Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (486)

Search Parameters:
Keywords = GF-6 satellite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 139
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

24 pages, 10078 KiB  
Article
Satellite Hyperspectral Mapping of Farmland Soil Organic Carbon in Yuncheng Basin Along the Yellow River, China
by Haixia Jin, Rutian Bi, Huiwen Tian, Hongfen Zhu and Yingqiang Jing
Agronomy 2025, 15(8), 1827; https://doi.org/10.3390/agronomy15081827 - 28 Jul 2025
Viewed by 310
Abstract
This study combined field survey data with Gaofen 5 (GF-5) satellite hyperspectral images of the Yuncheng Basin (China), considering 15 environmental variables. Random forest (RF) was used to select the optimal satellite hyperspectral model, sequentially introducing natural and farmland management factors into the [...] Read more.
This study combined field survey data with Gaofen 5 (GF-5) satellite hyperspectral images of the Yuncheng Basin (China), considering 15 environmental variables. Random forest (RF) was used to select the optimal satellite hyperspectral model, sequentially introducing natural and farmland management factors into the model to analyze the spatial distribution of farmland soil organic carbon (SOC). Furthermore, RF factorial experiments determined the contributions of farmland management, climate, vegetation, soil, and topography to the SOC. Structural equation modeling (SEM) elucidated the driving mechanisms of SOC variations. Integrating satellite hyperspectral data and environmental variables improved the prediction accuracy and SOC-mapping precision of the model. The integration of natural variables significantly improved the RF model performance (R2 = 0.78). The prediction accuracy enhanced with the introduction of crop phenology (R2 = 0.81) and farmland management factors (R2 = 0.87). The model that incorporated all 15 variables demonstrated the highest prediction accuracy (R2 = 0.89) and greatest spatial SOC variability, with minimal uncertainty. Farmland management activities exerted the strongest influence on SOC (0.38). The proposed method can support future investigations on soil carbon sequestration processes in river basins worldwide. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

12 pages, 6639 KiB  
Article
Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide
by Haibo Yang, Zhongcan Chen, Xudong Yang, Chang Xu and Hanyu Deng
Aerospace 2025, 12(8), 663; https://doi.org/10.3390/aerospace12080663 - 26 Jul 2025
Viewed by 226
Abstract
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground [...] Read more.
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground ignition tests were conducted to monitor chamber pressure and shell temperature. Compared with conventional metallic thrusters, PA6GF composites have exhibited excellent thermal insulation and sufficient mechanical strength. Under 8 MPa and 2773 K ignition conditions, the shell thickness was reduced to 2.5 mm and could withstand pressures up to 10.37 MPa. These results indicate that PA6GF composites are well-suited for space micro solid thrusters with inner diameters of 15–70 mm, offering new possibilities for lightweight space propulsion system design. Full article
Show Figures

Figure 1

30 pages, 13059 KiB  
Article
Verifying the Effects of the Grey Level Co-Occurrence Matrix and Topographic–Hydrologic Features on Automatic Gully Extraction in Dexiang Town, Bayan County, China
by Zhuo Chen and Tao Liu
Remote Sens. 2025, 17(15), 2563; https://doi.org/10.3390/rs17152563 - 23 Jul 2025
Viewed by 358
Abstract
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of [...] Read more.
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of the grey level co-occurrence matrix (GLCM) and topographic–hydrologic features on automatic gully extraction and guide future practices in adjacent regions. To accomplish this, GaoFen-2 (GF-2) satellite imagery and high-resolution digital elevation model (DEM) data were first collected. The GLCM and topographic–hydrologic features were generated, and then, a gully label dataset was built via visual interpretation. Second, the study area was divided into training, testing, and validation areas, and four practices using different feature combinations were conducted. The DeepLabV3+ and ResNet50 architectures were applied to train five models in each practice. Thirdly, the trainset gully intersection over union (IOU), test set gully IOU, receiver operating characteristic curve (ROC), area under the curve (AUC), user’s accuracy, producer’s accuracy, Kappa coefficient, and gully IOU in the validation area were used to assess the performance of the models in each practice. The results show that the validated gully IOU was 0.4299 (±0.0082) when only the red (R), green (G), blue (B), and near-infrared (NIR) bands were applied, and solely combining the topographic–hydrologic features with the RGB and NIR bands significantly improved the performance of the models, which boosted the validated gully IOU to 0.4796 (±0.0146). Nevertheless, solely combining GLCM features with RGB and NIR bands decreased the accuracy, which resulted in the lowest validated gully IOU of 0.3755 (±0.0229). Finally, by employing the full set of RGB and NIR bands, the GLCM and topographic–hydrologic features obtained a validated gully IOU of 0.4762 (±0.0163) and tended to show an equivalent improvement with the combination of topographic–hydrologic features and RGB and NIR bands. A preliminary explanation is that the GLCM captures the local textures of gullies and their backgrounds, and thus introduces ambiguity and noise into the convolutional neural network (CNN). Therefore, the GLCM tends to provide no benefit to automatic gully extraction with CNN-type algorithms, while topographic–hydrologic features, which are also original drivers of gullies, help determine the possible presence of water-origin gullies when optical bands fail to tell the difference between a gully and its confusing background. Full article
Show Figures

Figure 1

22 pages, 26577 KiB  
Article
Loss of C-Terminal Coiled-Coil Domains in SDCCAG8 Impairs Centriolar Satellites and Causes Defective Sperm Flagellum Biogenesis and Male Fertility
by Kecheng Li, Xiaoli Zhou, Wenna Liu, Yange Wang, Zilong Zhang, Houbin Zhang and Li Jiang
Cells 2025, 14(15), 1135; https://doi.org/10.3390/cells14151135 - 23 Jul 2025
Viewed by 403
Abstract
Sperm flagellum defects are tightly associated with male infertility. Centriolar satellites are small multiprotein complexes that recruit satellite proteins to the centrosome and play an essential role in sperm flagellum biogenesis, but the precise mechanisms underlying this role remain unclear. Serologically defined colon [...] Read more.
Sperm flagellum defects are tightly associated with male infertility. Centriolar satellites are small multiprotein complexes that recruit satellite proteins to the centrosome and play an essential role in sperm flagellum biogenesis, but the precise mechanisms underlying this role remain unclear. Serologically defined colon cancer autoantigen protein 8 (SDCCAG8), which encodes a protein containing eight coiled-coil (CC) domains, has been associated with syndromic ciliopathies and male infertility. However, its exact role in male infertility remains undefined. Here, we used an Sdccag8 mutant mouse carrying a CC domains 5–8 truncated mutation (c.1351–1352insG p.E451GfsX467) that models the mutation causing Senior–Løken syndrome (c.1339–1340insG p.E447GfsX463) in humans. The homozygous Sdccag8 mutant mice exhibit male infertility characterized by multiple morphological abnormalities of the flagella (MMAF) and dysmorphic structures in the sperm manchette. A mechanistic study revealed that the SDCCAG8 protein is localized to the manchette and centrosomal region and interacts with PCM1, the scaffold protein of centriolar satellites, through its CC domains 5–7. The absence of the CC domains 5–7 in mutant spermatids destabilizes PCM1, which fails to recruit satellite components such as Bardet–Biedl syndrome 4 (BBS4) and centrosomal protein of 131 kDa (CEP131) to satellites, resulting in defective sperm flagellum biogenesis, as BBS4 and CEP131 are essential to flagellum biogenesis. In conclusion, this study reveals the central role of SDCCAG8 in maintaining centriolar satellite integrity during sperm flagellum biogenesis. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis)
Show Figures

Figure 1

27 pages, 3984 KiB  
Article
Spatial and Temporal Expansion of Photovoltaic Sites and Thermal Environmental Effects in Ningxia Based on Remote Sensing and Deep Learning
by Heao Xie, Peixian Li, Fang Shi, Chengting Han, Ximin Cui and Yuling Zhao
Remote Sens. 2025, 17(14), 2440; https://doi.org/10.3390/rs17142440 - 14 Jul 2025
Viewed by 265
Abstract
Ningxia has emerged as a strategic hub for China’s photovoltaic (PV) industry by leveraging abundant solar energy resources and geoclimatic advantages. This study analyzed the spatiotemporal expansion trends and microclimatic impacts of PV installations (2015–2024) using Gaofen-1 (GF-1) and Landsat8 satellite imagery with [...] Read more.
Ningxia has emerged as a strategic hub for China’s photovoltaic (PV) industry by leveraging abundant solar energy resources and geoclimatic advantages. This study analyzed the spatiotemporal expansion trends and microclimatic impacts of PV installations (2015–2024) using Gaofen-1 (GF-1) and Landsat8 satellite imagery with deep learning algorithms and multidimensional environmental metrics. Among semantic segmentation models, DeepLabV3+ had the best performance in PV extraction, and the Mean Intersection over Union, precision, and F1-score were 91.97%, 89.02%, 89.2%, and 89.11%, respectively, with accuracies close to 100% after manual correction. Subsequent land surface temperature inversion and spatial buffer analysis quantified the thermal environmental effects of PV installation. Localized cooling patterns may be influenced by albedo and vegetation dynamics, though further validation is needed. The total PV site area in Ningxia expanded from 59.62 km2 to 410.06 km2 between 2015 and 2024. Yinchuan and Wuzhong cities were primary growth hubs; Yinchuan alone added 99.98 km2 (2022–2023) through localized policy incentives. PV installations induced significant daytime cooling effects within 0–100 m buffers, reducing ambient temperatures by 0.19–1.35 °C on average. The most pronounced cooling occurred in western desert regions during winter (maximum temperature differential = 1.97 °C). Agricultural zones in central Ningxia exhibited weaker thermal modulation due to coupled vegetation–PV interactions. Policy-driven land use optimization was the dominant catalyst for PV proliferation. This study validates “remote sensing + deep learning” framework efficacy in renewable energy monitoring and provides empirical insights into eco-environmental impacts under “PV + ecological restoration” paradigms, offering critical data support for energy–ecology synergy planning in arid regions. Full article
Show Figures

Figure 1

22 pages, 11512 KiB  
Article
Hazard Assessment of Highway Debris Flows in High-Altitude Mountainous Areas: A Case Study of the Laqi Gully on the China–Pakistan Highway
by Xiaomin Dai, Qihang Liu, Ziang Liu and Xincheng Wu
Sustainability 2025, 17(14), 6411; https://doi.org/10.3390/su17146411 - 13 Jul 2025
Viewed by 397
Abstract
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to [...] Read more.
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to the China–Pakistan Economic Corridor (CPEC). The hazard assessment of debris flows constitutes a crucial component in disaster prevention and mitigation. However, current research presents two critical limitations: traditional models primarily focus on single precipitation-driven debris flows, while low-resolution digital elevation models (DEMs) inadequately characterize the topographic features of alpine narrow valleys. Addressing these issues, this study employed GF-7 satellite stereo image pairs to construct a 1 m resolution DEM and systematically simulated debris flow propagation processes under 10–100-year recurrence intervals using a coupled rainfall–meltwater model. The results show the following: (1) The mudslide develops rapidly in the gully section, and the flow velocity decays when it reaches the highway. (2) At highway cross-sections, maximum velocities corresponding to 10-, 20-, 50-, and 100-year recurrence intervals measure 2.57 m/s, 2.75 m/s, 3.02 m/s, and 3.36 m/s, respectively, with maximum flow depths of 1.56 m, 1.78 m, 2.06 m, and 2.52 m. (3) Based on the hazard classification model of mudslide intensity and return period, the high-, medium-, and low-hazard sections along the highway were 58.65 m, 27.36 m, and 24.1 m, respectively. This research establishes a novel hazard assessment methodology for rainfall–meltwater coupled debris flows in narrow valleys, providing technical support for debris flow mitigation along the CPEC. The outcomes demonstrate significant practical value for advancing infrastructure sustainability under the United Nations Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

20 pages, 6074 KiB  
Article
Remote Sensing Archaeology of the Xixia Imperial Tombs: Analyzing Burial Landscapes and Geomantic Layouts
by Wei Ji, Li Li, Jia Yang, Yuqi Hao and Lei Luo
Remote Sens. 2025, 17(14), 2395; https://doi.org/10.3390/rs17142395 - 11 Jul 2025
Viewed by 545
Abstract
The Xixia Imperial Tombs (XITs) represent a crucial, yet still largely mysterious, component of the Tangut civilization’s legacy. Located in northwestern China, this extensive necropolis offers invaluable insights into the Tangut state, culture, and burial practices. This study employs an integrated approach utilizing [...] Read more.
The Xixia Imperial Tombs (XITs) represent a crucial, yet still largely mysterious, component of the Tangut civilization’s legacy. Located in northwestern China, this extensive necropolis offers invaluable insights into the Tangut state, culture, and burial practices. This study employs an integrated approach utilizing multi-resolution and multi-temporal satellite remote sensing data, including Gaofen-2 (GF-2), Landsat-8 OLI, declassified GAMBIT imagery, and Google Earth, combined with deep learning techniques, to conduct a comprehensive archaeological investigation of the XITs’ burial landscape. We performed geomorphological analysis of the surrounding environment and automated identification and mapping of burial mounds and mausoleum features using YOLOv5, complemented by manual interpretation of very-high-resolution (VHR) satellite imagery. Spectral indices and image fusion techniques were applied to enhance the detection of archaeological features. Our findings demonstrated the efficacy of this combined methodology for archaeology prospect, providing valuable insights into the spatial layout, geomantic considerations, and preservation status of the XITs. Notably, the analysis of declassified GAMBIT imagery facilitated the identification of a suspected true location for the ninth imperial tomb (M9), a significant contribution to understanding Xixia history through remote sensing archaeology. This research provides a replicable framework for the detection and preservation of archaeological sites using readily available satellite data, underscoring the power of advanced remote sensing and machine learning in heritage studies. Full article
Show Figures

Figure 1

18 pages, 2798 KiB  
Article
A Terrain-Constrained Cross-Correlation Matching Method for Laser Footprint Geolocation
by Sihan Zhou, Pufan Zhao, Jian Yang, Qijin Han, Yue Ma, Hui Zhou and Song Li
Remote Sens. 2025, 17(14), 2381; https://doi.org/10.3390/rs17142381 - 10 Jul 2025
Viewed by 238
Abstract
The full-waveform spaceborne laser altimeter improves footprint geolocation accuracy through waveform matching, providing critical data for on-orbit calibration. However, in areas with significant topographic variations or complex surface characteristics, traditional waveform matching methods based on the Pearson correlation coefficient (PCC-Match) are susceptible to [...] Read more.
The full-waveform spaceborne laser altimeter improves footprint geolocation accuracy through waveform matching, providing critical data for on-orbit calibration. However, in areas with significant topographic variations or complex surface characteristics, traditional waveform matching methods based on the Pearson correlation coefficient (PCC-Match) are susceptible to errors from laser ranging inaccuracies and discrepancies in surface structures, resulting in reduced footprint geolocation stability. This study proposes a terrain-constrained cross-correlation matching (TC-Match) method. By integrating the terrain characteristics of the laser footprint area with spaceborne altimetry data, a sliding “time-shift” constraint range is constructed. Within this constraint range, an optimal matching search based on waveform structural characteristics is conducted to enhance the robustness and accuracy of footprint geolocation. Using GaoFen-7 (GF-7) satellite laser footprint data, experiments were conducted in regions of Utah and Arizona, USA, for validation. The results show that TC-Match outperforms PCC-Match regarding footprint geolocation accuracy, stability, elevation correction, and systematic bias correction. This study demonstrates that TC-Match significantly improves the geolocation quality of spaceborne laser altimeters under complex terrain conditions, offering good practical engineering adaptability. It provides an effective technical pathway for subsequent on-orbit calibration and precision model optimization of spaceborne laser data. Full article
(This article belongs to the Section Remote Sensing for Geospatial Science)
Show Figures

Figure 1

24 pages, 12865 KiB  
Article
Mapping Crop Types and Cropping Patterns Using Multiple-Source Satellite Datasets in Subtropical Hilly and Mountainous Region of China
by Yaoliang Chen, Zhiying Xu, Hongfeng Xu, Zhihong Xu, Dacheng Wang and Xiaojian Yan
Remote Sens. 2025, 17(13), 2282; https://doi.org/10.3390/rs17132282 - 3 Jul 2025
Viewed by 484
Abstract
A timely and accurate distribution of crop types and cropping patterns provides a crucial reference for the management of agriculture and food security. However, accurately mapping crop types and cropping patterns in subtropical hilly and mountainous areas often face challenges such as mixed [...] Read more.
A timely and accurate distribution of crop types and cropping patterns provides a crucial reference for the management of agriculture and food security. However, accurately mapping crop types and cropping patterns in subtropical hilly and mountainous areas often face challenges such as mixed pixels resulted from fragmented patches and difficulty in obtaining optical satellites due to a frequently cloudy and rainy climate. Here we propose a crop type and cropping pattern mapping framework in subtropical hilly and mountainous areas, considering multiple sources of satellites (i.e., Landsat 8/9, Sentinel-2, and Sentinel-1 images and GF 1/2/7). To develop this framework, six types of variables from multi-sources data were applied in a random forest classifier to map major summer crop types (singe-cropped rice and double-cropped rice) and winter crop types (rapeseed). Multi-scale segmentation methods were applied to improve the boundaries of the classified results. The results show the following: (1) Each type of satellite data has at least one variable selected as an important feature for both winter and summer crop type classification. Apart from the endmember variables, the other five extracted variable types are selected by the RF classifier for both winter and summer crop classifications. (2) SAR data can capture the key information of summer crops when optical data is limited, and the addition of SAR data can significantly improve the accuracy as to summer crop types. (3) The overall accuracy (OA) of both summer and winter crop type mapping exceeded 95%, with clear and relatively accurate cropland boundaries. Area evaluation showed a small bias in terms of the classified area of rapeseed, single-cropped rice, and double-cropped rice from statistical records. (4) Further visual examination of the spatial distribution showed a better performance of the classified crop types compared to three existing products. The results suggest that the proposed method has great potential in accurately mapping crop types in a complex subtropical planting environment. Full article
Show Figures

Figure 1

31 pages, 4407 KiB  
Article
A Comparative Analysis of Remotely Sensed and High-Fidelity ArcSWAT Evapotranspiration Estimates Across Various Timescales in the Upper Anthemountas Basin, Greece
by Stefanos Sevastas, Ilias Siarkos and Zisis Mallios
Hydrology 2025, 12(7), 171; https://doi.org/10.3390/hydrology12070171 - 29 Jun 2025
Viewed by 423
Abstract
In data-scarce regions and ungauged basins, remotely sensed evapotranspiration (ET) products are increasingly employed to support hydrological model calibration. In this study, a high-resolution hydrological model was developed for the Upper Anthemountas Basin using ArcSWAT, with a focus on comparing simulated ET outputs [...] Read more.
In data-scarce regions and ungauged basins, remotely sensed evapotranspiration (ET) products are increasingly employed to support hydrological model calibration. In this study, a high-resolution hydrological model was developed for the Upper Anthemountas Basin using ArcSWAT, with a focus on comparing simulated ET outputs to three freely available remote sensing-based ET products: the MODIS MOD16 Collection 5, the updated MODIS MOD16A2GF Collection 6.1, and the SSEBop Version 5 dataset. ET estimates derived from the calibrated SWAT model were compared to all remote sensing products at the basin scale, across various temporal scales over the 2002–2014 simulation period. Results indicate that the MOD16 Collection 5 product achieved the closest correspondence with SWAT-simulated ET across all temporal scales. The MOD16A2GF Collection 6.1 product exhibited moderate overall agreement, with improved performance during early summer. The SSEBop Version 5 dataset generally displayed weaker correlation, but demonstrated enhanced alignment during the driest years of the record. Strong correspondence is observed when averaging the ET values from all satellite products. These findings underscore the importance of exercising caution when utilizing remotely sensed ET products as the sole basis for hydrological model calibration, particularly given the variability in performance among different datasets. Full article
Show Figures

Figure 1

21 pages, 3901 KiB  
Article
Research on CTSA-DeepLabV3+ Urban Green Space Classification Model Based on GF-2 Images
by Ruotong Li, Jian Zhao and Yanguo Fan
Sensors 2025, 25(13), 3862; https://doi.org/10.3390/s25133862 - 21 Jun 2025
Viewed by 636
Abstract
As an important part of urban ecosystems, urban green spaces play a key role in ecological environmental protection and urban spatial structure optimization. However, due to the complex morphology and high degree of fragmentation of urban green spaces, it is still challenging to [...] Read more.
As an important part of urban ecosystems, urban green spaces play a key role in ecological environmental protection and urban spatial structure optimization. However, due to the complex morphology and high degree of fragmentation of urban green spaces, it is still challenging to effectively distinguish urban green space types from high spatial resolution images. To solve the problem, a Contextual Transformer and Squeeze Aggregated Excitation Enhanced DeepLabV3+ (CTSA-DeepLabV3+) model was proposed for urban green space classification based on Gaofen-2 (GF-2) satellite images. A Contextual Transformer (CoT) module was added to the decoder part of the model to enhance the global context modeling capability, and the SENetv2 attention mechanism was employed to improve its key feature capture ability. The experimental results showed that the overall classification accuracy of the CTSA-DeepLabV3+ model is 96.21%, and the average intersection ratio, precision, recall, and F1-score reach 89.22%, 92.56%, 90.12%, and 91.23%, respectively, which is better than DeepLabV3+, Fully Convolutional Networks (FCNs), U-Net (UNet), the Pyramid Scene Parseing Network (PSPNet), UperNet-Swin Transformer, and other mainstream models. The model exhibits higher accuracy and provides efficient references for the intelligent interpretation of urban green space with high-resolution remote sensing images. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

22 pages, 9695 KiB  
Article
DAENet: A Deep Attention-Enhanced Network for Cropland Extraction in Complex Terrain from High-Resolution Satellite Imagery
by Yushen Wang, Mingchao Yang, Tianxiang Zhang, Shasha Hu and Qingwei Zhuang
Agriculture 2025, 15(12), 1318; https://doi.org/10.3390/agriculture15121318 - 19 Jun 2025
Viewed by 404
Abstract
Prompt and precise cropland mapping is indispensable for safeguarding food security, enhancing land resource utilization, and advancing sustainable agricultural practices. Conventional approaches faced difficulties in complex terrain marked by fragmented plots, pronounced elevation differences, and non-uniform field borders. To address these challenges, we [...] Read more.
Prompt and precise cropland mapping is indispensable for safeguarding food security, enhancing land resource utilization, and advancing sustainable agricultural practices. Conventional approaches faced difficulties in complex terrain marked by fragmented plots, pronounced elevation differences, and non-uniform field borders. To address these challenges, we propose DAENet, a novel deep learning framework designed for accurate cropland extraction from high-resolution GaoFen-1 (GF-1) satellite imagery. DAENet employs a novel Geometric-Optimized and Boundary-Restrained (GOBR) Block, which combines channel attention, multi-scale spatial attention, and boundary supervision mechanisms to effectively mitigate challenges arising from disjointed cropland parcels, topography-cast shadows, and indistinct edges. We conducted comparative experiments using 8 mainstream semantic segmentation models. The results demonstrate that DAENet achieves superior performance, with an Intersection over Union (IoU) of 0.9636, representing a 4% improvement over the best-performing baseline, and an F1-score of 0.9811, marking a 2% increase. Ablation analysis further validated the indispensable contribution of GOBR modules in improving segmentation precision. Using our approach, we successfully extracted 25,556.98 hectares of cropland within the study area, encompassing a total of 67,850 individual blocks. Additionally, the proposed method exhibits robust generalization across varying spatial resolutions, underscoring its effectiveness as a high-accuracy solution for agricultural monitoring and sustainable land management in complex terrain. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 14354 KiB  
Article
Agricultural Greenhouse Extraction Based on Multi-Scale Feature Fusion and GF-2 Remote Sensing Imagery
by Yuguang Chang, Xiaoyu Yu, Xu Yang, Zhengchao Chen, Pan Chen, Xuan Yang and Yongqing Bai
Remote Sens. 2025, 17(12), 2061; https://doi.org/10.3390/rs17122061 - 15 Jun 2025
Cited by 1 | Viewed by 546
Abstract
Accurate extraction of plastic greenhouses from high-resolution remote sensing imagery is essential for agricultural resource management and facility-based crop monitoring. However, the dense spatial distribution, irregular morphology, and complex background interference of greenhouses often limit the effectiveness of conventional segmentation methods. This study [...] Read more.
Accurate extraction of plastic greenhouses from high-resolution remote sensing imagery is essential for agricultural resource management and facility-based crop monitoring. However, the dense spatial distribution, irregular morphology, and complex background interference of greenhouses often limit the effectiveness of conventional segmentation methods. This study proposes a deep learning framework that integrates a multi-scale Transformer-based decoder with a Swin-UNet architecture to improve feature representation and extraction accuracy. To enhance geometric consistency, a post-processing strategy is introduced, combining connected component analysis and morphological operations to suppress noise and refine boundary shapes. Using GF-2 satellite imagery over Weifang City, China, the model achieved a recall of 92.44%, precision of 91.47%, intersection-over-union of 85.13%, and F1-score of 91.95%. In addition to instance-level extraction, spatial distribution and statistical analysis were performed across administrative divisions, revealing regional disparities in protected agriculture development. The proposed approach offers a practical solution for greenhouse mapping and supports broader applications in land use monitoring, agricultural policy enforcement, and resource inventory. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Landscapes and Human Settlements)
Show Figures

Graphical abstract

15 pages, 5443 KiB  
Article
Improved Convolutional Neural Network with Attention Mechanisms for River Extraction
by Hanwen Cui, Jiarui Liang, Cheng Li and Xiaolin Tian
Water 2025, 17(12), 1762; https://doi.org/10.3390/w17121762 - 12 Jun 2025
Viewed by 455
Abstract
Rivers, as fundamental components of freshwater supply and wetland ecosystems, play an essential role in sustaining biodiversity and facilitating sustainable resource utilization. This study introduces the integration of the attention mechanism within the convolutional neural network (CNN) framework and constructs seven enhanced models. [...] Read more.
Rivers, as fundamental components of freshwater supply and wetland ecosystems, play an essential role in sustaining biodiversity and facilitating sustainable resource utilization. This study introduces the integration of the attention mechanism within the convolutional neural network (CNN) framework and constructs seven enhanced models. A novel dataset has been independently developed utilizing high spatial resolution remote sensing images obtained from China’s Gaofen-2 satellite (GF-2), which enables the efficient and precise extraction of river distribution. The city of Zhuhai, characterized by its intricate river network located in the lower reaches of the Pearl River Basin, has been selected as the experimental area for this research. The experimental results indicate that the CNN model enhanced by the attention mechanism significantly surpasses the baseline model across several performance metrics, including overall accuracy, Kappa coefficient, Precision, Recall, F1-score, Mean Intersection over Union, and the extraction result map. Notably, the model incorporating the Bottleneck Attention Module demonstrates the highest performance, achieving overall accuracy and Kappa coefficient values of 93.09% and 0.8618, respectively, which surpass the baseline model by 12.62% and 0.2524. This study thus provides crucial spatial data and method support for river resource management, supporting ecological conservation and sustainable wetland management. Full article
Show Figures

Figure 1

Back to TopTop