Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (383)

Search Parameters:
Keywords = Einstein model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1311 KB  
Article
Heat Capacity and Thermodynamic Properties of Photocatalitic Bismuth Tungstate, Bi2WO6
by Bogusław Onderka and Anna Kula
Metals 2025, 15(11), 1174; https://doi.org/10.3390/met15111174 - 23 Oct 2025
Abstract
The photocatalytic activity of Bi2WO6 Aurivillius phase has been widely exploited for the degradation of a wide range of gaseous and aqueous molecules, as well as microorganisms, under the influence of visible irradiation. Strategies for the development of doped and [...] Read more.
The photocatalytic activity of Bi2WO6 Aurivillius phase has been widely exploited for the degradation of a wide range of gaseous and aqueous molecules, as well as microorganisms, under the influence of visible irradiation. Strategies for the development of doped and co-doped bismuth tungstate materials require the thermodynamic data on this phase. The heat capacity of bismuth tungstate, Bi2WO6, was investigated using a DSC microcalorimeter on polycrystalline powder samples in the temperature range from 313 to 1103 K (40–830 °C) in two separate runs. The samples were synthesized by solid-state reaction from pure binary oxides at 1033 K (760 °C) in a platinum crucible with cover. The high temperature Cp(T) data were fitted by the Maier–Kelley equation and, from this relation, the standard molar heat capacity of γ-Bi2WO6 polymorph was estimated to be at 298.15 K 176.8 ± 3.9 J·K−1·mol−1. A reversible second-order transition of Bi2WO6 phase was observed in the experimental temperature range, with a peak close to 940 K (667 °C). Additionally, the extrapolation of Cp(T) to 0 K was proposed using a method based on the multiple Einstein model. Thermodynamic properties (heat capacity Cp(T), entropy S°(T), enthalpy H°(T), Gibbs energy G°(T)) of crystalline γ-Bi2WO6 were calculated in the temperature range of 298.15–1123 K (25–850 °C). Full article
(This article belongs to the Section Extractive Metallurgy)
44 pages, 3213 KB  
Systematic Review
A Systematic Literature Review of Machine Learning Techniques for Observational Constraints in Cosmology
by Luis Rojas, Sebastián Espinoza, Esteban González, Carlos Maldonado and Fei Luo
Galaxies 2025, 13(5), 114; https://doi.org/10.3390/galaxies13050114 - 9 Oct 2025
Viewed by 372
Abstract
This paper presents a systematic literature review focusing on the application of machine learning techniques for deriving observational constraints in cosmology. The goal is to evaluate and synthesize existing research to identify effective methodologies, highlight gaps, and propose future research directions. Our review [...] Read more.
This paper presents a systematic literature review focusing on the application of machine learning techniques for deriving observational constraints in cosmology. The goal is to evaluate and synthesize existing research to identify effective methodologies, highlight gaps, and propose future research directions. Our review identifies several key findings: (1) Various machine learning techniques, including Bayesian neural networks, Gaussian processes, and deep learning models, have been applied to cosmological data analysis, improving parameter estimation and handling large datasets. However, models achieving significant computational speedups often exhibit worse confidence regions compared to traditional methods, emphasizing the need for future research to enhance both efficiency and measurement precision. (2) Traditional cosmological methods, such as those using Type Ia Supernovae, baryon acoustic oscillations, and cosmic microwave background data, remain fundamental, but most studies focus narrowly on specific datasets. We recommend broader dataset usage to fully validate alternative cosmological models. (3) The reviewed studies mainly address the H0 tension, leaving other cosmological challenges—such as the cosmological constant problem, warm dark matter, phantom dark energy, and others—unexplored. (4) Hybrid methodologies combining machine learning with Markov chain Monte Carlo offer promising results, particularly when machine learning techniques are used to solve differential equations, such as Einstein Boltzmann solvers, prior to Markov chain Monte Carlo models, accelerating computations while maintaining precision. (5) There is a significant need for standardized evaluation criteria and methodologies, as variability in training processes and experimental setups complicates result comparability and reproducibility. (6) Our findings confirm that deep learning models outperform traditional machine learning methods for complex, high-dimensional datasets, underscoring the importance of clear guidelines to determine when the added complexity of learning models is warranted. Full article
Show Figures

Figure 1

26 pages, 1401 KB  
Article
Lagrangian Field Approach to Einstein–Maxwell Equation for Brain Toroidal Topology
by Manuel Rivas and Manuel Reina
Symmetry 2025, 17(9), 1511; https://doi.org/10.3390/sym17091511 - 11 Sep 2025
Viewed by 536
Abstract
The population activity of grid cells from a single module is topologically constrained to a toroidal manifold. Our work proposes an improved version of Gardner’s earlier model, which can account for both geometric properties and force field dynamics. Employing methods from Differential Geometry, [...] Read more.
The population activity of grid cells from a single module is topologically constrained to a toroidal manifold. Our work proposes an improved version of Gardner’s earlier model, which can account for both geometric properties and force field dynamics. Employing methods from Differential Geometry, we have derived Lagrangian densities that—under very general assumptions and avoiding dimensionful constants—provide a rationale for the trajectories associated with the synaptic spacetime as a global solution to the Einstein–Maxwell field equations. Then, we investigate the helical solutions to show that the synaptic toroidal topological space, as a locally flat Minkowski spacetime, with a Lorentzian metric is geodesically complete and, therefore, exhibits maximal stability. Finally, we consider a Lorentzian metric with curved spacetimes that give rise to Lorentzian tori admitting curvature spacetime singularities. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

8 pages, 514 KB  
Proceeding Paper
The QCD Axion in Hot and Dense Matter
by Hong-Fang Gong, Qi Lu and Zhen-Yan Lu
Proceedings 2025, 123(1), 4; https://doi.org/10.3390/proceedings2025123004 - 8 Sep 2025
Viewed by 2001
Abstract
Within the framework of the two-flavor Nambu–Jona-Lasinio model, we study the quantum chromodynamics axion properties at finite temperature and chemical potential. Our analysis shows that the axion properties are strongly influenced by the critical behavior of the chiral phase transition. In particular, the [...] Read more.
Within the framework of the two-flavor Nambu–Jona-Lasinio model, we study the quantum chromodynamics axion properties at finite temperature and chemical potential. Our analysis shows that the axion properties are strongly influenced by the critical behavior of the chiral phase transition. In particular, the axion mass follows the response of the chiral condensate to temperature and chemical potential, decreasing monotonically as either parameter increases. Moreover, we observe that at relatively low temperatures, the axion self-coupling constant exhibits a sharp peak near the critical point when the chemical potential increases, reaching more than twice its vacuum value. Beyond the critical point, the self-coupling rapidly decreases to values much smaller than in vacuum, eventually approaching zero at high chemical potential. These results suggest that the significant enhancement of the axion self-coupling in dense matter near the chiral phase transition may favor the formation or amplification of an axion Bose–Einstein condensate in compact astrophysical objects. Full article
(This article belongs to the Proceedings of The 5th International Conference on Symmetry (Symmetry 2025))
Show Figures

Figure 1

22 pages, 585 KB  
Article
Fragmentation of a Trapped Multi-Species Bosonic Mixture
by Ofir E. Alon and Lorenz S. Cederbaum
Physics 2025, 7(3), 38; https://doi.org/10.3390/physics7030038 - 1 Sep 2025
Viewed by 715
Abstract
We consider a multi-species mixture of interacting bosons, N1 bosons of mass m1, N2 bosons of mass m2, and N3 bosons of mass m3, in a harmonic trap with frequency ω. The corresponding [...] Read more.
We consider a multi-species mixture of interacting bosons, N1 bosons of mass m1, N2 bosons of mass m2, and N3 bosons of mass m3, in a harmonic trap with frequency ω. The corresponding intra-species interaction strengths are λ11, λ22, and λ33, and the inter-species interaction strengths are λ12, λ13, and λ23. When the shape of all interactions is harmonic, the system corresponds to the generic multi-species harmonic-interaction model, which is exactly solvable. We start by solving the many-particle Hamiltonian and concisely discussing the ground-state wavefunction and energy in explicit forms as functions of all parameters, the masses, numbers of particles, and the intra-species and inter-species interaction strengths. We then explicitly compute the reduced one-particle density matrices for all the species and diagonalize them, thus generalizing the treatment by the authors earlier. The respective eigenvalues determine the degree of fragmentation of each species. As an application, we focus on phenomena that do not arise in the corresponding single-species or two-species systems. For instance, we consider a mixture of two kinds of bosons in a bath made by a third kind, controlling the fragmentation of the former by coupling to the latter. Another example exploits the possibility of different connectivities (i.e., which species interacts with which species) in the mixture, and demonstrates how the fragmentation of species 3 can be manipulated by the interaction between species 1 and species 2, when species 3 and 1 do not interact with each other. We highlight the properties of fragmentation that only appear in the multi-species mixture. Further applications are briefly discussed. Full article
(This article belongs to the Special Issue Complexity in High Energy and Statistical Physics)
Show Figures

Figure 1

14 pages, 5648 KB  
Article
Design and Fabrication of High-Temperature-Resistant Poly(4-methyl-1-pentene) Loaded with Tungsten and Boron Carbide Particles Against Neutron and Gamma Rays
by Ming Yu, Fan Luo, Xiaoling Li, Xianglei Chen and Zhirong Guo
Polymers 2025, 17(17), 2306; https://doi.org/10.3390/polym17172306 - 26 Aug 2025
Viewed by 675
Abstract
A novel high-temperature-resistant W-B4C-poly(4-methyl-1-pentene) (PMP) composite shielding material against neutron and gamma rays was developed and fabricated. Firstly, utilizing the 235U-induced fission spectrum as the source term, the compositional ratio of the W-B4C-PMP ternary composite was optimized using [...] Read more.
A novel high-temperature-resistant W-B4C-poly(4-methyl-1-pentene) (PMP) composite shielding material against neutron and gamma rays was developed and fabricated. Firstly, utilizing the 235U-induced fission spectrum as the source term, the compositional ratio of the W-B4C-PMP ternary composite was optimized using the genetic algorithm-based GENOCOPIII program coupled with MCNP simulations. Then, the composite was fabricated through coupling agent modification, melt mixing, and hot pressing. Finally, the effects of coupling modification and tungsten content on the thermomechanical properties of the composite were investigated. Results demonstrated that functional groups from the silane coupling agent KH550 were successfully grafted onto the filler surfaces. For composites containing 30 wt% modified B4C and 40 wt% modified W in the PMP matrix, the heat deflection temperature (HDT) increased by 18.5% and 19.1%, respectively, compared to their unmodified counterparts. The impact strength also improved by 31.6% and 5.0%, respectively. The variation trend of the composite’s modulus approximately followed the classical Einstein model, while its tensile strength and flexural strength conformed precisely to the model: σcσm=0.88Vf0.02. Thermal analysis indicated that the composites possessed a melting point exceeding 230 °C, and their thermal stability improved with increasing filler content. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 542 KB  
Article
The Effects of the Gravitational Coupling Variation on the Local H0 Estimation
by Antonio Enea Romano
Universe 2025, 11(8), 278; https://doi.org/10.3390/universe11080278 - 19 Aug 2025
Cited by 2 | Viewed by 396
Abstract
We study the effects of the time evolution of the matter-gravity coupling on the luminosity distance, showing it can provide a natural explanation to the apparent Hubble tension. The gravitational coupling evolution induces a modification of the Friedman equation with respect to the [...] Read more.
We study the effects of the time evolution of the matter-gravity coupling on the luminosity distance, showing it can provide a natural explanation to the apparent Hubble tension. The gravitational coupling evolution induces a modification of the Friedman equation with respect to the ΛCDM model, which we study in both the Einstein and Jordan frame. We consider a phenomenological parametrization of the low redshift variation of the coupling in a narrow redshift shell, showing how it can affect the distance of the anchors used to calibrate supernovae (SNe), while higher redshift background observations are not affected. This effect is purely geometrical, and it is not related to any change of the intrinsic SNe physical properties. The effects of a time varying gravity coupling only manifest on sufficiently long time scales, such as in cosmological observations at different redshifts, and if ignored lead to apparent tensions in the values of cosmological parameters estimated with observations from different epochs of the Universe history. Full article
Show Figures

Figure 1

17 pages, 1200 KB  
Article
Computer Simulation of Liquid Pu and Calculation of Its Physical Properties at 500–5000 K
by David K. Belashchenko
Appl. Sci. 2025, 15(16), 8842; https://doi.org/10.3390/app15168842 - 11 Aug 2025
Viewed by 435
Abstract
Based on the literature data on the structure of liquid Pu, the pair contribution to the EAM potential of liquid Pu is calculated and the embedding potential is determined using the dependence of density on temperature. The properties of liquid Pu are calculated [...] Read more.
Based on the literature data on the structure of liquid Pu, the pair contribution to the EAM potential of liquid Pu is calculated and the embedding potential is determined using the dependence of density on temperature. The properties of liquid Pu are calculated at temperatures up to 5000 K and at ambient pressure, as well as upon cooling to 500 K. Agreement with experiment is obtained for density, bulk modulus, and viscosity. Self-diffusion coefficients are calculated. The Stokes–Einstein relation is well satisfied at all temperatures above the melting point but, below it, the deviations are observed, increasing upon cooling. The heat capacity of the real liquid is significantly higher than that of the models. Excess surface energy is considered. Full article
Show Figures

Figure 1

16 pages, 2212 KB  
Article
Entity Recognition Method for Fire Safety Standards Based on FT-FLAT
by Zhihao Yu, Chao Liu, Shunxiu Yang, Jiwei Tian, Qunming Hu and Weidong Kang
Fire 2025, 8(8), 306; https://doi.org/10.3390/fire8080306 - 4 Aug 2025
Viewed by 773
Abstract
The continuous advancement of fire protection technologies has necessitated the development of comprehensive safety standards, leading to an increasingly diversified and specialized regulatory landscape. This has made it difficult for fire protection professionals to quickly and accurately locate the required fire safety standard [...] Read more.
The continuous advancement of fire protection technologies has necessitated the development of comprehensive safety standards, leading to an increasingly diversified and specialized regulatory landscape. This has made it difficult for fire protection professionals to quickly and accurately locate the required fire safety standard information. In addition, the lack of effective integration and knowledge organization concerning fire safety standard entities has led to the severe fragmentation of fire safety standard information and the absence of a comprehensive “one map”. To address this challenge, we introduce FT-FLAT, an innovative CNN–Transformer fusion architecture designed specifically for fire safety standard entity extraction. Unlike traditional methods that rely on rules or single-modality deep learning, our approach integrates TextCNN for local feature extraction and combines it with the Flat-Lattice Transformer for global dependency modeling. The key innovations include the following. (1) Relative Position Embedding (RPE) dynamically encodes the positional relationships between spans in fire safety texts, addressing the limitations of absolute positional encoding in hierarchical structures. (2) The Multi-Branch Prediction Head (MBPH) aggregates the outputs of TextCNN and the Transformer using Einstein summation, enhancing the feature learning capabilities and improving the robustness for domain-specific terminology. (3) Experiments conducted on the newly annotated Fire Safety Standard Entity Recognition Dataset (FSSERD) demonstrate state-of-the-art performance (94.24% accuracy, 83.20% precision). This work provides a scalable solution for constructing fire safety knowledge graphs and supports intelligent information retrieval in emergency situations. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

26 pages, 1085 KB  
Article
Evaluating Sustainable Battery Recycling Technologies Using a Fuzzy Multi-Criteria Decision-Making Approach
by Chia-Nan Wang, Nhat-Luong Nhieu and Yen-Hui Wang
Batteries 2025, 11(8), 294; https://doi.org/10.3390/batteries11080294 - 4 Aug 2025
Cited by 1 | Viewed by 853
Abstract
The exponential growth of lithium-ion battery consumption has amplified the urgency of identifying sustainable and economically viable recycling solutions. This study proposes an integrated decision-making framework based on the T-Spherical Fuzzy Einstein Interaction Aggregator DEMATEL-CoCoSo approach to comprehensively evaluate and rank battery recycling [...] Read more.
The exponential growth of lithium-ion battery consumption has amplified the urgency of identifying sustainable and economically viable recycling solutions. This study proposes an integrated decision-making framework based on the T-Spherical Fuzzy Einstein Interaction Aggregator DEMATEL-CoCoSo approach to comprehensively evaluate and rank battery recycling technologies under uncertainty. Ten key evaluation criteria—encompassing environmental, economic, and technological dimensions—were identified through expert consultation and literature synthesis. The T-Spherical Fuzzy DEMATEL method was first applied to analyze the causal interdependencies among criteria and determine their relative weights, revealing that environmental drivers such as energy consumption, greenhouse gas emissions, and waste generation exert the most systemic influence. Subsequently, six recycling alternatives were assessed and ranked using the CoCoSo method enhanced by Einstein-based aggregation, which captured the complex interactions present in the experts’ evaluations and assessments. Results indicate that Direct Recycling is the most favorable option, followed by the Hydrometallurgical and Bioleaching methods, while Pyrometallurgical Recycling ranked lowest due to its high energy demands and environmental burden. The proposed hybrid model effectively handles linguistic uncertainty, expert variability, and interdependent evaluation structures, offering a robust decision-support tool for sustainable technology selection in the circular battery economy. The framework is adaptable to other domains requiring structured expert-based evaluations under fuzzy environments. Full article
Show Figures

Figure 1

16 pages, 1636 KB  
Article
Controlled Fission and Superposition of Vector Solitons in an Integrable Model of Two-Component Bose–Einstein Condensates
by Ramesh Kumar Vaduganathan, Rajadurai Vijayan and Boris A. Malomed
Symmetry 2025, 17(8), 1189; https://doi.org/10.3390/sym17081189 - 25 Jul 2025
Viewed by 418
Abstract
We investigate the dynamics of vector solitons in a two-component Bose–Einstein condensates governed by the system of Gross–Pitaevskii equations. Using a gauge-transformation approach, we construct a four-soliton solution and analyze their interactions, including superposition states, fission, and shape-preserving collisions. We explore the ability [...] Read more.
We investigate the dynamics of vector solitons in a two-component Bose–Einstein condensates governed by the system of Gross–Pitaevskii equations. Using a gauge-transformation approach, we construct a four-soliton solution and analyze their interactions, including superposition states, fission, and shape-preserving collisions. We explore the ability of time-dependent parameters, such as the intra- and intercomponent interaction coefficients and trapping potential, to control the soliton properties. In particular, we demonstrate controlled four-soliton fission, highlighting its potential applications to quantum data processing and coherent matter-wave transport. The results suggest experimental realization in BEC systems and provide insights into nonlinear wave interactions in multicomponent quantum fluids. Full article
(This article belongs to the Topic Recent Trends in Nonlinear, Chaotic and Complex Systems)
Show Figures

Figure 1

23 pages, 937 KB  
Article
An Improved Calculation of Bose–Einstein Condensation Temperature
by Andras Kovacs
Mod. Math. Phys. 2025, 1(2), 6; https://doi.org/10.3390/mmphys1020006 - 24 Jul 2025
Viewed by 610
Abstract
Bose–Einstein condensation is an intensely studied quantum phenomenon that emerges at low temperatures. While preceding Bose–Einstein condensation models do not consider what statistics apply above the condensation temperature, we show that neglecting this question leads to inconsistencies. A mathematically rigorous calculation of Bose–Einstein [...] Read more.
Bose–Einstein condensation is an intensely studied quantum phenomenon that emerges at low temperatures. While preceding Bose–Einstein condensation models do not consider what statistics apply above the condensation temperature, we show that neglecting this question leads to inconsistencies. A mathematically rigorous calculation of Bose–Einstein condensation temperature requires evaluating the thermodynamic balance between coherent and incoherent particle populations. The first part of this work develops such an improved Bose–Einstein condensation temperature calculation, for both three-dimensional and two-dimensional scenarios. The progress over preceding Bose–Einstein condensation models is particularly apparent in the two-dimensional case, where preceding models run into mathematical divergence. In the Discussion section, we compare our mathematical model against experimental superconductivity data. A remarkable match is found between experimental data and the calculated Bose–Einstein condensation temperature formulas. Our mathematical model therefore appears applicable to superconductivity, and may facilitate a rational search for higher-temperature superconductors. Full article
Show Figures

Figure 1

23 pages, 556 KB  
Review
Evolving Wormholes in a Cosmological Background
by Mahdi Kord Zangeneh and Francisco S. N. Lobo
Universe 2025, 11(7), 236; https://doi.org/10.3390/universe11070236 - 19 Jul 2025
Viewed by 443
Abstract
Wormholes are non-trivial topological structures that arise as exact solutions to Einstein’s field equations, theoretically connecting distinct regions of spacetime via a throat-like geometry. While static traversable wormholes necessarily require exotic matter that violates the classical energy conditions, subsequent studies have sought to [...] Read more.
Wormholes are non-trivial topological structures that arise as exact solutions to Einstein’s field equations, theoretically connecting distinct regions of spacetime via a throat-like geometry. While static traversable wormholes necessarily require exotic matter that violates the classical energy conditions, subsequent studies have sought to minimize such violations by introducing time-dependent geometries embedded within cosmological backgrounds. This review provides a comprehensive survey of evolving wormhole solutions, emphasizing their formulation within both general relativity and alternative theories of gravity. We explore key developments in the construction of non-static wormhole spacetimes, including those conformally related to static solutions, as well as dynamically evolving geometries influenced by scalar fields. Particular attention is given to the wormholes embedded into Friedmann–Lemaître–Robertson–Walker (FLRW) universes and de Sitter backgrounds, where the interplay between the cosmic expansion and wormhole dynamics is analyzed. We also examine the role of modified gravity theories, especially in hybrid metric–Palatini gravity, which enable the realization of traversable wormholes supported by effective stress–energy tensors that do not violate the null or weak energy conditions. By systematically analyzing a wide range of time-dependent wormhole solutions, this review identifies the specific geometric and physical conditions under which wormholes can evolve consistently with null and weak energy conditions. These findings clarify how such configurations can be naturally integrated into cosmological models governed by general relativity or modified gravity, thereby contributing to a deeper theoretical understanding of localized spacetime structures in an expanding universe. Full article
(This article belongs to the Special Issue Experimental and Observational Constraints on Wormhole Models)
Show Figures

Figure 1

22 pages, 12185 KB  
Article
Airborne Strapdown Gravity Survey of Sos Enattos Area (NE Sardinia, Italy): Insights into Geological and Geophysical Characterization of the Italian Candidate Site for the Einstein Telescope
by Filippo Muccini, Filippo Greco, Luca Cocchi, Maria Marsella, Antonio Zanutta, Alessandra Borghi, Matteo Cagnizi, Daniele Carbone, Mauro Coltelli, Danilo Contrafatto, Peppe Junior Valentino D’Aranno, Luca Frasca, Alfio Alex Messina, Luca Timoteo Mirabella, Monia Negusini and Eleonora Rivalta
Remote Sens. 2025, 17(13), 2309; https://doi.org/10.3390/rs17132309 - 5 Jul 2025
Viewed by 1068
Abstract
Strapdown gravity systems are increasingly employed in airborne geophysical exploration and geodetic studies due to advantages such as ease of installation, wide dynamic range, and adaptability to various platforms, including airplanes, helicopters, and large drones. This study presents results from an airborne gravity [...] Read more.
Strapdown gravity systems are increasingly employed in airborne geophysical exploration and geodetic studies due to advantages such as ease of installation, wide dynamic range, and adaptability to various platforms, including airplanes, helicopters, and large drones. This study presents results from an airborne gravity survey conducted over the northeastern sector of Sardinia (Italy), using a high-resolution strapdown gravity ensuring an accuracy of approximately 1 mGal. Data were collected at an average altitude of 1800 m with a spatial resolution of 3.0 km. The survey focused on the Sos Enattos area near Lula (Nuoro province), a candidate site for the Einstein Telescope (ET), a third-generation gravitational wave observatory. The ideal site is required to be geologically and seismically stable with a well-characterized subsurface. To support this, we performed a new gravity survey to complement existing geological and seismic data aimed at characterizing the mid-to-shallow crustal structure of Sos Enattos. Results show that the strapdown system effectively detects gravity anomalies linked to crustal sources down to ~3.5 km, with particular emphasis within the 1–2 km depth range. Airborne gravity data reveal higher frequency anomalies than those resolved by the EGM2008 global gravity model and show good agreement with local terrestrial gravity data. Forward modeling of the gravity field suggests a crust dominated by alternating high-density metamorphic rocks and granitoid intrusions of the Variscan basement. These findings enhance the geophysical understanding of Sos Enattos and support its candidacy for the ET site. Full article
Show Figures

Figure 1

14 pages, 272 KB  
Article
Constant Density Models in Einstein–Gauss–Bonnet Gravity
by Sunil D. Maharaj, Shavani Naicker and Byron P. Brassel
Universe 2025, 11(7), 220; https://doi.org/10.3390/universe11070220 - 2 Jul 2025
Viewed by 577
Abstract
We investigate the influence of the higher-order curvature corrections on a static configuration with constant density in Einstein–Gauss–Bonnet (EGB) gravity. This analysis is applied to both neutral and charged fluid distributions in arbitrary spacetime dimensions. The EGB field equations are generated, and the [...] Read more.
We investigate the influence of the higher-order curvature corrections on a static configuration with constant density in Einstein–Gauss–Bonnet (EGB) gravity. This analysis is applied to both neutral and charged fluid distributions in arbitrary spacetime dimensions. The EGB field equations are generated, and the condition of pressure isotropy is shown to generalise the general relativity equation. The gravitational potentials are unique in all spacetime dimensions for neutral gravitating spheres. Charged gravitating spheres are not unique and depend on the form of the electric field. Our treatment is extended to the particular case of a charged fluid distribution with a constant energy density and constant electric field intensity. The charged EGB field equations are integrated to give exact models in terms of hypergeometric functions which can also be written as a series. Full article
Back to TopTop