Airborne Strapdown Gravity Survey of Sos Enattos Area (NE Sardinia, Italy): Insights into Geological and Geophysical Characterization of the Italian Candidate Site for the Einstein Telescope
Abstract
1. Introduction
- (i).
- Assess the lateral gravity variations associated with lithological and density contrasts among the main geological units exposed in the region;
- (ii).
- Develop a forward model to estimate the depth and geometry of major geological boundaries, with a focus on identifying potential structural discontinuities beneath the candidate site that may affect its development;
- (iii).
- Provide a long-wavelength gravity dataset to contribute to the refinement of the regional geoid model;
- (iv).
- (v).
- Establish a representative case study that may serve as a methodological reference for future site investigations in similar geological contexts.
2. Geological Setting
3. Materials and Methods
3.1. Airborne Gravity Instrumentation
3.2. Airborne Gravity Survey
3.3. Gravity Data Processing
- (a)
- Lever arm correction. This procedure accounts for the geometric offset between the position of the strapdown gravimeter sensor, installed inside the aircraft, and the GNSS antenna. Accurate gravity data acquisition is only possible if this offset is precisely known, with centimetric accuracy (ideally <5 cm). If the offset is not determined or significantly exceeds this threshold, the data acquisition process may be considered unreliable or infeasible.
- (b)
- Link to gravity reference stations and drift correction. The iCORUS-02 system provides relative gravity variations. However, the computation of gravity disturbance requires subtracting the normal gravity contribution from the observed data. To achieve this, the relative measurements must be tied to an absolute gravity value.
- (c)
- Filtering. The strapdown gravity system records all types of accelerations, which result in a summation of multispectral components, with gravity acceleration representing only one of them. To minimize the high-amplitude noise, low-pass filtering is essential. IPosCAL-GRAV uses a full-wavelength low-pass filter with a 100-s cut-off length. This filter length effectively reduces noise but also impacts the resolution of the data due to the combination with the airplane speed. The achievable spatial resolution is determined by the product of the filter length and the airplane speed.
- (d)
- Gravity disturbance computation.
- (e)
- Post processing data treatment. The U-turning portions and nonlinear segments of the track lines were removed to prevent spurious anomalies from affecting the entire dataset (see black lines in Figure 1C). After this step, the gravity disturbance was corrected using a statistical levelling approach. Data along the N–S lines were compared with those of the tie lines, resulting in a cross-over data matrix. This process led to a quasi-linear distribution (oblique trend), primarily due to minor inconsistencies in flight pattern. The cross-over errors range between −5.1 mGal to 4.98 mGal, a mean value of 0.1775 mGal and a standard deviation of 3.46 mGal (see Table S1 in Supplementary Material). This error matrix was thus subtracted from the original disturbance dataset, resulting in a levelled and smoother distribution.
- (f)
- Reduction of the topographic effect.
3.4. Modeling of Sos-Enattos Airborne Gravity Dataset
3.5. Terrestrial Gravity Survey
4. Results
4.1. Airborne Strapdown Survey
4.2. Airborne Strapdown Data Validation
5. Discussion
5.1. Gravity Disturbance Dataset
5.2. Geological Interpretation
6. Conclusions
Advancements, Limitations and Future Developments
- −
- Expand the ground gravity survey to provide higher-resolution coverage in critical zones;
- −
- Conduct additional airborne gravity flights at lower altitude and slower speed, to increase spatial resolution;
- −
- Integrate complementary geophysical methods, including electrical resistivity tomography (ERT) and magnetic surveys using UAV-based platforms, to enhance geological modeling.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aghajani, H.; Moradzadeh, A.; Zeng, H. Detection of High-Potential Oil and Gas Fields Using Normalized Full Gradient of Gravity Anomalies: A Case Study in the Tabas Basin, Eastern Iran. Pure Appl. Geophys. 2011, 168, 1851–1863. [Google Scholar] [CrossRef]
- Lv, Q.; Zheng, A.; Liang, X.; Chen, H.; Ju, S.; Meng, Y.; Zhang, H.; He, G.; Deng, S.; Li, J. Research on Remaining Oil Characterization in Superheavy Oil Reservoir by Microgravity Exploration. Geofluids 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Q.; Chen, H.; Zhu, J.; Li, G. Features of Gravity Anomalies and Oil-Gas Distribution Rules in Central and Western Sichuan Basin, China. Processes 2023, 11, 1200. [Google Scholar] [CrossRef]
- Mather, R.S. The role of the geoid in four-dimensional geodesy. Mar. Geod. 1978, 1, 217–252. [Google Scholar] [CrossRef]
- Sansò, F.; Sideris, M.G. Geoid Determination: Theory and Methods, 1st ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Johannessen, J.A.; Balmino, G.; Le Provost, C.; Rummel, R.; Sabadini, R.; Sünkel, H.; Tscherning, C.; Visser, P.; Woodworth, P.; Hughes, C.; et al. The European Gravity Field and Steady-State Ocean Circulation Explorer Satellite Mission: Its Impact on Geophysics. Surv. Geophys. 2003, 24, 339–386. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Han, S.-C.; Shum, C.K.; Bevis, M.; Ji, C.; Kuo, C.-Y. Crustal Dilatation Observed by GRACE After the 2004 Sumatra-Andaman Earthquake. Science 2006, 313, 658–662. [Google Scholar] [CrossRef]
- Panet, I.; Pajot-Métivier, G.; Greff-Lefftz, M.; Métivier, L.; Diament, M.; Mandea, M. Mapping the mass distribution of Earth’s mantle using satellite-derived gravity gradients. Nat. Geosci. 2014, 7, 131–135. [Google Scholar] [CrossRef]
- Khorrami, M.; Shirzaei, M.; Ghobadi-Far, K.; Werth, S.; Carlson, G.; Zhai, G. Groundwater Volume Loss in Mexico City Constrained by InSAR and GRACE Observations and Mechanical Models. Geophys. Res. Lett. 2023, 50, e2022GL101962. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Sultan, M.; Yan, E.; Abotalib, A.Z.; Save, H.; Emil, M.; Elhaddad, H.; Abdelmalik, K.; Romanowicz, B. Watching the Grand Ethiopian Renaissance Dam from a distance: Implications for sustainable water management of the Nile water. PNAS Nexus 2024, 3, pgae219. [Google Scholar] [CrossRef]
- Ferraccioli, F.; Finn, C.A.; Jordan, T.A.; Bell, R.E.; Anderson, L.M.; Damaske, D. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 2011, 479, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Novák, P.; Kern, M.; Schwarz, K.-P.; Sideris, M.; Heck, B.; Ferguson, S.; Hammada, Y.; Wei, M. On geoid determination from airborne gravity. J. Geodesy 2003, 76, 510–522. [Google Scholar] [CrossRef]
- Wang, Y.M.; Sánchez, L.; Ågren, J.; Huang, J.; Forsberg, R.; Abd-Elmotaal, H.A.; Ahlgren, K.; Barzaghi, R.; Bašić, T.; Carrion, D.; et al. Colorado geoid computation experiment: Overview and summary. J. Geod. 2021, 95, 1–21. [Google Scholar] [CrossRef]
- Barzaghi, R.; Borghi, A.; Keller, K.; Forsberg, R.; Giori, I.; Loretti, I.; Olesen, A.V.; Stenseng, L. Airborne gravity tests in the Italian area to improve the geoid model of Italy. Geophys. Prospect. 2009, 57, 625–632. [Google Scholar] [CrossRef]
- LaCoste, L.; Ford, J.; Bowles, R.; Archer, K. Gravity measurements in an airplane using state-of-the-art navigation and altimetry. Geophysics 1982, 47, 832–838. [Google Scholar] [CrossRef]
- Brozena, J.M. The Greenland Aerogeophysics Project: Airborne Gravity, Topographic and Magnetic Mapping of an Entire Continent. In From Mars to Greenland: Charting Gravity With Space and Airborne Instruments; Colombo, O.L., Ed.; International Association of Geodesy Symposia; Springer: New York, NY, USA, 1992; Volume 110, pp. 203–214. ISBN 978-0-387-97857-4. [Google Scholar]
- Forsberg, R.; Kenyon, S. Evaluation and Downward Continuation of Airborne Gravity Data-the Greenland Example. In Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS94), Banff, AB, Canada, 30 August–2 September 1994; pp. 531–538. [Google Scholar]
- Gumert, W.R. An historical review of airborne gravity. Lead. Edge 1998, 17, 113–116. [Google Scholar] [CrossRef]
- Bell, R.E.; Coakley, B.J.; Stemp, R.W. Airborne gravimetry from a small twin engine aircraft over the Long Island Sound. Geophysics 1991, 56, 1486–1493. [Google Scholar] [CrossRef]
- Bell, R.E.; Childers, V.A.; Arko, R.A.; Blankenship, D.D.; Brozena, J.M. Airborne gravity and precise positioning for geologic applications. J. Geophys. Res. 1999, 104, 15281–15292. [Google Scholar] [CrossRef]
- Wei, M.; Schwarz, K.P. Flight test results from a strapdown airborne gravity system. J. Geod. 1998, 72, 323–332. [Google Scholar] [CrossRef]
- Glennie, C.L.; Schwarz, K.P.; Bruton, A.M.; Forsberg, R.; Olesen, A.V.; Keller, K. A comparison of stable platform and strapdown airborne gravity. J. Geod. 2000, 74, 383–389. [Google Scholar] [CrossRef]
- Ayres-Sampaio, D.; Deurloo, R.; Bos, M.; Magalhães, A.; Bastos, L. A Comparison Between Three IMUs for Strapdown Airborne Gravimetry. Surv. Geophys. 2015, 36, 571–586. [Google Scholar] [CrossRef]
- Jensen, T.E.; Forsberg, R. Helicopter Test of a Strapdown Airborne Gravimetry System. Sensors 2018, 18, 3121. [Google Scholar] [CrossRef]
- Jensen, T.E.; Olesen, A.V.; Forsberg, R.; Olsson, P.-A.; Josefsson, Ö. New Results from Strapdown Airborne Gravimetry Using Temperature Stabilisation. Remote. Sens. 2019, 11, 2682. [Google Scholar] [CrossRef]
- Kwon, J.H.; Jekeli, C. A new approach for airborne vector gravimetry using GPS/INS. J. Geod. 2001, 74, 690–700. [Google Scholar] [CrossRef]
- Zhao, L.; Forsberg, R.; Wu, M.; Olesen, A.V.; Zhang, K.; Cao, J. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland. Sensors 2015, 15, 13258–13269. [Google Scholar] [CrossRef]
- Jordan, T.A.; Becker, D. Investigating the distribution of magmatism at the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic data. Phys. Earth Planet. Inter. 2018, 282, 77–88. [Google Scholar] [CrossRef]
- Tinto, K.J.; Padman, L.; Siddoway, C.S.; Springer, S.R.; Fricker, H.A.; Das, I.; Tontini, F.C.; Porter, D.F.; Frearson, N.P.; Howard, S.L.; et al. Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nat. Geosci. 2019, 12, 441–449. [Google Scholar] [CrossRef]
- Villani, F.; Maraio, S.; Improta, L.; De Martini, P.; Cavallaro, D.; Carlino, M.F.; Brunori, C.; Longo, V.; Casini, L.; Caradonna, M.; et al. Subsurface characterization of crystalline rocks at the Einstein Telescope candidate site (Italy): Insights from seismic tomography, geoelectrical and morphostructural analyses. Tectonophysics 2025, 911, 230830. [Google Scholar] [CrossRef]
- Saccorotti, G.; Giunchi, C.; D’aMbrosio, M.; Gaviano, S.; Naticchioni, L.; D’uRso, D.; Rozza, D.; Cardini, A.; Contu, A.; Dordei, F.; et al. Array analysis of seismic noise at the Sos Enattos mine, the Italian candidate site for the Einstein Telescope. Eur. Phys. J. Plus 2023, 138, 793. [Google Scholar] [CrossRef]
- Di Giovanni, M.; Giunchi, C.; Saccorotti, G.; Berbellini, A.; Boschi, L.; Olivieri, M.; De Rosa, R.; Naticchioni, L.; Oggiano, G.; Carpinelli, M.; et al. A Seismological Study of the Sos Enattos Area—The Sardinia Candidate Site for the Einstein Telescope. Seism. Res. Lett. 2021, 92, 352–364. [Google Scholar] [CrossRef]
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al. The third generation of gravitational wave observatories and their science reach. Class. Quantum Gravity 2010, 27, 084007. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Naticchioni, L.; Boschi, V.; Calloni, E.; Capello, M.; Cardini, A.; Carpinelli, M.; Cuccuru, S.; D’aMbrosio, M.; de Rosa, R.; Di Giovanni, M.; et al. Characterization of the Sos Enattos Site for the Einstein Telescope. J. Phys. Conf. Ser. 2020, 1468, 012242. [Google Scholar] [CrossRef]
- Janssens, K.; Boileau, G.; Christensen, N.; van Remortel, N.; Badaracco, F.; Canuel, B.; Cardini, A.; Contu, A.; Coughlin, M.W.; Decitre, J.-B.; et al. Correlated 0.01–40 Hz seismic and Newtonian noise and its impact on future gravitational-wave detectors. Phys. Rev. D 2024, 109, 102002. [Google Scholar] [CrossRef]
- Rovida, A.N.; Albini, P.; Locati, M.; Antonucci, A. Insights into Preinstrumental Earthquake Data and Catalogs in Europe. Seism. Res. Lett. 2020, 91, 2546–2553. [Google Scholar] [CrossRef]
- Gorshkov, A.; Panza, G.F.; Soloviev, A.; Brandmayr, E. On the seismic potential of the Corsica–Sardinia block. Rend. Lincei Sci. Fis. Nat. 2021, 32, 715–728. [Google Scholar] [CrossRef]
- Sartori, R. Corsica—Sardinia Block and the Tyrrhenian Sea. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 367–374. ISBN 978-90-481-4020-6. [Google Scholar]
- Rosenbaum, G.; Lister, G.S.; Duboz, C. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 2002, 359, 117–129. [Google Scholar] [CrossRef]
- Faccenna, C.; Speranza, F.; Caracciolo, F.D.; Mattei, M.; Oggiano, G. Extensional tectonics on Sardinia (Italy): Insights into the arc–back-arc transitional regime. Technophysics 2002, 356, 213–232. [Google Scholar] [CrossRef]
- Carmignani, L.; Oggiano, G.; Barca, S.; Conti, P.; Salvadori, I.; Eltrudis, A.; Funedda, A.; Pasci, S. Geologia Della Sardegna: Note Illustrative Della Carta Geologica Della Sardegna in Scala 1: 200,000. Mem. Descr. Della Carta Geol. Ital. 2001, 60, 1–283. [Google Scholar]
- Carmignani, L.; Oggiano, G.; Funedda, A.; Conti, P.; Pasci, S. The geological map of Sardinia (Italy) at 1:250,000 scale. J. Maps 2016, 12, 826–835. [Google Scholar] [CrossRef]
- Conti, P.; Carmignani, L.; Oggiano, G. From thickening to extension in the Variscan belt—kinematic evidence from Sardinia (Italy). Terra Nova 1999, 11, 93–99. [Google Scholar] [CrossRef]
- Conte, A.M.; Cuccuru, S.; D’ANtonio, M.; Naitza, S.; Oggiano, G.; Secchi, F.; Casini, L.; Cifelli, F. The post-collisional late Variscan ferroan granites of southern Sardinia (Italy): Inferences for inhomogeneity of lower crust. Lithos 2017, 294-295, 263–282. [Google Scholar] [CrossRef]
- Cocco, F.; Oggiano, G.; Funedda, A.; Loi, A.; Casini, L. Stratigraphic, magmatic and structural features of Ordovician tectonics in Sardinia (Italy): A review. J. Iber. Geol. 2018, 44, 619–639. [Google Scholar] [CrossRef]
- Oggiano, G.; Funedda, A.; Carmignani, L.; Pasci, S. The Sardinia-Corsica microplate and its role in the Northern ApennineGeodynamics: New insights from the Tertiary intraplate strike-slip tectonics of Sardinia. Ital. J. Geosci. 2009, 128, 527–539. [Google Scholar] [CrossRef]
- Costamagna, L.G. Sardinia and the Alpine cycle: A tectono-sedimentary history at the Western Tethys edge. Earth Sci. Rev. 2023, 247, 104591. [Google Scholar] [CrossRef]
- Allocca, A.; Avino, S.; Calloni, E.; Caprara, S.; Carpinelli, M.; D’uRso, D.; De Laurentis, M.; De Rosa, R.; Errico, L.; Gagliardi, G.; et al. Picoradiant tiltmeter and direct ground tilt measurements at the Sos Enattos site. Eur. Phys. J. Plus 2021, 136, 1069. [Google Scholar] [CrossRef]
- Smithson, S.B. Densities of metamorphic rocks. Geophysics 1971, 36, 690–694. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Wenk, E. Physical constants of alpine rocks (density, porosity, specific heat, thermal diffusivity and conductivity). ETH Zurich 1969, 49, 343–357. [Google Scholar] [CrossRef]
- Subrahmanyam, C.; Verma, R. Densities and Magnetic Susceptibilities of Precambrian Rocks of Different Metamorphic Grade (Southern Indian Shield). J. Geophys. 1981, 49, 101–107. [Google Scholar]
- Ferri, F.; Ventura, R.; Coren, F.; Zanolla, C. Gravity Map of Italy and Surrounding Seas, Carta Gravimetrica d’Italia 1:1.250.000; APAT: Rome, Italy, 2005. [Google Scholar]
- Greco, F.; Berrino, G.; Riguzzi, F.; Mazzoni, A.; Amendola, M.; Carbone, D.; Contrafatto, D.; Dardanelli, G.; Brutto, M.L.; Maltese, A.; et al. The first absolute gravity and height reference network in Sicily. Sci. Data 2024, 11, 357. [Google Scholar] [CrossRef]
- Jekeli, C. Inertial Navigation Systems with Geodetic Applications; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2001. [Google Scholar]
- Torge, W.; Müller, J. Geodesy, 4th ed.; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2012; ISBN 978-3-11-020718-7. [Google Scholar]
- Parker, R.L. The Rapid Calculation of Potential Anomalies. Geophys. J. Int. 1973, 31, 447–455. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, 2011JB008916. [Google Scholar] [CrossRef]
- Cocchi, L.; Masetti, G.; Muccini, F.; Carmisciano, C. Geophysical mapping of Vercelli Seamount: Implications for Miocene evolution of the Tyrrhenian back arc basin. Geosci. Front. 2016, 7, 835–849. [Google Scholar] [CrossRef]
- Cocchi, L.; Passaro, S.; Caratori Tontini, F.; Ventura, G. Volcanism in slab tear faults is larger than in island-arcs and back-arcs. Nat. Commun. 2017, 8, 1451. [Google Scholar] [CrossRef] [PubMed]
- Spector, A.; Grant, F.S. Statistical Models for Interpreting Aeromagnetic Data. Geophysics 1970, 35, 293–302. [Google Scholar] [CrossRef]
- Hildenbrand, T.G.; Rosenbaum, J.G.; Kauahikaua, J.P. Aeromagnetic study of the Island of Hawaii. J. Geophys. Res. 1993, 98, 4099–4119. [Google Scholar] [CrossRef]
- Okubo, Y.; Matsunaga, T. Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity. J. Geophys. Res. 1994, 99, 22363–22371. [Google Scholar] [CrossRef]
- Chiozzi, P.; Matsushima, J.; Okubo, Y.; Pasquale, V.; Verdoya, M. Curie-point depth from spectral analysis of magnetic data in central–southern Europe. Phys. Earth Planet. Inter. 2005, 152, 267–276. [Google Scholar] [CrossRef]
- Kelemework, Y.; Fedi, M.; Milano, M. A review of spectral analysis of magnetic data for depth estimation. Geophysics 2021, 86, J33–J58. [Google Scholar] [CrossRef]
- Maus, S.; Dimri, V.P. Scaling properties of potential fields due to scaling sources. Geophys. Res. Lett. 1994, 21, 891–894. [Google Scholar] [CrossRef]
- Shamim, S.; Khan, P.K.; Mohanty, S.P.; Mohanty, M. Andaman–Nicobar–Sumatra Margin Revisited: Analysis of the Lithospheric Structure and Deformation Based on Gravity Modeling and Distribution of Seismicity. Surv. Geophys. 2021, 42, 239–275. [Google Scholar] [CrossRef]
- Root, B.; Novák, P.; Dirkx, D.; Kaban, M.; van der Wal, W.; Vermeersen, L. On a spectral method for forward gravity field modelling. J. Geodyn. 2016, 97, 22–30. [Google Scholar] [CrossRef]
- Columbu, S.; Cruciani, G.; Fancello, D.; Franceschelli, M.; Musumeci, G. Petrophysical properties of a granite-protomylonite-ultramylonite sequence: Insight from the Monte Grighini shear zone, central Sardinia, Italy. Eur. J. Miner. 2015, 27, 471–486. [Google Scholar] [CrossRef]
Reference Station | Longitude | Latitude | Elevation (m) |
---|---|---|---|
Nuoro | 9.332379°E | 40.322901°N | 616.77 |
Olbia | 9.493595°E | 40.924374°N | 63.77 |
Siniscola | 9.691958°E | 40.573836°N | 104.33 |
ITMC | 9.607763°E | 40.637343°N | 107.70 |
ITML | 9.150219°E | 40.590046°N | 624.23 |
Borrasilano | 10.695978°E | 44.306238°N | 1023.38 |
Cecina | 10.526632°E | 43.311002°N | 75.57 |
Parma | 10.361002°E | 44.799913°N | 105.59 |
ITPS | 10.920529°E | 43.941658°N | 128.44 |
Reference Station | Latitude; Longitude | Gravity Value (µGal) | Airport Station | Latitude; Longitude | Gravity Value (µGal) |
---|---|---|---|---|---|
Loiano (BO, Italy) | 44.25657°N; 11.33177°E | 980,285,347.44 ± 2.0 | Parma airport (PR, Italy) | 44.81831°N; 10.29108°E | 980,439,833.70 ± 7.4 |
Sos Enattos mine (NU, Itay) | 40.44569°N; 9.45655°E | 980,153,096.98 ± 4.6 | Olbia airport (OT, Italy) | 40.89708°N; 9.50481°E | 980,262,177.50 ± 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muccini, F.; Greco, F.; Cocchi, L.; Marsella, M.; Zanutta, A.; Borghi, A.; Cagnizi, M.; Carbone, D.; Coltelli, M.; Contrafatto, D.; et al. Airborne Strapdown Gravity Survey of Sos Enattos Area (NE Sardinia, Italy): Insights into Geological and Geophysical Characterization of the Italian Candidate Site for the Einstein Telescope. Remote Sens. 2025, 17, 2309. https://doi.org/10.3390/rs17132309
Muccini F, Greco F, Cocchi L, Marsella M, Zanutta A, Borghi A, Cagnizi M, Carbone D, Coltelli M, Contrafatto D, et al. Airborne Strapdown Gravity Survey of Sos Enattos Area (NE Sardinia, Italy): Insights into Geological and Geophysical Characterization of the Italian Candidate Site for the Einstein Telescope. Remote Sensing. 2025; 17(13):2309. https://doi.org/10.3390/rs17132309
Chicago/Turabian StyleMuccini, Filippo, Filippo Greco, Luca Cocchi, Maria Marsella, Antonio Zanutta, Alessandra Borghi, Matteo Cagnizi, Daniele Carbone, Mauro Coltelli, Danilo Contrafatto, and et al. 2025. "Airborne Strapdown Gravity Survey of Sos Enattos Area (NE Sardinia, Italy): Insights into Geological and Geophysical Characterization of the Italian Candidate Site for the Einstein Telescope" Remote Sensing 17, no. 13: 2309. https://doi.org/10.3390/rs17132309
APA StyleMuccini, F., Greco, F., Cocchi, L., Marsella, M., Zanutta, A., Borghi, A., Cagnizi, M., Carbone, D., Coltelli, M., Contrafatto, D., D’Aranno, P. J. V., Frasca, L., Messina, A. A., Mirabella, L. T., Negusini, M., & Rivalta, E. (2025). Airborne Strapdown Gravity Survey of Sos Enattos Area (NE Sardinia, Italy): Insights into Geological and Geophysical Characterization of the Italian Candidate Site for the Einstein Telescope. Remote Sensing, 17(13), 2309. https://doi.org/10.3390/rs17132309