Entity Recognition Method for Fire Safety Standards Based on FT-FLAT
Abstract
1. Introduction
- Local–global trade-off: The CNN ignores the context between sentences, while the Transformer performs poorly in terms of short-range morphological features.
- Positional sensitivity: Absolute position encoding cannot represent hierarchical relationships in standard documents.
2. Related Work
3. Methods
3.1. Feature Template
3.2. TextCNN
3.3. Multi-Branch Prediction Head, MBPH
3.4. Relative Position Embedding
3.5. Layer Normalization, FFN and Linear CRF
4. Experiment
4.1. Data Pre-Processing
4.2. Experimental Data
- Fire extinguishing products: 1398 (39.98%).
- Fire alarm products: 676 (19.34%).
- Fire protection products: 872 (24.94%).
- Buildings: 372 (10.64%).
- Laws and regulations: 178 (5.10%).
Tag Name | Count | Ratio |
---|---|---|
Fire extinguishing products | 1398 | 39.98% |
Fire alarm products | 676 | 19.34% |
Fire protection products | 872 | 24.94% |
Buildings | 372 | 10.64% |
Laws and regulations | 178 | 5.10% |
4.3. Model Training
4.4. Evaluation Metrics
- Trigger identification: Exact offset and reference matching.
- Trigger classification: Exact offset and type matching.
- Argument identification: Exact offset and correct trigger association matching.
- Argument classification: Exact offset, role, and trigger correspondence.
4.5. Experimental Method
- CPU: Intel Core i7-8700K (3.70GHz)
- RAM: 32GB DDR4
- GPU: NVIDIA GeForce GTX 1080 Ti (11GB GDDR5X)
5. Results
- Hybrid architecture: Combines TextCNN local feature extraction with the Flat-Lattice Transformer’s hierarchical modeling.
- Relative Position Embedding (RPE): Encodes precise positional context to improve entity boundary detection.
- Multi-Branch Prediction Head (MBPH): Enhances feature learning through parallel processing of branches.
6. Discussion
6.1. Confusion Matrix Analysis
- Major errors: Only 18% of “Fire Protection Products” were misclassified as “Fire Extinguishing Products” (e.g., “fireproof sealant” → “fire hose”).
- Nested entities: Here, 22% of errors occurred in laws/regulations with nested structures (e.g., “GB/T 44481-2024: Fire Hose Specifications”).
- Terminology ambiguity: Only 15% of errors were caused by ambiguous terminology (e.g., “detector” in “alarm system” vs. “detector” in “fire extinguishing system”).
Actual/Predicted | Building | Alarm | Protection | Extinguishing | Law |
---|---|---|---|---|---|
Building | 0.92 | 0.01 | 0.04 | 0.03 | 0.00 |
Fire Alarm Product | 0.00 | 0.88 | 0.07 | 0.05 | 0.00 |
Fire Protection Prod | 0.02 | 0.03 | 0.79 | 0.18 | 0.00 |
Fire Extinguishing | 0.01 | 0.02 | 0.10 | 0.87 | 0.00 |
Laws/Regulations | 0.00 | 0.00 | 0.11 | 0.11 | 0.78 |
6.2. Ablation Study
- RPE removal: Macro-F1 ↓ 3.21%—confirming its role in the encoding layer hierarchy.
- MBPH removal: Macro-F1 ↓ 2.58%—confirming the necessity of multi-scale fusion.
- TextCNN removal: Precision ↓ 4.15%—highlighting the importance of local pattern extraction.
Variant | Macro-P | Macro-R | Macro-F1 | ΔF1 |
---|---|---|---|---|
Full FT-FLAT | 83.20 | 71.27 | 76.97 | - |
w/o RPE | 79.85 | 68.91 | 73.76 | −3.21 |
w/o MBPH | 80.12 | 69.04 | 74.39 | −2.58 |
w/o TextCNN | 79.05 | 70.33 | 74.42 | −2.55 |
CNN-Only | 76.81 | 65.28 | 70.62 | −6.35 |
6.3. Error Analysis
- First, 60% of errors stem from structural complexities (nested/long-range).
- Compared to absolute encoding (e.g., clause references), RPE reduced the positional errors by 41%.
- Error analysis reveals that the remaining 60% of errors are related to nested entities and terminology polysemy, suggesting that future should focus on syntax-aware embedding studies. Ablation studies confirm that RPE and MBPH contribute +3.21% and +2.58% to F1, respectively.
6.4. Word Clouds
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diaz, L.B.; He, X.; Hu, Z.; Restuccia, F.; Marinescu, M.; Barreras, J.V.; Patel, Y.; Offer, G.; Rein, G. Meta-review of fire safety of lithium-ion batteries: Industry challenges and research contributions. J. Electrochem. Soc. 2020, 167, 090559. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Navaratnam, S.; Mendis, P.; Zhang, K.; Barnett, J.; Wang, H. Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete. Compos. Part B Eng. 2020, 187, 107815. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Othman, A.M.; Abdussami, M.R. Review of battery management systems (BMS) development and industrial standards. Technologies 2021, 9, 28. [Google Scholar] [CrossRef]
- Chen, H.; Hou, L.; Zhang, G.K.; Moon, S. Development of BIM, IoT and AR/VR technologies for fire safety and upskilling. Autom. Constr. 2021, 125, 103631. [Google Scholar] [CrossRef]
- Thevega, T.; Jayasinghe, J.A.S.C.; Robert, D.; Bandara, C.S.; Kandare, E.; Setunge, S. Fire compliance of construction materials for building claddings: A critical review. Constr. Build. Mater. 2022, 361, 129582. [Google Scholar] [CrossRef]
- Himoto, K. Conceptual framework for quantifying fire resilience—A new perspective on fire safety performance of buildings. Fire Saf. J. 2021, 120, 103052. [Google Scholar] [CrossRef]
- Hogan, A.; Blomqvist, E.; Cochez, M.; D’amato, C.; De Melo, G.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.; et al. Knowledge graphs. ACM Comput. Surv. 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Zhang, Z.; Liu, T.; Xiong, N.N. Learning knowledge graph embedding with heterogeneous relation attention networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 3961–3973. [Google Scholar] [CrossRef]
- Chen, X.; Jia, S.; Xiang, Y. A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 2020, 141, 112948. [Google Scholar] [CrossRef]
- Li, J.; Sun, A.; Han, J.; Li, C. A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 2020, 34, 50–70. [Google Scholar] [CrossRef]
- Law, A.; Bisby, L. The rise and rise of fire resistance. Fire Saf. J. 2020, 116, 103188. [Google Scholar] [CrossRef]
- Mathew, A.; Amudha, P.; Sivakumari, S. Deep learning techniques: An overview. In Advanced Machine Learning Technologies and Applications. AMLTA 2020; Springer: Singapore, 2021; pp. 599–608. [Google Scholar]
- Zheng, X.; Wang, B.; Zhao, Y.; Mao, S.; Tang, Y. A knowledge graph method for hazardous chemical management: Ontology design and entity identification. Neurocomputing 2021, 430, 104–111. [Google Scholar] [CrossRef]
- Schneider, S.; Baevski, A.; Collobert, R.; Auli, M. wav2vec: Unsupervised pre-training for speech recognition. arXiv 2019, arXiv:1904.05862. [Google Scholar]
- Cao, Y.; Zhou, Y.; Shen, F.; Li, Z.X. Research on Named Entity Recognition of Chinese Electronic Medical Records Based on CNN-CRF. J. Chongqing Univ. Posts Telecommun. 2019, 6, 869–875. [Google Scholar]
- Kong, J.; Zhang, L.; Jiang, M.; Liu, T. Incorporating multi-level CNN and attention mechanism for Chinese clinical named entity recognition. J. Biomed. Inform. 2021, 116, 103737. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, X.; Han, M.; Liu, H. A review on cyber security named entity recognition. Front. Inf. Technol. Electron. Eng. 2021, 22, 1153–1168. [Google Scholar] [CrossRef]
- Li, T.; Guo, Y.; Ju, A. Knowledge triple extraction in cybersecurity with adversarial active learning. J. Commun. 2020, 41, 80–91. [Google Scholar]
- Yan, H.; Deng, B.; Li, X.; Qiu, X. TENER: Adapting transformer encoder for named entity recognition. arXiv 2019, arXiv:1911.04474. [Google Scholar] [CrossRef]
- Li, B.; Kang, X.; Zhang, H.; Wang, Y.; Chen, Y.; Bai, F. Named entity recognition in Chinese electronic medical records using transformer-CRF. Comput. Eng. Appl. 2020, 56, 153–159. [Google Scholar]
- Berragan, C.; Singleton, A.; Calafiore, A.; Morley, J. Transformer based named entity recognition for place name extraction from unstructured text. Int. J. Geogr. Inf. Sci. 2023, 37, 747–766. [Google Scholar] [CrossRef]
- Yoo, J.; Cho, Y. ICSA: Intelligent chatbot security assistant using Text-CNN and multi-phase real-time defense against SNS phishing attacks. Expert Syst. Appl. 2022, 207, 117893. [Google Scholar] [CrossRef]
- Sandhan, J.; Singha, R.; Rao, N.; Samanta, S.; Behera, L.; Goyal, P. TransLIST: A transformer-based linguistically informed Sanskrit tokenizer. arXiv 2022, arXiv:2210.11753. [Google Scholar]
- Hussain, M.S.; Zaki, M.J.; Subramanian, D. Global self-attention as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022. [Google Scholar]
- Majidian, H.; Enshaei, H.; Howe, D. Nonlinear Transient Switching Filter for Automatic Buffer Window Adjustment in Short-term Ship Response Prediction. Procedia Comput. Sci. 2024, 232, 1045–1054. [Google Scholar] [CrossRef]
- Al-Kbodi, B.H.; Rajeh, T.; Zayed, M.E.; Li, Y.; Zhao, J.; Wu, J.; Liu, Y. Transient heat transfer simulation, sensitivity analysis, and design optimization of shallow ground heat exchangers with hollow-finned structures for enhanced performance of ground-coupled heat pumps. Energy Build. 2024, 305, 113870. [Google Scholar] [CrossRef]
- Cimrman, R. Fast evaluation of finite element weak forms using python tensor contraction packages. Adv. Eng. Softw. 2021, 159, 103033. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Gupta, M.K.; Robak, G.; Moj, K.; Krolczyk, G.M.; Kuntoğlu, M. Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges. J. Manuf. Process. 2022, 81, 1040–1063. [Google Scholar] [CrossRef]
- Foumani, N.M.; Tan, C.W.; Webb, G.I.; Salehi, M. Improving position encoding of transformers for multivariate time series classification. Data Min. Knowl. Discov. 2024, 38, 22–48. [Google Scholar] [CrossRef]
- Avsec, Ž.; Agarwal, V.; Visentin, D.; Ledsam, J.R.; Grabska-Barwinska, A.; Taylor, K.R.; Assael, Y.; Jumper, J.; Kohli, P.; Kelley, D.R. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 2021, 18, 1196–1203. [Google Scholar] [CrossRef]
- Aldakheel, F.; Satari, R.; Wriggers, P. Feed-forward neural networks for failure mechanics problems. Appl. Sci. 2021, 11, 6483. [Google Scholar] [CrossRef]
- Lafferty, J.; McCallum, A.; Pereira, F.C.N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth International Conference on Machine Learning (ICML ′01), San Francisco, CA, USA, 28 June–1 July 2001; pp. 282–289. [Google Scholar]
- Riyanto, S.; Imas, S.S.; Djatna, T.; Atikah, T.D. Comparative analysis using various performance metrics in imbalanced data for multi-class text classification. Int. J. Adv. Comput. Sci. Appl. 2023, 14. [Google Scholar] [CrossRef]
- Chauhan, V.K.; Dahiya, K.; Sharma, A. Problem formulations and solvers in linear SVM: A review. Artif. Intell. Rev. 2019, 52, 803–855. [Google Scholar] [CrossRef]
- Webb, G.I.; Keogh, E.; Miikkulainen, R. Naïve Bayes. Encycl. Mach. Learn. 2010, 15, 713–714. [Google Scholar]
- Zhang, T.; You, F. Research on short text classification based on textcnn. J. Phys. Conf. Ser. 2021, 1757, 012092. [Google Scholar] [CrossRef]
- Umanesan, R.; Shunmugasundaram, M.; Rani, P.; Balasubramanian, K.; Rakesh, K.; Chandel, P.S. Application of BiLSTM-CRF Approach and its Application for Better Decisions in Human Resource Management Processes. In Proceedings of the 2023 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 15–17 November 2023; pp. 877–882. [Google Scholar]
- Belkadi, S.; Han, L.; Wu, Y.; Nenadic, G. Exploring the value of pre-trained language models for clinical named entity recognition. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; pp. 3660–3669. [Google Scholar]
- Lv, H.; Ning, Y.; Ning, K.; Ji, X.; He, S. Chinese Text Classification Using BERT and Flat-Lattice Transformer. In Proceedings of the International Conference on AI and Mobile Services, Honolulu, HI, USA, 10 December 2022; pp. 64–75. [Google Scholar]
- Riyanto, S.; Sitanggang, I.S.; Djatna, T.; Atikah, T.D. Plant-Disease Relation Model through BERT-BiLSTM-CRF Approach. Indones. J. Electr. Eng. Inform. 2024, 12, 113–124. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Zheng, S.; Qiao, Y.; Li, C.; Zhang, M.; Dam, S.K.; Thwal, C.M.; Tun, Y.L.; Huy, L.L.; et al. A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to GPT-5 All You Need? arXiv 2023, arXiv:2303.11717. [Google Scholar] [CrossRef]
- Peng, B.; Alcaide, E.; Anthony, Q.; Albalak, A.; Arcadinho, S.; Biderman, S.; Cao, H.; Cheng, X.; Chung, M.; Grella, M.; et al. RWKV: Reinventing RNNs for the Transformer Era. arXiv 2023, arXiv:2305.13048. [Google Scholar] [CrossRef]
Document Type | Number |
---|---|
Chinese National Standards | 265 |
Mandatory Industry Standards | 226 |
Recommended Industry Standards | 249 |
Local Standards | 159 |
Count | 899 |
Data Type | Sentences | Tokens | Tags | |
---|---|---|---|---|
Datasets | Train | 1898 | 69,715 | 2208 |
Validation | 271 | 9960 | 275 | |
Test | 542 | 19,918 | 669 | |
Count | 2723 | 99,593 | 3152 |
Training Procedure: FT-TCFLTransformer. |
For epoch = 1… M do For batch = 1… T do Initialize Parameter TextCNN extracts entity feature vectors Word vectors and TextCNN output feature matrices are fed into the Flat-Lattice Transformer self-attention layer Flat-Lattice Transformer model passes backwards and automatically learns to extract features The CRF layer computes the global likelihood probability of the sequence Updating parameters End for End for |
Model Name | ACC | Macro-Averaging | Micro-Averaging | ||||
---|---|---|---|---|---|---|---|
P | R | F | P | R | F | ||
SVM | 77.97 | 58.35 | 59.25 | 58.80 | 59.92 | 60.99 | 60.45 |
Naive Bayes | 75.55 | 76.61 | 66.86 | 71.40 | 77.06 | 74.37 | 75.69 |
TextCNN | 86.36 | 78.62 | 58.80 | 67.28 | 78.40 | 85.34 | 81.72 |
BiLSTM-CRF | 93.28 | 75.47 | 58.48 | 65.90 | 93.80 | 90.29 | 92.01 |
Transformer-CRF | 93.88 | 80.39 | 65.00 | 71.88 | 96.51 | 91.92 | 94.16 |
Flat-Lattice Transformer | 94.01 | 80.68 | 65.51 | 72.31 | 96.68 | 93.61 | 95.12 |
Bert-BiLSTM-CRF | 94.03 | 81.32 | 73.06 | 76.77 | 96.84 | 94.16 | 95.48 |
FT-TCFLTransformer | 94.24 | 83.20 | 71.27 | 76.97 | 99.06 | 93.72 | 96.32 |
Error Type | Value | Example |
---|---|---|
Nested Entities | 32% | “GB/T 44481-2024 [Law] → Fire hose [Extinguishing]” |
Domain Polysemy | 28% | “Detector [Alarm] → Fire detector [Protection]” |
Long-Range Dependencies | 22% | “When smoke density exceeds …” |
Annotation Ambiguity | 18% | Boundary mismatches (“fireproof glass window” → window vs. glass) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Liu, C.; Yang, S.; Tian, J.; Hu, Q.; Kang, W. Entity Recognition Method for Fire Safety Standards Based on FT-FLAT. Fire 2025, 8, 306. https://doi.org/10.3390/fire8080306
Yu Z, Liu C, Yang S, Tian J, Hu Q, Kang W. Entity Recognition Method for Fire Safety Standards Based on FT-FLAT. Fire. 2025; 8(8):306. https://doi.org/10.3390/fire8080306
Chicago/Turabian StyleYu, Zhihao, Chao Liu, Shunxiu Yang, Jiwei Tian, Qunming Hu, and Weidong Kang. 2025. "Entity Recognition Method for Fire Safety Standards Based on FT-FLAT" Fire 8, no. 8: 306. https://doi.org/10.3390/fire8080306
APA StyleYu, Z., Liu, C., Yang, S., Tian, J., Hu, Q., & Kang, W. (2025). Entity Recognition Method for Fire Safety Standards Based on FT-FLAT. Fire, 8(8), 306. https://doi.org/10.3390/fire8080306