Phytochemical Characterization and Anti-Helicobacter pylori Potential of Haloxylon articulatum Extracts: Antioxidant Activity and Molecular Docking Insights
Abstract
1. Introduction
2. Results
2.1. Phytochemical Analysis of the Haloxylon Articulatum Extract
2.2. Determination of the Antioxidant Activity Based on the DPPH Free Radical Scavenging Activity Method
2.3. Antibacterial Activities of Haloxylon Extracts on Helicobacter Pylori (H. pylori)
2.4. Molecular Docking
3. Discussion
- Antioxidant Activity: Comparative Efficacy and Phytochemical Correlation
- 2.
- Antibacterial Potential Against H. pylori: A Novel Finding
- 3.
- Bioactive Compounds: Activity and Mechanistic Insight
- 4.
- Metabolomic Profiling: A Rich and Unusual Phytochemical Spectrum
- 5.
- In Silico ADMET Prediction and Safety Considerations
4. Materials and Methods
4.1. Plant Material Collection and Identification
4.2. Preparation of Plant Extract Through Hydroalcoholic Maceration
4.3. Phytochemical Analysis of the Extracts
4.4. Liquid Chromatography High-Resolution Mass Spectrometry/Mass Spectrometry (LC-HRMS/MS)
4.5. Antioxidant Activity by DPPH Assay
4.6. Antibacterial Activity Against Helicobacter pylori
4.6.1. Preparation of Extracts
4.6.2. Stock Solution Preparation in Methanol: Water
4.6.3. Stock Solution Preparation in Ethyl Acetate
4.6.4. Minimum Inhibitory Concentration (MIC) Assay
4.7. Molecular Docking Analysis
4.8. In Silico ADMET Analysis
4.9. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADMET | Absorption, Distribution, Metabolism, Excretion, and Toxicity |
| TPC | total phenolic content |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
| BHT | butylated hydroxytoluene |
| DMSO | dimethyl sulfoxide |
| MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
| LC-HRMS/MS | Liquid Chromatography High-Resolution Mass Spectrometry/Mass Spectrometry |
| MIC | minimum inhibitory concentration |
| Id | tentative identifications |
| MF | molecular formulas |
| TR | retention times |
References
- Sankary, M.N.; Barbour, M.G. Autecology of Haloxylon Articulatum in Syria. J. Ecol. 1972, 60, 697–711. [Google Scholar] [CrossRef]
- Wassima, L.; Neghmouche Nacer, S.; Abderrezzak, A.; Bachir, H.; Dehliz, A.; Hammi, H.; Elsharkawy, E.R. Unveiling the Therapeutic Potential of Haloxylon articulatum Extract: A Comprehensive Study on Its Phytochemical Composition, Antioxidant, Antifungal, and Antibacterial Activities. Int. J. Food Prop. 2024, 27, 1290–1301. [Google Scholar] [CrossRef]
- Lachkar, N.; Lamchouri, F.; Bouabid, K.; Senhaji, S.; Boulfia, M.; Akabli, T.; Zalaghi, A.; Toufik, H. In Vitro Study of the Antimitotic Power and in Vivo Acute Toxicity of Aqueous and Organic Extracts of the Aerial Part of Haloxylon Scoparium Pomel. and Evaluation of the Correlation between the Chemical Profile and Their Biological Activities. Plant Sci. Today 2023, 10, 242–251. [Google Scholar] [CrossRef]
- Pallarés, N.; Berrada, H.; Ferrer, E.; Rached, W.; Pinela, J.; Mandim, F.; Pires, T.C.; Finimundy, T.C.; Barba, F.J.; Barros, L. Green and Innovative Extraction: Phenolic Profiles and Biological Activities of Underutilized Plant Extracts Using Pulsed Electric Fields and Maceration. Foods 2025, 14, 222. [Google Scholar] [CrossRef] [PubMed]
- Chaouche, T.M.; Haddouchi, F.; Ksouri, R.; Atik-Bekkara, F. Evaluation of Antioxidant Activity of Hydromethanolic Extracts of Some Medicinal Species from South Algeria. J. Chin. Med. Assoc. 2014, 77, 302–307. [Google Scholar] [CrossRef]
- Noureddine, T.; Nedjimi, M.S.; Medjdoub, A.; Belalem, M.A.; Tlili, S.; Nacersalah, N. A Comparison of the Antioxidant and Antimicrobial Effects of Phenolic Extracts from Plants Growing in Oued Souf,” Haloxylon Articulatum Bioss and Arnebia Decumbens Vent Coss and Kral. NeuroQuantology 2023, 21, 842–856. [Google Scholar]
- Bahri, F.; Boussena, A.; Szumny, A.; Bahri, Y.; Bahri, E.-M.; Figiel, A.; Juszczyk, P. Use of Haloxylon Scoparium Against Multidrug-Resistant Bacteria from Urinary Tract Infections. Antibiotics 2025, 14, 471. [Google Scholar] [CrossRef]
- Yousif, A.A.; Al-Shawi, A.A.; Hameed, M.F. Antioxidant, Antibacterial, and Anticancer Properties of Extracted by Microwave-Assisted Extraction. Egypt. Pharm. J. 2021, 20, 225–231. [Google Scholar] [CrossRef]
- Grele, K.; Adli, D.E.H.; Slimani, M.; Houari, H.; Kourat, D.; Kahloula, K. Evaluation of the Nephroprotective Effect of the Essential Oil of Haloxylon Articulatum in Wistar Rats Intoxicated by Nickel. South Asian J. Exp. Biol. 2021, 11, 96–105. [Google Scholar] [CrossRef]
- Tahar, S.B.; Pichette, A.; Legault, J.; Hadj-Mahammed, M. Antioxidant and Cytotoxic Activities of Extracts from Haloxylon Scoparium Pomel. J. Nat. Prod. Res. Appl. 2023, 3, 1–10. [Google Scholar]
- Ahvazi, M.H.; Abdevand, Z.Z.; Golfakhrabadi, F.; Farshadzadeh, Z.; Najafi, S.; Fazeli, M. Haloxylon Ammodendron: Assessing Antioxidant and Antimicrobial Efficacy with Minimum Inhibitory Concentration (MIC) Determination in Bacterial Strains. Jundishapur J. Nat. Pharm. Prod. 2025, 20, e157350. [Google Scholar] [CrossRef]
- Di Palo, A.; Siniscalchi, C.; Crescente, G.; De Leo, I.; Fiorentino, A.; Pacifico, S.; Russo, A.; Potenza, N. Effect of Cannabidiolic Acid, N-Trans-Caffeoyltyramine and Cannabisin B from Hemp Seeds on microRNA Expression in Human Neural Cells. Curr. Issues Mol. Biol. 2022, 44, 5106–5116. [Google Scholar] [CrossRef] [PubMed]
- Veeriah, V.; Lee, S.-H.; Levine, F. Long-Term Oral Administration of an HNF4α Agonist Prevents Weight Gain and Hepatic Steatosis by Promoting Increased Mitochondrial Mass and Function. Cell Death Dis. 2022, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Nan, Z.; Zhu, Y.; Deng, C.; Jiang, G.; Wang, Z.; Li, C.; Ma, X.; Jiang, Z.-B. Nitrogenous Chemical Constituents and Their Antitumor Activities Evaluation in Vitro from the Aerial Parts of Corydalis impatiens (Pall.) Fisch. Nat. Prod. Res. 2025, 39, 1027–1038. [Google Scholar] [CrossRef]
- Ibrahim, B.M.; Salman, H.S.; Mohammed, M.M.; Mjeed, H.M. Prevalence of Helicobacter Pylori Infection among Dyspeptic Patients Attending Baghdad Medical City Complex. Iran. J. Microbiol. 2025, 17, 397. [Google Scholar] [CrossRef]
- Hussein, M.J.A.; Al-Fahham, H.R.A.; Abed, A.S. Phenotypic Detection of Some Drug Resistance and Virulence Factors among Helicobacter Pylori Isolated from Clinical Sources in Iraq. Regul. Mech. Biosyst. 2025, 16, e25007. [Google Scholar] [CrossRef]
- Jdey, A.; Falleh, H.; Jannet, S.B.; Hammi, K.M.; Dauvergne, X.; Magné, C.; Ksouri, R. Anti-Aging Activities of Extracts from Tunisian Medicinal Halophytes and Their Aromatic Constituents. EXCLI J. 2017, 16, 755. [Google Scholar]
- Krayem, N.; Jribi, F.; Alonazi, M.; Amina, M.; Horchani, H.; Karray, A.; Cherif, S.; Bacha, A.B. Unveiling the Therapeutic Potential: Anti-Inflammatory and Antioxidant Properties of Selective Medicinal Plants. Cell. Mol. Biol. 2025, 71, 88–100. [Google Scholar] [CrossRef]
- Fu, L.; Shi, S.; Yi, J.; Wang, N.; He, Y.; Wu, Z.; Peng, J.; Deng, Y.; Wang, W.; Wu, C. ADMETlab 3.0: An Updated Comprehensive Online ADMET Prediction Platform Enhanced with Broader Coverage, Improved Performance, API Functionality and Decision Support. Nucleic Acids Res. 2024, 52, W422–W431. [Google Scholar] [CrossRef]
- Haida, S.; Kribii, A.; Daoud, N.A.; Belakhmima, R.A.; Kribii, A. Antioxidant Activity of Haloxylon Scoparium Alkaloid Extracts from Figuig Region (Southeastern of Morocco). Braz. J. Pharm. Sci. 2022, 58, e19494. [Google Scholar] [CrossRef]
- Eddine, T.N.; Eddine, G.N.; Eddine, L.; Serra, K.; Ferid, L. Antimicrobial and Antioxidant Properties of Phenolic Extracts from Haloxylon Articulatum Bioss Growth in Oued Souf–Algeria. Int. J. Toxicol. Pharmacol. Res 2017, 9, 86–92. [Google Scholar] [CrossRef]
- Kemel, M.; Zama, D.; Benayache, S.; Chalchat, J.-C.; Figueredo, G.; Chalard, P.; Benayache, F. Chemical Composition, Antioxidant and Anticorrosive Activities of Hammada Articulata Essential Oil. Chem. Afr. 2022, 5, 1015–1025. [Google Scholar] [CrossRef]
- Hamdi, A.; Djeridane, A.; Hachani, S.; Youssefi, Z.; Yousfi, M. Seasonal and Solvent Extraction Influence Onphenolic Contents, Antioxidant Activity and Antidiabetic Capacity of Three Selectedherbs from Chenopodiaceae Family. Vegetos 2024, 38, 542–551. [Google Scholar] [CrossRef]
- Senhaji, S.; Lamchouri, F.; Toufik, H. Phytochemical Content, Antibacterial and Antioxidant Potential of Endemic Plant Anabasis aretioïdes Coss. & Moq. (Chenopodiaceae). BioMed Res. Int. 2020, 2020, 6152932. [Google Scholar] [CrossRef] [PubMed]
- Evidente, A.; Masi, M. Natural Bioactive Cinnamoyltyramine Alkylamides and Co-Metabolites. Biomolecules 2021, 11, 1765. [Google Scholar] [CrossRef] [PubMed]
- Kaurinovic, B.; Vastag, D. Flavonoids and Phenolic Acids as Potential Natural Antioxidants. Antioxidants 2019, 2, 127–146. [Google Scholar]
- Patel, B.P.; Singh, P.K. Viscum Articulatum Burm. f.: A Review on Its Phytochemistry, Pharmacology and Traditional Uses. J. Pharm. Pharmacol. 2018, 70, 159–177. [Google Scholar] [CrossRef]
- Ugur, A.R.; Dagi, H.T.; Ozturk, B.; Tekin, G.; Findik, D. Assessment of in Vitro Antibacterial Activity and Cytotoxicity Effect of Nigella Sativa Oil. Pharmacogn. Mag. 2016, 12, S471. [Google Scholar] [CrossRef]
- Soltani, S.; Shakeri, A.; Iranshahi, M.; Boozari, M. A Review of the Phytochemistry and Antimicrobial Properties of Origanum Vulgare L. and Subspecies. Iran. J. Pharm. Res. IJPR 2021, 20, 268. [Google Scholar]
- Rohinishree, Y.S.; Negi, P.S. Effect of Licorice Extract on Cell Viability, Biofilm Formation and Exotoxin Production by Staphylococcus Aureus. J. Food Sci. Technol. 2016, 53, 1092–1100. [Google Scholar] [CrossRef]
- Grojja, Y.; Hajlaoui, H.; Luca, S.V.; Abidi, J.; Skalicka-Woźniak, K.; Zouari, S.; Bouaziz, M. Untargeted Phytochemical Profiling, Antioxidant, and Antimicrobial Activities of a Tunisian Capsicum Annuum Cultivar. Molecules 2023, 28, 6346. [Google Scholar] [CrossRef] [PubMed]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Tyramine-Derived Hydroxycinnamic Acid Amides in Plant Foods: Sources, Synthesis, Health Effects and Potential Applications in Food Industry. Crit. Rev. Food Sci. Nutr. 2022, 62, 1608–1625. [Google Scholar] [CrossRef]
- Aissaoui, M.; Rahmoun, M.N.; Latrache, H.; Barek, S.; Elassri, A.; Bensouici, C.; El Haci, I.A.; Choukchou-Braham, N. Structural Characterization, Antioxidant, and Antibiofilm Activities of Coffea canephora Green Seeds. J. Complement. Integr. Med. 2021, 18, 107–112. [Google Scholar] [CrossRef]
- Casimir, O.A.; Martin, D.K.; Philippe, E.K.; Augustin, A.A.; Parfait, K.E.J. Chemical Composition, Antioxidant and Antimicrobial Activities of Capsicum Annuum Var. Annuum Concentrated Extract Obtained by Reverse Osmosis. GSC Biol. Pharm. Sci 2018, 5, 116–125. [Google Scholar]
- Buckley, M.E.; Ndukwe, A.R.; Nair, P.C.; Rana, S.; Fairfull-Smith, K.E.; Gandhi, N.S. Comparative Assessment of Docking Programs for Docking and Virtual Screening of Ribosomal Oxazolidinone Antibacterial Agents. Antibiotics 2023, 12, 463. [Google Scholar] [CrossRef]
- El Sayed, A.M.; Basam, S.M.; El-Naggar, E.-M.B.A.; Marzouk, H.S.; El-Hawary, S. LC–MS/MS and GC–MS Profiling as Well as the Antimicrobial Effect of Leaves of Selected Yucca Species Introduced to Egypt. Sci. Rep. 2020, 10, 17778. [Google Scholar] [CrossRef]



| No | TR (min) | Ion Type | Obs. m/z | Calc. m/z | Δ (ppm) | MF | MS/MS | Id. | Class | Aerial Parts | Roots |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1.26 | [M+H]+ | 124.0752 | 124.0762 | 8.38 | C7H9NO | 118.0293; 115.0375; 109.0503 | Anisidine | Anisoles | − | + |
| 2 | 1.34 | [M+Cl]− | 377.0823 | 377.0851 | 7.32 | C12H22O11 | 341.1055; 215.0294; 179.0528 | Pentose-Hexose disaccharide | Saccharides | + | + |
| 3 | 1.59 | [M−H]− | 133.0125 | 133.0137 | 9.02 | C4H6O5 | 115.0028; 107.0323 | Malic acid | Organic acids | + | + |
| 4 | 1.84 | [M−H]− | 191.0184 | 191.0192 | 4.08 | C6H8O7 | 173.0072; 154.9968; 129.0177; 111.0069 | Citric acid | Organic acids | + | + |
| 5 | 2.01 | [M+H]+ | 208.1357 | 208.1338 | −9.37 | C12H17NO2 | 191.1077; 165.0919; 145.0651; 117.0705 | N-methylisosalsoline | Tetrahydro-isoquinoline alkaloids | + | + |
| 6 | 2.51 | [M+H]+ | 222.1501 | 222.1494 | −3.15 | C13H19NO2 | 191.1063; 179.1054; 165.0900; 145.0642 | Carnegine | Tetrahydro-isoquinoline alkaloids | + | + |
| 7 | 2.84 | [M+H]+ | 175.1222 | 175.1235 | 7.54 | C11H14N2 | 144.0787; 132.0797; 127.0533; 117.0657 | N-Methyltryptamine | Tryptamine alkaloids | + | − |
| 8 | 4.26 | [M+H]+ | 187.1221 | 187.1235 | 7.59 | C12H14N2 | 170.0897; 158.0854; 144.0694; 117.0578 | Tetrahydroharmane | β-Carboline Alkaloids | + | + |
| 9 | 6.25 | [M−H]− | 579.1712 | 579.1714 | 0.31 | C27H32O14 | 419.1556; 289.0781; 271.0684; 151.0050 | Naringin | Flavonoid glycosides | + | − |
| 10 | 6.59 | [M−H]− | 639.1552 | 639.1561 | 1.44 | C28H32O17 | 476.0937; 313.0295; 245.0878; 168.0010 | Isorhamnetin dihexoside | Flavonoid glycosides | + | − |
| 11 | 7.76 | [M−H]− | 741.1865 | 741.1878 | 1.78 | C32H38O20 | 300.0237; 271.0218; 178.9954 | Quercetin pentosyl-hexosyl-hexoside | Flavonoid glycosides | + | − |
| 12 | 9.00 | [M−H]− | 769.2185 | 769.2191 | 0.81 | C34H42O20 | 314.0398; 299.0157; 178.9951 | Isorhamnetin deoxyhexosyl-deoxyhexosyl-hexoside | Flavonoid glycosides | + | − |
| 13 | 9.42 | [M−H]− | 609.1428 | 609.1456 | 4.51 | C27H30O16 | 343.0396; 300.0227; 271.0198; 150.9986 | Quercetin deoxyhexosyl-hexoside | Flavonoid glycosides | + | − |
| 14 | 10.41 | [M−H]− | 193.0488 | 193.0501 | 6.63 | C10H10O4 | 161.0226; 133.0282; 106.0399 | Ferulic acid | Phenolic acids and derivatives | − | + |
| 15 | 10.59 | [M−H]− | 755.197 | 755.2035 | 8.55 | C33H40O20 | 314.0264; 271.0076; 178.9810 | Quercetin deoxyhexosyl-deoxyhexosyl-hexoside | Flavonoid glycosides | + | − |
| 16 | 11.08 | [M−H]− | 298.1055 | 298.1079 | 8.15 | C17H17NO4 | 256.0964; 178.0478; 135.0418; 107.0475 | N-Caffeoyltyramine | Phenolic acids and derivatives | + | + |
| 17 | 11.25 | [M−H]− | 609.1424 | 609.1456 | 5.17 | C27H30O16 | 357.0560; 315.0452; 271.0189; 150.9983 | Quercetin deoxyhexosyl-hexoside | Flavonoid glycosides | + | − |
| 18 | 11.84 | [M−H]− | 623.1618 | 623.1612 | −0.96 | C28H32O16 | 357.0602; 314.0417; 271.0238; 151.0023 | Isorhamnetin deoxyhexosyl-hexoside | Flavonoid glycosides | + | − |
| 19 | 14.67 | [M−H]− | 312.1225 | 312.1236 | 3.46 | C18H19NO4 | 190.0480; 178.0481; 148.0498; 135.0421 | Feruloyltyramine | Phenolic acids and derivatives | + | + |
| 20 | 15.17 | [M−H]− | 342.1316 | 342.1341 | 7.42 | C19H21NO5 | 190.0477; 178.0476; 148.0498; 135.0420 | Sinapoyltyramine | Phenolic acids and derivatives | + | + |
| 21 | 18.67 | [M−H]− | 327.2151 | 327.2171 | 6.23 | C18H32O5 | 291.1940; 229.1421; 211.1311; 171.0998 | Trihydroxyoctadecadienoic acid | Fatty acids and derivatives | + | + |
| 22 | 20.42 | [M−H]− | 329.2329 | 329.2328 | −0.33 | C18H34O5 | 293.2117; 229.1434; 211.1333; 171.1016 | Trihydroxyoctadecenoic acid | Fatty acids and derivatives | + | + |
| 23 | 25.08 | [M−H]− | 925.4453 | 925.4433 | −2.16 | C46H70O19 | 793.4320; 485.2209; 381.1891; 130.9821 | Achyranthoside E | Triterpenoid glycosides | + | + |
| 24 | 27.35 | [M+H]+ | 274.2719 | 274.2746 | 9.84 | C16H35NO2 | 256.2502; 230.2329; 106.0739 | Lauryldiethanolamine | Fatty acids and derivatives | − | + |
| 25 | 27.93 | [M+H]+ | 318.2998 | 318.3008 | 3.20 | C18H39NO3 | 256.2633; 212.2368; 102.0912 | Phytosphingosine | Sphingolipids | − | + |
| 26 | 29.42 | [M+HCOO]− | 360.2738 | 360.2750 | 3.33 | C18H37NO3 | 314.2677; 265.1479; 180.8943 | Dehydrophytosphingosine | Sphingolipids | + | + |
| 27 | 32.17 | [M−H]− | 293.2091 | 293.2117 | 8.73 | C18H30O3 | 275.1982; 235.1674; 171.0999; 121.0997 | Hydroxyoctadecatrienoic acid | Fatty acids and derivatives | + | + |
| 28 | 32.18 | [M+H]+ | 277.2152 | 277.2168 | 5.63 | C18H28O2 | 235.1674; 195.1371; 163.1456; 135.1154 | Octadecatetraenoic acid | Fatty acids and derivatives | − | + |
| 29 | 33.09 | [M+H]+ | 280.2632 | 280.2640 | 3.00 | C18H33NO | 263.2369; 245.2260; 179.1776; 109.1010 | Linoleamide | Fatty acids and derivatives | + | + |
| 30 | 34.75 | [M−H]− | 311.2208 | 311.2222 | 4.59 | C18H32O4 | 293.2195; 249.2200 | Hydroperoxyoctadecadienoic acid | Fatty acids and derivatives | − | + |
| 31 | 34.76 | [M+H]+ | 279.2319 | 279.2324 | 1.83 | C18H30O2 | 261.2204; 209.1529; 137.1319; 123.1161 | Linolenic acid | Fatty acids and derivatives | + | + |
| 32 | 34.92 | [M−H]− | 295.225 | 295.2273 | 7.86 | C18H32O3 | 277.2141; 195.1356; 155.1063; 113.0948 | Hydroxyoctadecadienoic acid | Fatty acids and derivatives | + | + |
| Solvent Type | MIC (µg/mL) |
|---|---|
| S1: Methanol/Water (root) | 95 ± 1.10 |
| S2: Methanol/Water (aerial) | 116 ± 1.95 |
| S3: Ethyl Acetate (root) | N/A |
| S4: Ethyl Acetate (aerial) | N/A |
| Extract | MIC (µg/mL) |
|---|---|
| N-Caffeoyltyramine | 54 ± 0.92 |
| Sinapoyltyramine | 74 ± 1.05 |
| Amino Acid Residues | Bond Length | Bond Type | Bond Category | Ligand Energy | Docking Score |
|---|---|---|---|---|---|
| (Kcal/mol) | |||||
| Native Ligand | |||||
| GLU569 | 5.28248 | Electrostatic | Attractive charge | 1035.1 | −8.4 |
| ASP572 | 4.94099 | ||||
| GLY56 | 2.75667 | Hydrogen bond | Conventional Hydrogen bond | ||
| GLU569 | 2.30041 | ||||
| ILE603 | 2.93206 | ||||
| MET611 | 3.06697 | ||||
| GLN573 | 2.46016 | ||||
| PRO58 | 3.64946 | Carbon hydrogen bond | |||
| HIS600 | 3.38735 | ||||
| N-caffeoyltyramine | |||||
| ASP96 | 2.58434 | Hydrogen bond | Conventional Hydrogen bond | 129.96 | −9.4 |
| GLY570 | 2.16984 | ||||
| GLU569 | 3.55524 | Carbon hydrogen bond | |||
| PHE602 | 3.59624 | Hydrophobic | Pi–Pi stacked | ||
| TRP541 | 5.45397 | ||||
| TYR59 | 5.34576 | Pi–Pi T-shaped | |||
| PRO57 | 5.27973 | Pi–Alkyl | |||
| Sinapoyltyramine | |||||
| GLN573 | 2.64328 | Hydrogen bond | Conventional hydrogen bond | 188.58 | −8.4 |
| GLN573 | 2.56585 | ||||
| ILE603 | 1.95267 | ||||
| ASN71 | 3.50592 | Carbon hydrogen bond | |||
| ILE603 | 3.56813 | ||||
| GLY67 | 3.49095 | ||||
| ASP572 | 4.67666 | Electrostatic | Pi–Anion | ||
| MET611 | 4.0056 | other | Pi–Sulfur | ||
| HIS65 | 4.14692 | Hydrophobic | Pi–Pi stacked | ||
| ILE603 | 5.49085 | Pi–Alkyl | |||
| VAL618 | 5.47563 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rashidi, R.; Nasrallah, H.; Bouazzi, A.; Zaïri, A. Phytochemical Characterization and Anti-Helicobacter pylori Potential of Haloxylon articulatum Extracts: Antioxidant Activity and Molecular Docking Insights. Molecules 2025, 30, 3520. https://doi.org/10.3390/molecules30173520
Al-Rashidi R, Nasrallah H, Bouazzi A, Zaïri A. Phytochemical Characterization and Anti-Helicobacter pylori Potential of Haloxylon articulatum Extracts: Antioxidant Activity and Molecular Docking Insights. Molecules. 2025; 30(17):3520. https://doi.org/10.3390/molecules30173520
Chicago/Turabian StyleAl-Rashidi, Reyadh, Hana Nasrallah, Amal Bouazzi, and Amira Zaïri. 2025. "Phytochemical Characterization and Anti-Helicobacter pylori Potential of Haloxylon articulatum Extracts: Antioxidant Activity and Molecular Docking Insights" Molecules 30, no. 17: 3520. https://doi.org/10.3390/molecules30173520
APA StyleAl-Rashidi, R., Nasrallah, H., Bouazzi, A., & Zaïri, A. (2025). Phytochemical Characterization and Anti-Helicobacter pylori Potential of Haloxylon articulatum Extracts: Antioxidant Activity and Molecular Docking Insights. Molecules, 30(17), 3520. https://doi.org/10.3390/molecules30173520

