Evolving Wormholes in a Cosmological Background
Abstract
1. Introduction
2. Evolving Wormholes in a Cosmological Background
2.1. The Spacetime Metric and the Stress–Energy Tensor
2.1.1. Wormholes
2.1.2. Specific Examples
- .Note that this is essentially the case of an inflationary wormhole universe, as discussed by Roman [7], which shall briefly be discussed further ahead. The fundamental idea was to obtain a macroscopic model of a wormhole which emerged from inflation. This choice of the scale factor leads to , implying that the WEC is violated for all times.
- .This is essentially the scale factor used in closed FRW cosmological models. The expression for is given byhas a minimum at ; thus, the constraint on the allowed values of is . The lifetime of this wormhole universe is , and the time interval for which this universe can exist without collapsing into a singularity is .
- , integral or fractional.This is an important case, as the scale factors that arise in dust-filled or radiation-dominated FRW cosmologies with flat spacelike sections are obtained by considering specific values of . For a generic , the expression for is given asThis evolving wormhole can exist only for a finite interval of time. The lower bound on is decided by the maximum time t up to which we wish the wormhole to exist with the matter threading the geometry satisfying the WEC.
- .This scale factor is reminiscent of the ‘bounce’-type solutions in cosmology which were constructed in order to avoid the Big Bang singularity. Thus, the function is given byFigure 1. A plot of vs. t for . Only the case of is considered, with respective values of (i) , (ii) , and (iii) .Figure 1. A plot of vs. t for . Only the case of is considered, with respective values of (i) , (ii) , and (iii) .
- .
2.2. A Wormhole in a Flat FRW Universe
3. Wormholes in an Inflationary Background
3.1. The Metric and the Stress–Energy Tensor
3.2. The Properties of the Solutions and NEC Violation
4. Evolving Cosmological Wormholes in Hybrid Metric–Palatini Gravity
4.1. Action and Field Equations of Hybrid Metric–Palatini Gravity
4.2. Traversable Cosmological Wormhole Solutions and Energy Conditions
4.3. Specific Cases of and
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-009-25316-1/978-1-009-25315-4/978-0-521-20016-5/978-0-521-09906-6/978-0-511-82630-6. [Google Scholar]
- Wald, R.M. General Relativity; The University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar] [CrossRef]
- Kar, S. Evolving wormholes and the weak energy condition. Phys. Rev. D 1994, 49, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Sahdev, D. Evolving Lorentzian wormholes. Phys. Rev. D 1996, 53, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Anchordoqui, L.A.; Torres, D.F.; Trobo, M.L.; Bergliaffa, S.E.P. Evolving wormhole geometries. Phys. Rev. D 1998, 57, 829–833. [Google Scholar] [CrossRef]
- Roman, T.A. Inflating Lorentzian wormholes. Phys. Rev. D 1993, 47, 1370–1379. [Google Scholar] [CrossRef]
- Kim, S.W. The Cosmological model with traversable wormhole. Phys. Rev. D 1996, 53, 6889–6892. [Google Scholar] [CrossRef]
- Arellano, A.V.B.; Lobo, F.S.N. Evolving wormhole geometries within nonlinear electrodynamics. Class. Quant. Grav. 2006, 23, 5811–5824. [Google Scholar] [CrossRef]
- Mirza, B.; Eshaghi, M.; Dehdashti, S. Lorentzian wormholes in the Friedman-Robertson-Walker universe. Int. J. Mod. Phys. D 2006, 15, 1217–1223. [Google Scholar] [CrossRef]
- Arellano, A.V.B.; Breton, N.; Garcia-Salcedo, R. Some properties of evolving wormhole geometries within nonlinear electrodynamics. Gen. Rel. Grav. 2009, 41, 2561–2578. [Google Scholar] [CrossRef]
- Cataldo, M.; Labrana, P.; del Campo, S.; Crisostomo, J.; Salgado, P. Evolving Lorentzian wormholes supported by phantom matter with constant state parameters. Phys. Rev. D 2008, 78, 104006. [Google Scholar] [CrossRef]
- Cataldo, M.; del Campo, S.; Minning, P.; Salgado, P. Evolving Lorentzian wormholes supported by phantom matter and cosmological constant. Phys. Rev. D 2009, 79, 024005. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Riazi, N. (n+1)-Dimensional Lorentzian Wormholes in an Expanding Cosmological Background. Astrophys. Space Sci. 2009, 321, 217–223. [Google Scholar] [CrossRef]
- El-Nabulsi, A.R. Accelerated expansion of the universe in the presence of a static traversable wormhole, extra-dimensions and variable modified Chaplygin gas. Astrophys. Space Sci. 2010, 326, 169–174. [Google Scholar] [CrossRef]
- Farooq, M.U.; Akbar, M.; Jamil, M. Dynamics and Thermodynamics of (2+1)-Dimensional Evolving Lorentzian Wormhole. AIP Conf. Proc. 2010, 1295, 176–190. [Google Scholar]
- Cataldo, M.; Meza, P.; Minning, P. N-dimensional static and evolving Lorentzian wormholes with cosmological constant. Phys. Rev. D 2011, 83, 044050. [Google Scholar] [CrossRef]
- Mehdizadeh, M.R.; Riazi, N. Cosmological wormholes in Lovelock gravity. Phys. Rev. D 2012, 85, 124022. [Google Scholar] [CrossRef]
- Pan, S.; Chakraborty, S. Dynamic wormholes with particle creation mechanism. Eur. Phys. J. C 2015, 75, 21. [Google Scholar] [CrossRef]
- Setare, M.R.; Sepehri, A. Role of higher-dimensional evolving wormholes in the formation of a big rip singularity. Phys. Rev. D 2015, 91, 063523. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Chakraborty, S. f(R) gravity solutions for evolving wormholes. Eur. Phys. J. C 2017, 77, 558. [Google Scholar] [CrossRef]
- Bittencourt, E.; Klippert, R.; Santos, G.B. Dynamical Wormhole Definitions Confronted. Class. Quant. Grav. 2018, 35, 155009. [Google Scholar] [CrossRef]
- Golchin, H.; Mehdizadeh, M.R. Quasi-cosmological Traversable Wormholes in f(R) Gravity. Eur. Phys. J. C 2019, 79, 777. [Google Scholar] [CrossRef]
- Parsaei, F.; Riazi, N. Evolving wormhole in the braneworld scenario. Phys. Rev. D 2020, 102, 044003. [Google Scholar] [CrossRef]
- Mehdizadeh, M.R. Dynamical wormholes in Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C 2020, 80, 310. [Google Scholar] [CrossRef]
- Zangeneh, M.K.; Lobo, F.S.N.; Moradpour, H. Evolving traversable wormholes satisfying the energy conditions in the presence of pole dark energy. Phys. Dark Univ. 2021, 31, 100779. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bandyopadhyay, T. Revisiting the evolving Lorentzian wormhole: A general perspective. Gen. Rel. Grav. 2021, 53, 104. [Google Scholar] [CrossRef]
- Mehdizadeh, M.R.; Ziaie, A.H. Dynamical wormholes in Lovelock gravity. Phys. Rev. D 2021, 104, 104050. [Google Scholar] [CrossRef]
- Heydarzade, Y.; Ranjbar, M. Dynamical wormhole solutions in Rastall theory. Eur. Phys. J. Plus 2023, 138, 703. [Google Scholar] [CrossRef]
- Dutta, A.; Roy, D.; Chakraborty, S. Evolving wormhole formation in dRGT massive gravity. Int. J. Mod. Phys. A 2025, 40, 2450135. [Google Scholar] [CrossRef]
- Varsha, C.S.; Sudharani, L.; Kavya, N.S.; Venkatesha, V. Thermodynamic insights into evolving Lorentzian wormholes in f(R,T) gravity. Phys. Lett. B 2025, 867, 139590. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Oliveira, M.A. Wormhole geometries in f(R) modified theories of gravity. Phys. Rev. D 2009, 80, 104012. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Mak, M.K.; Sushkov, S.V. Modified-gravity wormholes without exotic matter. Phys. Rev. D 2013, 87, 067504. [Google Scholar] [CrossRef]
- Pavlovic, P.; Sossich, M. Wormholes in viable f(R) modified theories of gravity and Weak Energy Condition. Eur. Phys. J. C 2015, 75, 117. [Google Scholar] [CrossRef]
- Godani, N.; Samanta, G.C. Traversable Wormholes and Energy Conditions with Two Different Shape Functions in f(R) Gravity. Int. J. Mod. Phys. D 2018, 28, 1950039. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Skvortsova, M.V.; Starobinsky, A.A. Notes on wormhole existence in scalar-tensor and F(R) gravity. Grav. Cosmol. 2010, 16, 216–222. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Capozziello, S. Charged spherically symmetric black holes in f(R) gravity and their stability analysis. Phys. Rev. D 2019, 99, 104018. [Google Scholar] [CrossRef]
- Bahamonde, S.; Jamil, M.; Pavlovic, P.; Sossich, M. Cosmological wormholes in f(R) theories of gravity. Phys. Rev. D 2016, 94, 044041. [Google Scholar] [CrossRef]
- DeBenedictis, A.; Horvat, D. On Wormhole Throats in f(R) Gravity Theory. Gen. Rel. Grav. 2012, 44, 2711–2744. [Google Scholar] [CrossRef]
- Godani, N.; Samanta, G.C. Traversable Wormholes in R+αRn Gravity. Eur. Phys. J. C 2020, 80, 30. [Google Scholar] [CrossRef]
- Godani, N.; Samanta, G.C. Traversable wormholes in f(R) gravity with constant and variable redshift functions. New Astron. 2020, 80, 101399. [Google Scholar] [CrossRef]
- Mazharimousavi, S.H.; Halilsoy, M. Wormhole solutions in f(R) gravity satisfying energy conditions. Mod. Phys. Lett. A 2016, 31, 1650192. [Google Scholar] [CrossRef]
- Sharif, M.; Zahra, Z. Static wormhole solutions in f(R) gravity. Astrophys. Space Sci. 2013, 348, 275–282. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev. D 2012, 86, 127504. [Google Scholar] [CrossRef]
- Rosa, J.L.; Lemos, J.P.S.; Lobo, F.S.N. Wormholes in generalized hybrid metric-Palatini gravity obeying the matter null energy condition everywhere. Phys. Rev. D 2018, 98, 064054. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Wormhole geometries in modified teleparralel gravity and the energy conditions. Phys. Rev. D 2012, 85, 044033. [Google Scholar] [CrossRef]
- Mustafa, G.; Ahmad, M.; Övgün, A.; Shamir, M.F.; Hussain, I. Traversable Wormholes in the Extended Teleparallel Theory of Gravity with Matter Coupling. Fortsch. Phys. 2021, 69, 2100048. [Google Scholar] [CrossRef]
- Garcia, N.M.; Lobo, F.S.N. Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition. Class. Quant. Grav. 2011, 28, 085018. [Google Scholar] [CrossRef]
- Garcia, N.M.; Lobo, F.S.N. Wormhole geometries supported by a nonminimal curvature-matter coupling. Phys. Rev. D 2010, 82, 104018. [Google Scholar] [CrossRef]
- Azizi, T. Wormhole Geometries in f(R,T) Gravity. Int. J. Theor. Phys. 2013, 52, 3486–3493. [Google Scholar] [CrossRef]
- Zubair, M.; Waheed, S.; Ahmad, Y. Static spherically symmetric wormholes in f(R,T) gravity. Eur. Phys. J. C 2016, 76, 444. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Sahoo, P.K. Modelling wormholes in f(R,T) gravity. Phys. Rev. D 2017, 96, 044038. [Google Scholar] [CrossRef]
- Rosa, J.L.; Kull, P.M. Non-exotic traversable wormhole solutions in linear f(R,T) gravity. Eur. Phys. J. C 2022, 82, 1154. [Google Scholar] [CrossRef]
- Yousaf, Z.; Ilyas, M.; Zaeem-ul-Haq Bhatti, M. Static spherical wormhole models in f(R,T) gravity. Eur. Phys. J. Plus 2017, 132, 268. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Sahoo, P.K. Wormholes in exponential f(R,T) gravity. Eur. Phys. J. C 2019, 79, 677. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; de Paula, W.; Correa, R.A.C. Charged wormholes in f(R,T) extended theory of gravity. Int. J. Mod. Phys. D 2019, 28, 1950098. [Google Scholar] [CrossRef]
- Banerjee, A.; Jasim, M.K.; Ghosh, S.G. Wormholes in f(R,T) gravity satisfying the null energy condition with isotropic pressure. Annals Phys. 2021, 433, 168575. [Google Scholar]
- Sahoo, P.; Mandal, S.; Sahoo, P.K. Wormhole model with a hybrid shape function in f(R,T) gravity. New Astron. 2020, 80, 101421. [Google Scholar] [CrossRef]
- PMoraes, H.R.S.; Sahoo, P.K. Nonexotic matter wormholes in a trace of the energy-momentum tensor squared gravity. Phys. Rev. D 2018, 97, 024007. [Google Scholar] [CrossRef]
- Rosa, J.L.; Ganiyeva, N.; Lobo, F.S.N. Non-exotic traversable wormholes in f(R,TabTab) gravity. Eur. Phys. J. C 2023, 83, 1040. [Google Scholar] [CrossRef]
- Solanki, R.; Hassan, Z.; Sahoo, P.K. Wormhole solutions in f(R,Lm) gravity. Chin. J. Phys. 2023, 85, 74–88. [Google Scholar] [CrossRef]
- Kavya, N.S.; Venkatesha, V.; Mustafa, G.; Sahoo, P.K.; Rashmi, S.V.D. Static traversable wormhole solutions in f(R,Lm) gravity. Chin. J. Phys. 2023, 84, 1–11. [Google Scholar] [CrossRef]
- Banerjee, A.; Pradhan, A.; Tangphati, T.; Rahaman, F. Wormhole geometries in f(Q) gravity and the energy conditions. Eur. Phys. J. C 2021, 81, 1031. [Google Scholar] [CrossRef]
- Calzá, M.; Sebastiani, L. A class of static spherically symmetric solutions in f(Q)-gravity. Eur. Phys. J. C 2023, 83, 247. [Google Scholar] [CrossRef]
- Sharif, M.; Rani, S. Dynamical wormhole solutions in f(T) gravity. Gen. Rel. Grav. 2013, 45, 2389–2402. [Google Scholar]
- Jawad, A.; Sulehri, M.B.A.; Rani, S. Physical analysis of Yukawa–Casimir traversable wormhole solutions in non-minimally coupled f(T) gravity. Eur. Phys. J. Plus 2022, 137, 1274. [Google Scholar] [CrossRef]
- Mehdizadeh, M.R.; Zangeneh, M.K.; Lobo, F.S.N. Higher-dimensional thin-shell wormholes in third-order Lovelock gravity. Phys. Rev. D 2015, 92, 044022. [Google Scholar] [CrossRef]
- Zangeneh, M.K.; Lobo, F.S.N.; Riazi, N. Higher-dimensional evolving wormholes satisfying the null energy condition. Phys. Rev. D 2014, 90, 024072. [Google Scholar] [CrossRef]
- Das, K.P.; Debnath, U. Possible existence of traversable wormhole in Finsler-Randers geometry. Eur. Phys. J. C 2023, 83, 821. [Google Scholar] [CrossRef]
- Mehdizadeh, M.R.; Ziaie, A.H. Dynamic wormhole solutions in Einstein-Cartan gravity. Phys. Rev. D 2017, 96, 124017. [Google Scholar] [CrossRef]
- Gul, M.Z.; Sharif, M. Viable wormhole solutions in modified Gauss-Bonnet gravity. Chin. J. Phys. 2024, 88, 388–405. [Google Scholar] [CrossRef]
- Sharif, M.; Ikram, A. Wormholes supported by f(G) gravity. Int. J. Mod. Phys. D 2014, 24, 1550003. [Google Scholar] [CrossRef]
- Sharif, M.; Fatima, H.I. Noncommutative wormhole solutions in f(G) gravity. Mod. Phys. Lett. A 2015, 30, 1550142. [Google Scholar] [CrossRef]
- Lobo, F.S.N. General class of wormhole geometries in conformal Weyl gravity. Class. Quant. Grav. 2008, 25, 175006. [Google Scholar] [CrossRef]
- Heydari-Fard, M.; Bordbar, M.R.; Mohammadi, G. Time-dependent wormhole solutions in conformal Weyl gravity. Phys. Rev. D 2023, 108, 104068. [Google Scholar] [CrossRef]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D 2012, 85, 084016. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. Extensions of f(R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory; Cambridge University Press: Cambridge, UK, 2018; ISBN 978-1-108-42874-3/978-1-108-58457-9. [Google Scholar]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. The virial theorem and the dark matter problem in hybrid metric-Palatini gravity. JCAP 2013, 07, 024. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Spherically Symmetric Black Holes and Wormholes in Hybrid Metric-Palatini Gravity. Grav. Cosmol. 2019, 25, 331–341. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Bolokhov, S.V.; Skvortsova, M.V. Hybrid metric-Palatini gravity: Black holes, wormholes, singularities and instabilities. Grav. Cosmol. 2020, 26, 212–227. [Google Scholar] [CrossRef]
- Rosa, J.L.; Lemos, J.P.S.; Lobo, F.S.N. Stability of Kerr black holes in generalized hybrid metric-Palatini gravity. Phys. Rev. D 2020, 101, 044055. [Google Scholar] [CrossRef]
- Chen, C.Y.; Kung, Y.H.; Chen, P. Black Hole Perturbations and Quasinormal Modes in Hybrid Metric-Palatini Gravity. Phys. Rev. D 2020, 102, 124033. [Google Scholar] [CrossRef]
- Lima, N.A. Dynamics of Linear Perturbations in the hybrid metric-Palatini gravity. Phys. Rev. D 2014, 89, 083527. [Google Scholar] [CrossRef]
- Lima, N.A.; Barreto, V.S. Constraints on Hybrid Metric-palatini Gravity from Background Evolution. Astrophys. J. 2016, 818, 186. [Google Scholar] [CrossRef]
- Borka, D.; Capozziello, S.; Jovanović, P.; Borka Jovanović, V. Probing hybrid modified gravity by stellar motion around Galactic Center. Astropart. Phys. 2016, 79, 41–48. [Google Scholar] [CrossRef]
- Borka, D.; Borka Jovanović, V.; Nikolić, V.N.; Lazarov, N.Đ.; Jovanović, P. Estimating the Parameters of the Hybrid Palatini Gravity Model with the Schwarzschild Precession of S2, S38 and S55 Stars: Case of Bulk Mass Distribution. Universe 2022, 8, 70. [Google Scholar] [CrossRef]
- Borka Jovanović, V.; Borka, D.; Jovanović, P.; Capozziello, S. Possible effects of Hybrid Gravity on stellar kinematics in elliptical galaxies. Eur. Phys. J. D 2021, 75, 149. [Google Scholar] [CrossRef]
- Jovanović, P.; Jovanović, V.B.; Borka, D.; Zakharov, A.F. Constraints on Yukawa gravity parameters from observations of bright stars. JCAP 2023, 03, 056. [Google Scholar] [CrossRef]
- Zangeneh, M.K.; Lobo, F.S.N. Dynamic wormhole geometries in hybrid metric-Palatini gravity. Eur. Phys. J. C 2021, 81, 285. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D. Inflationary cosmology in modified gravity theories. Symmetry 2015, 7, 220–240. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Capozziello, S.; Tsujikawa, S. Solar system and equivalence principle constraints on f(R) gravity by chameleon approach. Phys. Rev. D 2008, 77, 107501. [Google Scholar] [CrossRef]
- Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D 2004, 69, 044026. [Google Scholar] [CrossRef]
- Olmo, G.J. Palatini Approach to Modified Gravity: F(R) Theories and Beyond. Int. J. Mod. Phys. D 2011, 20, 413–462. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J. Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration. Int. J. Mod. Phys. D 2013, 22, 1342006. [Google Scholar] [CrossRef]
- Avdeev, N.; Dyadina, P.; Labazova, S. Test of hybrid metric-Palatini f(R)-gravity in binary pulsars. J. Exp. Theor. Phys. 2020, 131, 537–547. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Cosmology of hybrid metric-Palatini f(X)-gravity. JCAP 2013, 2013, 011. [Google Scholar] [CrossRef]
- Böhmer, C.G.; Lobo, F.S.N.; Tamanini, N. Einstein static Universe in hybrid metric-Palatini gravity. Phys. Rev. D 2013, 88, 104019. [Google Scholar] [CrossRef]
- Fu, Q.M.; Zhao, L.; Gu, B.M.; Yang, K.; Liu, Y.X. Hybrid metric-Palatini brane system. Phys. Rev. D 2016, 94, 024020. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Bolokhov, S.V.; Skvortsova, M.V. Hybrid metric-Palatini gravity: Regular stringlike configurations. Universe 2020, 6, 172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kord Zangeneh, M.; Lobo, F.S.N. Evolving Wormholes in a Cosmological Background. Universe 2025, 11, 236. https://doi.org/10.3390/universe11070236
Kord Zangeneh M, Lobo FSN. Evolving Wormholes in a Cosmological Background. Universe. 2025; 11(7):236. https://doi.org/10.3390/universe11070236
Chicago/Turabian StyleKord Zangeneh, Mahdi, and Francisco S. N. Lobo. 2025. "Evolving Wormholes in a Cosmological Background" Universe 11, no. 7: 236. https://doi.org/10.3390/universe11070236
APA StyleKord Zangeneh, M., & Lobo, F. S. N. (2025). Evolving Wormholes in a Cosmological Background. Universe, 11(7), 236. https://doi.org/10.3390/universe11070236