Fragmentation of a Trapped Multi-Species Bosonic Mixture
Abstract
1. Introduction
2. Theoretical Framework
3. Illustrative Examples
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Limiting and Specific Cases of the Frequencies’ Matrix and Its Eigenvectors and Eigenvalues
- A1.
- Generally, the three inter-species interactions , , and , are nonzero and couple the three species. We then have a generic three-species mixture where the relative-motion center-of-mass coordinates (16) depend on the inter-species interactions, and the frequencies are non-degenerate. Quite rarely, the explicit expression for a relative-motion center-of-mass coordinate in (16) may have an accidental vanishing point; for instance, when , and , , , we have for numbers , , and of bosons. In such case, its value at the accidental vanishing point is determined as a limit, specifically, for instance, . The result, which certainly recovers that obtained directly by diagonalizing the frequency matrix at this point is . Interestingly, it does not depend on , the number of bosons of species 3.
- A2.
- If one inter-species interaction is zero, the interaction between species 1 and species 3 is chosen to vanish, i.e., . Correspondingly, the above expressions for K and G (9) somewhat simplify. Indeed, substituting into the three-body part G, the latter does not vanish; namely, we still have a three-species mixture, the relative-motion center-of-mass coordinates depend on the inter-species interactions, and the frequencies are non-degenerate.
- A3.
- If two inter-species interactions are zero, for instance, and , then the three-body part vanishes, , and consequently, degenerates with the trap frequency . Physically, the system boils down to a mixture of two species, 1 and 3, and one individual species, 2; therefore, the expressions for the two-species mixtures [78] plus one individual species are to be used. Explicitly, for the three species: , , and . Indeed, taking , with , and for , Equation (16) becomes and , respectively, and is just taken from Equation (17). Thus, the (remaining) relative-motion center-of-mass coordinate now becomes interaction-independent. Then, taking a linear combination of eigenvectors associated with the degenerate eigenvalue , and , gives the remaining physical center-of-mass coordinates and . Overall, the frequencies are .
- A4.
- If all three inter-species interactions are zero, then . Actually, one deals with three individual species, where the frequencies’ matrix (7) is diagonal and its eigenvectors trivial, , , and , i.e., all coordinates become the species’ center-of-mass coordinates. To recover the limit of three individual species from the generic solution, the scenario A3 is performed first, i.e., one starts with a mixture of species 1 and 3 for which and , and the individual species 2. Then, taking designates that degenerates with the trap frequency as well, implying that one can mix and to obtain the physical center-of-mass coordinates and . In sum, the limit of a non-interacting mixture whose frequencies are three-fold degenerate, , is readily obtained from the generic three-species expressions (16) and (17).
- A5.
- The two relative-motion center-of-mass roots become degenerate in the specific case of a mass-balanced and interaction-balanced three-species mixture. The numbers of bosons , , and need not be equal, but when they are, one has quite a specific case of a balanced three-species mixture, which is dealt with in Ref. [56]. Denoting all masses by m and all inter-species interaction strengths by , one has . The respective eigenvectors do not depend on the interactions and are and along with the center-of-mass coordinate . Now, in the expressions (16) and (17), substituting m for all masses, and setting , for , and taking the limit , one recovers , , and for the eigenvectors of the center-of-mass Hamiltonian. Note that the degenerate frequencies depend on the sum of all bosons only, and one might suspect that the mixture behaves as a single-species mixture. This is not the case. As can be seen, the fragmentations of the species do depend on the individual numbers of bosons , , and .
Appendix B. The Mean-Field Solution of the Generic Multi-Species Mixture
Appendix C. Further Details of the Derivation of the All-Particle Density Matrix
References
- Girardeau, M. Simple and generalized condensation in many-boson systems. Phys. Fluids 1962, 5, 1468–1478. [Google Scholar] [CrossRef]
- Pollock, F. Quantization of circulation in a non-ideal Bose gas. Phys. Fluids 1967, 10, 473–478. [Google Scholar] [CrossRef]
- Noziéres, P.; Saint James, D. Particle vs. pair condensation in attractive Bose liquids. J. Phys. France 1982, 43, 1133–1148. [Google Scholar] [CrossRef]
- Noziéres, P. Some comments on Bose–Einstein condensation. In Bose–Einstein Condensation; Griffin, A., Snoke, D.W., Stringari, S., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 15–30. [Google Scholar] [CrossRef]
- Spekkens, R.W.; Sipe, J.E. Spatial fragmentation of a Bose–Einstein condensate in a double-well potential. Phys. Rev. A 1999, 59, 3868–3877. [Google Scholar] [CrossRef]
- Streltsov, A.I.; Cederbaum, L.S.; Moiseyev, N. Ground-state fragmentation of repulsive Bose–Einstein condensates in double-trap potentials. Phys. Rev. A 2004, 70, 053607. [Google Scholar] [CrossRef]
- Mueller, E.J.; Ho, T.-L.; Ueda, M.; Baym, G. Fragmentation of Bose–Einstein condensates. Phys. Rev. A 2006, 74, 033612. [Google Scholar] [CrossRef]
- Alon, O.E.; Cederbaum, L.S. Pathway from condensation via fragmentation to fermionization of cold bosonic systems. Phys. Rev. Lett. 2005, 95, 140402. [Google Scholar] [CrossRef]
- Bader, P.; Fischer, U.R. Fragmented many-body ground states for scalar bosons in a single trap. Phys. Rev. Lett. 2009, 103, 060402. [Google Scholar] [CrossRef]
- Zhou, Q.; Cui, X. Fate of a Bose–Einstein condensate in the presence of spin-orbit coupling. Phys. Rev. Lett. 2013, 110, 140407. [Google Scholar] [CrossRef]
- Kawaguchi, Y. Goldstone-mode instability leading to fragmentation in a spinor Bose–Einstein condensate. Phys. Rev. A 2014, 89, 033627. [Google Scholar] [CrossRef]
- Song, S.-W.; Zhang, Y.-C.; Zhao, H.; Wang, X.; Liu, W.-M. Fragmentation of spin-orbit-coupled spinor Bose–Einstein condensates. Phys. Rev. A 2014, 89, 063613. [Google Scholar] [CrossRef]
- Kang, M.-K.; Fischer, U.R. Revealing single-trap condensate fragmentation by Measuring density–density correlations after time of flight. Phys. Rev. Lett. 2014, 113, 140404. [Google Scholar] [CrossRef]
- Jen, H.H.; Yip, S.-K. Fragmented many-body states of a spin-2 Bose gas. Phys. Rev. A 2015, 91, 063603. [Google Scholar] [CrossRef]
- Fischer, U.R.; Lode, A.U.J.; Chatterjee, B. Condensate fragmentation as a sensitive measure of the quantum many-body behavior of bosons with long-range interactions. Phys. Rev. A 2015, 91, 063621. [Google Scholar] [CrossRef]
- Lode, A.U.J. Multiconfigurational time-dependent Hartree method for bosons with internal degrees of freedom: Theory and composite fragmentation of multicomponent Bose–Einstein condensates. Phys. Rev. A 2016, 93, 063601. [Google Scholar] [CrossRef]
- Kolovsky, A.R. Bogoliubov depletion of the fragmented condensate in the bosonic flux ladder. Phys. Rev. A 2017, 95, 033622. [Google Scholar] [CrossRef]
- Lode, A.U.J.; Bruder, C. Fragmented superradiance of a Bose–Einstein condensate in an optical cavity. Phys. Rev. Lett. 2017, 118, 013603. [Google Scholar] [CrossRef]
- Lode, A.U.J.; Diorico, F.S.; Wu, R.; Molignini, P.; Papariello, L.; Lin, R.; Lévêque, C.; Exl, L.; Tsatsos, M.C.; Chitra, R.; et al. Many-body physics in two-component Bose–Einstein condensates in a cavity: Fragmented superradiance and polarization. New J. Phys. 2018, 20, 055006. [Google Scholar] [CrossRef]
- Tomchenko, M. On a fragmented condensate in a uniform Bose system. J. Low Temp. Phys. 2020, 198, 100–121. [Google Scholar] [CrossRef]
- Lee, J.; Michelangeli, A. On the characterisation of fragmented Bose–Einstein condensation and its emergent effective evolution. Nonlinearity 2023, 36, 6364–6402. [Google Scholar] [CrossRef]
- Bhowmik, A.; Alon, O.E. Interference of longitudinal and transversal fragmentations in the Josephson tunneling dynamics of Bose–Einstein condensates. New J. Phys. 2024, 26, 123035. [Google Scholar] [CrossRef]
- Löwdin, P.-O. Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 1955, 97, 1474–1489. [Google Scholar] [CrossRef]
- Coleman, A.J.; Yukalov, V.I. Reduced Density Matrices: Coulson’s Challenge; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Ho, T.-L.; Shenoy, V.B. Binary mixtures of Bose Condensates of alkali atoms. Phys. Rev. Lett. 1996, 77, 3276–3279. [Google Scholar] [CrossRef] [PubMed]
- Esry, B.D.; Greene, C.H.; Burke, J.P., Jr.; Bohn, J.L. Hartree–Fock theory for double condensates. Phys. Rev. Lett. 1997, 78, 3594–3597. [Google Scholar] [CrossRef]
- Myatt, C.J.; Burt, E.A.; Ghrist, R.W.; Cornell, E.A.; Wieman, C.E. Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 1997, 78, 586–589. [Google Scholar] [CrossRef]
- Stamper-Kurn, D.M.; Andrews, M.R.; Chikkatur, A.P.; Inouye, S.; Miesner, H.-J.; Stenger, J.; Ketterle, W. Optical confinement of a Bose–Einstein condensate. Phys. Rev. Lett. 1998, 80, 2027–2030. [Google Scholar] [CrossRef]
- Pu, H.; Bigelow, N.P. Properties of two-species Bose condensates. Phys. Rev. Lett. 1998, 80, 1130–1133. [Google Scholar] [CrossRef]
- Timmermans, E. Phase separation of Bose–Einstein condensates. Phys. Rev. Lett. 1998, 81, 5718–5721. [Google Scholar] [CrossRef]
- Eckardt, A.; Weiss, C.; Holthaus, M. Ground-state energy and depletions for a dilute binary Bose gas. Phys. Rev. A 2004, 70, 043615. [Google Scholar] [CrossRef]
- Sakhel, A.R.; DuBois, J.L.; Glyde, H.R. Condensate depletion in two-species Bose gases: A variational quantum Monte Carlo study. Phys. Rev. A 2008, 77, 043627. [Google Scholar] [CrossRef]
- Zöllner, S.; Meyer, H.; Schmelcher, P. Composite fermionization of one-dimensional Bose–Bose mixtures. Phys. Rev. A 2008, 78, 013629. [Google Scholar] [CrossRef]
- Oleś, B.; Sacha, K. N-conserving Bogoliubov vacuum of a two-component Bose–Einstein condensate: Density fluctuations close to a phase-separation condition. J. Phys. A Math. Theor. 2008, 41, 145005. [Google Scholar] [CrossRef]
- Girardeau, M.D. Pairing, off-diagonal long-range order, and quantum phase transition in strongly attracting ultracold Bose gas mixtures in tight waveguides. Phys. Rev. Lett. 2009, 102, 245303. [Google Scholar] [CrossRef] [PubMed]
- Girardeau, M.D.; Astrakharchik, G.E. Ground state of a mixture of two bosonic Calogero–Sutherland gases with strong odd-wave interspecies attraction. Phys. Rev. A 2010, 81, 043601. [Google Scholar] [CrossRef]
- Gautam, S.; Angom, D. Ground state geometry of binary condensates in axissymmetric traps. J. Phys. B. At. Mol. Opt. Phys. 2010, 43, 095302. [Google Scholar] [CrossRef]
- García-March, M.; Busch, T. Quantum gas mixtures in different correlation regimes. Phys. Rev. A 2013, 87, 063633. [Google Scholar] [CrossRef]
- Ardila, L.A.P.; Giorgini, S. Impurity in a Bose–Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods. Phys. Rev. A 2015, 92, 033612. [Google Scholar] [CrossRef]
- Petrov, D.S. Quantum mechanical stabilization of a collapsing Bose–Bose mixture. Phys. Rev. Lett. 2015, 115, 155302. [Google Scholar] [CrossRef]
- Schurer, J.M.; Negretti, A.; Schmelcher, P. Unraveling the structure of ultracold mesoscopic collinear molecular ions. Phys. Rev. Lett. 2017, 119, 063001. [Google Scholar] [CrossRef]
- Chen, J.; Schurer, J.M.; Schmelcher, P. Entanglement induced interactions in binary mixtures. Phys. Rev. Lett. 2018, 121, 043401. [Google Scholar] [CrossRef]
- Sowiński, T.; García-March, M. One-dimensional mixtures of several ultracold atoms: A review. Rep. Prog. Phys. 2019, 82, 104401. [Google Scholar] [CrossRef]
- Mistakidis, S.I.; Volosniev, A.G.; Schmelcher, P. Induced correlations between impurities in a one-dimensional quenched Bose gas. Phys. Rev. Res. 2020, 2, 023154. [Google Scholar] [CrossRef]
- Andriati, A.; Brito, L.; Tomio, L.; Gammal, A. Stability of a Bose condensed mixture on a bubble trap. Phys. Rev. A 2021, 104, 033318. [Google Scholar] [CrossRef]
- Roberts, D.C.; Ueda, M. Stability analysis for n-component Bose–Einstein condensate. Phys. Rev. A 2006, 73, 053611. [Google Scholar] [CrossRef]
- Krönke, S.; Cao, L.; Vendrell, O.; Schmelcher, P. Non-equilibrium quantum dynamics of ultra-cold atomic mixtures: The multi-layer multi-configuration time-dependent Hartree method for bosons. New J. Phys. 2013, 15, 063018. [Google Scholar] [CrossRef]
- Mason, P.; Gardiner, S.A. Number-conserving approaches to n-component Bose–Einstein condensates. Phys. Rev. A 2014, 89, 043617. [Google Scholar] [CrossRef]
- Barman, A.; Basu, S. Phase diagram of multi-component bosonic mixtures: Emergence of mixed superfluid and insulating phases. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 055301. [Google Scholar] [CrossRef]
- Eto, Y.; Takahashi, M.; Nabeta, K.; Okada, R.; Kunimi, M.; Saito, H.; Hirano, T. Bouncing motion and penetration dynamics in multicomponent Bose–Einstein condensates. Phys. Rev. A 2016, 93, 033615. [Google Scholar] [CrossRef]
- He, Y.Z.; Liu, Y.M.; Bao, C.G. Spin-structures of the Bose–Einstein condensates with three kinds of spin-1 atoms. Sci. Rep. 2020, 10, 2727. [Google Scholar] [CrossRef]
- Jimbo, K.; Saito, H. Surfactant behavior in three-component Bose–Einstein condensates. Phys. Rev. A 2021, 103, 063323. [Google Scholar] [CrossRef]
- Ma, Y.; Peng, C.; Cui, X. Borromean droplet in three-component ultracold Bose gases. Phys. Rev. Lett. 2021, 127, 043002. [Google Scholar] [CrossRef]
- Liu, C.; Chen, P.; He, L.; Xu, F. Ground-state properties of multicomponent bosonic mixtures: A Gutzwiller mean-field study. Phys. Rev. A 2023, 108, 013309. [Google Scholar] [CrossRef]
- Saboo, A.; Halder, S.; Das, S.; Majumder, S. Rayleigh–Taylor instability in a phase-separated three-component Bose–Einstein condensate. Phys. Rev. A 2023, 108, 013320. [Google Scholar] [CrossRef]
- Alon, O.E.; Cederbaum, L.S. Properties of a trapped multiple-species bosonic mixture at the infinite-particle-number limit: A solvable model. J. Chem. Phys. 2024, 161, 184307. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ho, T.-L.; Cui, X. Shell-shaped quantum droplet in a three-component ultracold Bose gas. Phys. Rev. Lett. 2025, 134, 043402. [Google Scholar] [CrossRef] [PubMed]
- Anh-Tai, T.D.; García-March, M.A.; Busch, T.; Fogarty, T. Quantum correlations and spatial localization in trapped one-dimensional ultra-cold Bose–Bose–Bose mixtures. New J. Phys. 2025, 27, 073201. [Google Scholar] [CrossRef]
- Theel, F.; Mistakidis, S.I.; Schmelcher, P. Effective approaches to the dynamical properties of two distinguishable Bose polarons. Phys. Rev. A 2025, 111, 013306. [Google Scholar] [CrossRef]
- Pruski, S.; Maćkowiak, J.; Missuno, O. Reduced density matrices of a system of N coupled oscillators. 2. Eigenstructure of the 1-particle matrix for the canonical ensemble. Rep. Math. Phys. 1972, 3, 227–233. [Google Scholar] [CrossRef]
- Pruski, S.; Maćkowiak, J.; Missuno, O. Reduced density matrices of a system of N coupled oscillators. 3. The eigenstructure of the p-particle matrix for the ground state. Rep. Math. Phys. 1972, 3, 241–246. [Google Scholar] [CrossRef]
- Robinson, P.D. Coupled oscillator natural orbitals. J. Chem. Phys. 1977, 66, 3307–3308. [Google Scholar] [CrossRef]
- Hall, R.L. Some exact solutions to the translation-invariant N-body problem. J. Phys. A Math. Gen. 1978, 11, 1227–1233. [Google Scholar] [CrossRef]
- Hall, R.L. Exact solutions of Schrödinger’s equation for translation-invariant harmonic matter. J. Phys. A Math. Gen. 1978, 11, 1235–1240. [Google Scholar] [CrossRef]
- Cohen, L.; Lee, C. Exact reduced density matrices for a model problem. J. Math. Phys. 1985, 26, 3105–3108. [Google Scholar] [CrossRef]
- Osadchii, M.S.; Muraktanov, V.V. The System of harmonically interacting particles: An exact solution of the quantum-mechanical problem. Int. J. Quant. Chem. 1991, 39, 173–181. [Google Scholar] [CrossRef]
- Załuska-Kotur, M.A.; Gajda, M.; Orłowski, A.; Mostowski, J. Soluble model of many interacting quantum particles in a trap. Phys. Rev. A 2000, 61, 033613. [Google Scholar] [CrossRef]
- Yan, J. Harmonic interaction model and its applications in Bose–Einstein condensation. J. Stat. Phys. 2003, 113, 623–634. [Google Scholar] [CrossRef]
- Gajda, M. Criterion for Bose–Einstein condensation in a harmonic trap in the case with attractive interactions. Phys. Rev. A 2006, 73, 023603. [Google Scholar] [CrossRef]
- Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S. Analytic harmonic approach to the N-body problem. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 055303. [Google Scholar] [CrossRef]
- Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S. Virial expansion coefficients in the harmonic approximation. Phys. Rev. E 2012, 86, 021115. [Google Scholar] [CrossRef]
- Kościk, P.; Okopińska, A. Correlation effects in the Moshinsky model. Few-Body Syst. 2013, 54, 1637–1640. [Google Scholar] [CrossRef]
- Schilling, C. Natural orbitals and occupation numbers for harmonium: Fermions versus bosons. Phys. Rev. A 2013, 88, 042105. [Google Scholar] [CrossRef]
- Bouvrie, P.A.; Majtey, A.P.; Tichy, M.C.; Dehesa, J.S.; Plastino, A.R. Entanglement and the Born–Oppenheimer approximation in an exactly solvable quantum many-body system. Eur. Phys. J. D 2014, 68, 346. [Google Scholar] [CrossRef]
- Benavides-Riveros, C.L.; Toranzo, I.V.; Dehesa, J.S. Entanglement in N-harmonium: Bosons and fermions. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 195503. [Google Scholar] [CrossRef]
- Armstrong, J.R.; Volosniev, A.G.; Fedorov, D.V.; Jensen, A.S.; Zinner, N.T. Analytic solutions of topologically disjoint systems. J. Phys. A Math. Theor. 2015, 48, 085301. [Google Scholar] [CrossRef]
- Schilling, C.; Schilling, R. Number-parity effect for confined fermions in one dimension. Phys. Rev. A 2016, 93, 021601. [Google Scholar] [CrossRef]
- Alon, O.E. Solvable model of a generic trapped mixture of interacting bosons: Reduced density matrices and proof of Bose–Einstein condensation. J. Phys. A Math. Theor. 2017, 50, 295002. [Google Scholar] [CrossRef]
- Alon, O.E. Solvable model of a generic driven mixture of trapped Bose–Einstein condensates and properties of a many-boson floquet state at the limit of an infinite number of particles. Entropy 2020, 22, 1342. [Google Scholar] [CrossRef]
- Alon, O.E. Fragmentation of identical and distinguishable bosons’ pairs and natural geminals of a trapped bosonic mixture. Atoms 2021, 9, 92. [Google Scholar] [CrossRef]
- Alon, O.E.; Cederbaum, L.S. Effects beyond center-of-mass separability in a trapped bosonic mixture: Exact results. J. Phys. Conf. Ser. 2022, 2249, 012011. [Google Scholar] [CrossRef]
- Alon, O.E.; Cederbaum, L.S. Fragmentation of a trapped bosonic mixture. J. Phys. Conf. Ser. 2023, 2494, 012014. [Google Scholar] [CrossRef]
- Alon, O.E.; Cederbaum, L.S. Correlation effects in a trapped Bose–Fermi mixture: Exact results. J. Phys. Conf. Ser. 2024, 2894, 012012. [Google Scholar] [CrossRef]
- Alon, O.E.; Cederbaum, L.S. Entanglement and correlations in an exactly-solvable model of a Bose–Einstein condensate in a cavity. J. Phys. A Math. Theor. 2024, 57, 295305. [Google Scholar] [CrossRef]
- Jiménez, M.D.; Díaz, W.J.; Cuestas, E.; Valdés-Hernández, A.; Majtey, A.P. Spatial correlations and entanglement in a hybrid system of N fermion pairs with harmonic interaction. J. Phys. A Math. Theor. 2025, 58, 225303. [Google Scholar] [CrossRef]
- Kuroś, A.; Pieprzycki, A.; Gawin, E.; Kościk, P. Exact collective occupancies of the Moshinsky model in two-dimensional geometry. Sci. Rep. 2025, 15, 29466. [Google Scholar] [CrossRef]
- Lieb, E.H.; Seiringer, R.; Yngvason, J. Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 2000, 61, 043602. [Google Scholar] [CrossRef]
- Lieb, E.H.; Seiringer, R. Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 2002, 88, 170409. [Google Scholar] [CrossRef]
- Cederbaum, L.S. Exact many-body wave function and properties of trapped bosons in the infinite-particle limit. Phys. Rev. A 2017, 96, 013615. [Google Scholar] [CrossRef]
- Anapolitanos, I.; Hott, M.; Hundertmark, D. Derivation of the Hartree equation for compound Bose gases in the mean field limit. Rev. Math. Phys. 2017, 29, 1750022. [Google Scholar] [CrossRef]
- Lee, J. Rate of convergence toward Hartree type equations for mixture condensates with factorized initial data. J. Math. Phys. 2021, 62, 091901. [Google Scholar] [CrossRef]
- Glauber, R.J. The Quantum theory of optical coherence. Phys. Rev. 1963, 130, 2529–2539. [Google Scholar] [CrossRef]
- Naraschewski, M.; Glauber, R.J. Spatial coherence and density correlations of trapped Bose gases. Phys. Rev. A 1999, 59, 4595–4606. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Laine, E.-M.; Piilo, J. Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 2009, 103, 210401. [Google Scholar] [CrossRef]
- Shen, H.Z.; Yang, J.F.; Yi, X.X. Unconventional photon blockade with non-Markovian effects in driven dissipative coupled cavities. Phys. Rev. A 2024, 109, 043714. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Liu, T.; Su, Q.-P.; Zhang, X.-Y.; Wu, Q.-C.; Chen, D.-X.; Shi, Z.-C.; Shen, H.Z.; Yang, C.-P. Universal photon blockade. Phys. Rev. Lett. 2025, 134, 183601. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alon, O.E.; Cederbaum, L.S. Fragmentation of a Trapped Multi-Species Bosonic Mixture. Physics 2025, 7, 38. https://doi.org/10.3390/physics7030038
Alon OE, Cederbaum LS. Fragmentation of a Trapped Multi-Species Bosonic Mixture. Physics. 2025; 7(3):38. https://doi.org/10.3390/physics7030038
Chicago/Turabian StyleAlon, Ofir E., and Lorenz S. Cederbaum. 2025. "Fragmentation of a Trapped Multi-Species Bosonic Mixture" Physics 7, no. 3: 38. https://doi.org/10.3390/physics7030038
APA StyleAlon, O. E., & Cederbaum, L. S. (2025). Fragmentation of a Trapped Multi-Species Bosonic Mixture. Physics, 7(3), 38. https://doi.org/10.3390/physics7030038