LC-MS/MS
3.4.1. Development of LC-MS/MS Method
3.4.2. Validation by Quantitative Standard Curve
3.4.3. Method Verification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farag, M.R.; Alagawany, M.; Elgammal, M.; Tiwari, R.; Dhama, K. Identification of Different Animal Species in Meat and Meat Products-Trends and Advances. Adv. Anim. Vet. Sci. 2015, 3, 334–346. [Google Scholar] [CrossRef]
- Su, G.; Yu, C.; Liang, S.; Wang, W.; Wang, H. Multi-omics in food safety and authenticity in terms of food components. Food Chem. 2024, 437 Pt 2, 137943. [Google Scholar] [CrossRef] [PubMed]
- Qamar, Z.; Mohammad, A.; Khairil, M.N.F.; Raja, N.R.M.H.; Irwan, H. Current Analytical Methods for Porcine Identification in Meat and Meat Products. Food Chem. 2020, 324, 126664. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Makino, Y.; Oshita, S.; Liu, S. Assessment of Visible Near-Infrared Hyperspectral Imaging as a Tool for Detection of Horsemeat Adulteration in Minced Beef. Food Bioprocess Technol. 2015, 8, 1054–1062. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, T.; Xiang, C.; Xu, X.; Tian, X. Rapid Identification of Rainbow Trout Adulteration in Atlantic Salmon by Raman Spectroscopy Combined with Machine Learning. Molecules 2019, 24, 2851. [Google Scholar] [CrossRef]
- Bergana, M.M.; Adams, K.M.; Harnly, J.; Moore, J.C.; Xie, Z. Non-targeted Detection of Milk Powder Adulteration by 1H NMR spectroscopy and Conformity Index Analysis. J. Food Compos. Anal. 2019, 78, 49–58. [Google Scholar] [CrossRef]
- Sikorska, E.; Khmelinskii, I.; Sikorski, M. Fluorescence spectroscopy and imaging instruments for food quality evaluation. Eval. Technol. Food Qual. 2019, 19, 491–533. [Google Scholar] [CrossRef]
- At-Kaddour, A.; Loudiyi, M.; Ferlay, A.; Gruffat, D. Performance of fluorescence spectroscopy for beef meat authentication: Effect of excitation mode and discriminant algorithms. Meat Sci. 2018, 137, 58–66. [Google Scholar] [CrossRef]
- Velioglu, H.M.; Sezer, B.; Bilge, G.; Baytur, S.E.; Boyaci, I.H. Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS). Meat Sci. 2018, 138, 28–33. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; Reis, M.M.; Yan, W.Q.; Klette, R. Potential of deep learning and snapshot hyperspectral imaging for classification of species in meat. Food Control 2020, 117, 107332. [Google Scholar] [CrossRef]
- Hassoun, A.; Måge, I.; Schmidt, W.F.; Temiz, H.T.; Li, L.; Kim, H.-Y.; Nilsen, H.; Biancolillo, A.; Aït-Kaddour, A.; Sikorski, M.; et al. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020, 9, 1069. [Google Scholar] [CrossRef]
- Al-Kahtani, H.A.; Ismail, E.A.; Asif Ahmed, M. Pork detection in binary meat mixtures and some commercial food products using conventional and real-time PCR techniques. Food Chem. 2017, 219, 54–60. [Google Scholar] [CrossRef]
- Cottenet, G.; Blancpain, C.; Chuah, P.F.; Cavin, C. Evaluation and application of a next generation sequencing approach for meat species identification. Food Control 2020, 110, 107003. [Google Scholar] [CrossRef]
- Takasaki, K.; Yamakoshi, Y.; Futo, S. Single-Laboratory Validation of Rapid and Easy DNA Strip for Porcine DNA Detection in Beef Meatballs. J. AOAC Int. 2018, 101, 1653–1656. [Google Scholar] [CrossRef] [PubMed]
- Muflihah; Hardianto, A.; Kusumaningtyas, P.; Prabowo, S.; Hartati, Y.W. DNA-based detection of pork content in food. Heliyon 2023, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Perestam, A.T.; Fujisaki, K.K.; Nava, O.; Hellberg, R.S. Comparison of real-time PCR and ELISA-based methods for the detection of beef and pork in processed meat products. Food Control 2017, 71, 346–352. [Google Scholar] [CrossRef]
- Kim, G.-D.; Seo, J.-K.; Yum, H.-W.; Jeong, J.-Y.; Yang, H.-S. Protein markers for discrimination of meat species in raw beef, pork and poultry and their mixtures. Food Chem. 2017, 217, 163–170. [Google Scholar] [CrossRef]
- Hafner, L.; Kalkhof, S.; Jira, W. Authentication of nine poultry species using high-performance liquid chromatography-tandem mass spectrometry. Food Control 2021, 122, 10783. [Google Scholar] [CrossRef]
- Stachniuk, A.; Sumara, A.; Montowska, M.; Fornal, E. Liquid chromatography–mass spectrometry bottom-up proteomic methods in animal species analysis of processed meat for food authentication and the detection of adulterations. Mass Spectrom. Rev. 2019, 419, 1–28. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Zhang, Y.; Kang, C.; Zhao, W.; Ren, N.; Guo, W.; Wang, S. Rapid LC-MS/MS method for the detection of seven animal species in meat products. Food Chem. 2022, 371, 131075. [Google Scholar] [CrossRef]
- Magdalena, M.; Emilia, F. Absolute quantification of targeted meat and allergenic protein additive peptide markers in meat products. Food Chem. 2019, 274, 857–864. [Google Scholar] [CrossRef]
- Stachniuk, A.; Trzpil, A.; Czeczko, R.; Nowicki, L.; Ziomkowska, M.; Fornal, E. Absolute quantification of targeted rabbit liver- and meat tissue-specific peptide markers in highly processed food products. Food Chem. 2024, 438, 138069. [Google Scholar] [CrossRef]
- Barbara, P.; Martina, V.; Andrea, F.; Francesca, L.; Michele, S.; Andrea, L.; Tullia, T.; Stefano, S. Species specific marker peptides for meat authenticity assessment: A multispecies quantitative approach applied to Bolognese sauce. Food Control 2019, 97, 15–24. [Google Scholar] [CrossRef]
- Sentandreu, M.A.; Fraser, P.D.; Halket, J.; Patel, R.; Bramley, P.M. A Proteomic-Based Approach for Detection of Chicken in Meat Mixes. J. Proteome Res. 2010, 9, 3374–3383. [Google Scholar] [CrossRef] [PubMed]
- Windarsih, A.; Suratno; Warmiko, H.D.; Indrianingsih, A.W.; Rohman, A.; Ulumuddin, Y.I. Untargeted metabolomics and proteomics approach using liquid chromatography-Orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat. Food Chem. 2022, 386, 132856. [Google Scholar] [CrossRef]
- Pu, K.; Qiu, J.; Tong, Y.; Liu, B.; Cheng, Z.; Chen, S.; Ni, W.; Lin, Y.; Ng, K.M. Integration of Non-targeted Proteomics Mass Spectrometry with Machine Learning for Screening Cooked Beef Adulterated Samples. J. Agric. Food Chem. 2023, 71, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, M.; Wang, S.; Kang, C.; Zhang, M.; Li, Y. Identification and quantification of fox meat in meat products by liquid chromatography-tandem mass spectrometry. Food Chem. 2022, 372, 131336. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Kang, C.; Zhao, W.; Li, S.; Wang, S. Assessment of carbonic anhydrase 3 as a marker for meat authenticity and performance of LC-MS/MS for pork content. Food Chem. 2021, 342, 128240. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, G.; Ren, H.-w.; Xu, Y.; Yang, Y.; Guo, L.; Liu, N. Peptide biomarkers identified by LC–MS in processed meats of five animal species. J. Food Compos. Anal. 2018, 73, 47–54. [Google Scholar] [CrossRef]
- Nalazek-Rudnicka, K.; Kłosowska-Chomiczewska, I.; Wasik, A.; Macierzanka, A. MRM-MS of marker peptides and their abundance as a tool for authentication of meat species and meat cuts in single-cut meat products. Food Chem. 2019, 283, 367–374. [Google Scholar] [CrossRef]
- Claydon, A.J.; Grundy, H.H.; Charlton, A.J.; Romero, M.R. Identification of novel peptides for horse meat speciation in highly processed foodstuffs. Food Addit. Contam. 2015, 32, 1718–1729. [Google Scholar] [CrossRef] [PubMed]
- Bargen, C.v.; Brockmeyer, J.; Humpf, H.-U. Meat authentication: A new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food. J. Agric. Food Chem. 2014, 62, 9428–9435. [Google Scholar] [CrossRef]
- Montowska, M.; Alexander, M.R.; Tucker, G.A.; Barrett, D.A. Authentication of processed meat products by peptidomic analysis using rapid ambient mass spectrometry. Food Chem. 2015, 187, 297–304. [Google Scholar] [CrossRef]
- Sarah, S.A.; Faradalila, W.N.; Salwani, M.S.; Amin, I.; Karsani, S.A.; Sazili, A.Q. LC-QTOF-MS identification of porcine-specific peptide in heat treated pork identifies candidate markers for meat species determination. Food Chem. 2016, 199, 157–164. [Google Scholar] [CrossRef] [PubMed]
Peptide ID | Peptide Sequence | Peptide Length | m/z | Charge | RT/ min | UniProt Accession Number | Protein Source |
---|---|---|---|---|---|---|---|
Pep1 | VIFADGSR | 8 | 432.733 | 2 | 5.90 | A0A480K2R3 | phosphoglucomutase (alpha-D-glucose-1,6-bisphosphate-dependent) |
Pep2 | GGPLTAAYR | 9 | 453.246 | 2 | 6.63 | Q5S1S4 | Carbonic anhydrase 3 |
Pep3 | HDPSLLPWTASYDPGSAK | 18 | 647.983 | 3 | 11.59 | Q5S1S4 | Carbonic anhydrase 3 |
Pep4 | ADAIGLSLIK | 10 | 500.805 | 2 | 11.80 | A0A4X1WCQ0 | Glycerol-3-phosphate dehydrogenase |
Pep5 | TLAFLFAER | 9 | 534.298 | 2 | 13.89 | A0A8D1T8Y2 | Myosin-4 |
Pep6 | TVLGNFAAFVQK | 12 | 647.861 | 2 | 13.32 | A0A287BAY9 | Albumin |
Pep7 | EPITVSSDQMAK | 12 | 653.322 | 2 | 6.28 | Q5S1S4 | Carbonic anhydrase 3 |
Pep8 | HFLEELLTTQCDR | 13 | 831.405 | 2 | 11.35 | A0A8D1S3B2 | Myosin light chain |
Pep9 | HPDGVAVVGIFLK | 13 | 676.391 | 2 | 13.14 | Q5S1S4 | Carbonic anhydrase 3 |
Pep10 | IVTDLAK | 7 | 380.234 | 2 | 8.84 | A0A287BAY9 | Albumin |
Pep11 | NQMEIGEDPK | 10 | 580.766 | 2 | 8.42 | A0A4X1VUZ8 | Myosin binding protein C, fast type |
Pep12 | SALAHAVQSSR | 11 | 376.203 | 3 | 3.12 | A0A8D1T8Y2 | Myosin-4 |
Pep13 | TIVPGNIFK | 9 | 494.795 | 2 | 13.04 | A0A480SN35 | Titin |
Pep14 | ADISSFVIESAER | 13 | 712.357 | 2 | 11.24 | A0A4X1VUZ8 | Myosin binding protein C, fast type |
Pep15 | GPGTSFEFALAIVEALAGK | 19 | 939.505 | 2 | 19.10 | A0A8D0IT98 | protein deglycase |
Pep16 | ILVDEER | 7 | 437.238 | 2 | 6.83 | A0A8D1BMD0 | Alpha-1,4 glucan phosphorylase |
Pep17 | MAEILSGTETVSLTHVAQEALR | 22 | 786.078 | 3 | 13.18 | A0A480SN35 | Titin |
Peptide ID | m/z | Product Ions (m/z) | Linear Equation | R2 |
---|---|---|---|---|
Pep1 | 432.733 | 652.304/213.160/505.236 | y = 201,843x − 28,140 | 0.9913 |
Pep2 | 453.246 | 581.304/480.256/212.103 | y = 209,641x − 28,045 | 0.9926 |
Pep3 | 647.983 | 550.262/824.379/895.416 | y = 27,132x + 1769.7 | 0.9937 |
Pep4 | 500.805 | 630.418/258.108/743.500 | y = 194,145x − 23,236 | 0.9938 |
Pep5 | 534.298 | 853.456/215.139/286.176 | y = 512,434x − 74,435 | 0.9935 |
Pep6 | 647.861 | 201.123/592.347/374.239 | y = 69,530x − 7210.3 | 0.9979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Kang, C.; Liu, M.; Jiang, S.; Li, Y.; Guo, W.; Kong, W.; Wang, S. Visualization-Based Rapid Screening and Quantitative Analysis of Target Peptides for Meat Authentication. Foods 2025, 14, 3048. https://doi.org/10.3390/foods14173048
Zhang Y, Kang C, Liu M, Jiang S, Li Y, Guo W, Kong W, Wang S. Visualization-Based Rapid Screening and Quantitative Analysis of Target Peptides for Meat Authentication. Foods. 2025; 14(17):3048. https://doi.org/10.3390/foods14173048
Chicago/Turabian StyleZhang, Yingying, Chaodi Kang, Mengyao Liu, Siyu Jiang, Yingying Li, Wenping Guo, Weiheng Kong, and Shouwei Wang. 2025. "Visualization-Based Rapid Screening and Quantitative Analysis of Target Peptides for Meat Authentication" Foods 14, no. 17: 3048. https://doi.org/10.3390/foods14173048
APA StyleZhang, Y., Kang, C., Liu, M., Jiang, S., Li, Y., Guo, W., Kong, W., & Wang, S. (2025). Visualization-Based Rapid Screening and Quantitative Analysis of Target Peptides for Meat Authentication. Foods, 14(17), 3048. https://doi.org/10.3390/foods14173048