Constant Density Models in Einstein–Gauss–Bonnet Gravity
Abstract
1. Introduction
2. Field Equations
3. Condition of Pressure Isotropy
4. Constant Density: Neutral Fluids
5. Constant Density: Charged Fluids
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shah, H.H.; Shah, H.; Ahmad, Z.; Hleili, M.; Hussain, S.M. Study of gravastar in Einstein-Gauss-Bonnet gravity: Gravastar in EGB theory. Int. J. Theor. Phys. 2024, 63, 247. [Google Scholar] [CrossRef]
- Pretel, J.M.Z.; Banerjee, A.; Pradhan, A. Five-dimensional compact stars in Einstein-Gauss-Bonnet gravity. Nucl. Phys. B 2024, 1008, 116702. [Google Scholar] [CrossRef]
- Rej, P.; Errehymy, A.; Daoud, M. Charged strange star model in Tolman–Kuchowicz spacetime in the background of 5D Einstein–Maxwell–Gauss–Bonnet gravity. Eur. Phys. J. C 2023, 83, 392. [Google Scholar] [CrossRef]
- Bogadi, R.S.; Govender, M.; Moyo, S. Five-dimensional Einstein-Gauss-Bonnet gravity compactified and applied to a colour-flavour-locked equation of state. Eur. Phys. J. Plus 2023, 138, 426. [Google Scholar] [CrossRef]
- Maurya, S.K.; Singh, K.N.; Govender, M.; Hansraj, S. Gravitationally decoupled strange star model beyond the standard maximum mass limit in Einstein-Gauss-Bonnet gravity. Astrophys. J. 2022, 925, 208. [Google Scholar] [CrossRef]
- Maurya, S.K.; Govender, M.; Singh, K.N.; Nag, R. Gravitationally decoupled anisotropic solution using polytropic EoS in the framework of 5D Einstein-Gauss-Bonnet gravity. Eur. Phys. J. C 2022, 82, 49. [Google Scholar] [CrossRef]
- Hansraj, S.; Govender, M.; Moodly, L.; Singh, K.N. Strange stars in the framework of higher curvature gravity. Phys. Rev. D 2022, 105, 044030. [Google Scholar] [CrossRef]
- Das, B.; Dey, S.; Das, S.; Paul, B.C. Anisotropic compact objects with Finch–Skea geometry in EGB gravity. Eur. Phys. J. C 2022, 82, 519. [Google Scholar] [CrossRef]
- Tangphati, T.; Pradhan, A.; Errehymy, A.; Banerjee, A. Quark stars in the Einstein-Gauss–Bonnet theory: A new branch of stellar configurations. Ann. Phys. 2021, 430, 168498. [Google Scholar] [CrossRef]
- Tangphati, T.; Pradhan, A.; Errehymy, A.; Banerjee, A. Anisotropic quark stars in Einstein-Gauss-Bonnet theory. Phys. Lett. B 2021, 819, 136423. [Google Scholar] [CrossRef]
- Maurya, S.K.; Pradhan, A.; Tello-Ortiz, F.; Banerjee, A.; Nag, R. Minimally deformed anisotropic stars by gravitational decoupling in Einstein-Gauss-Bonnet gravity. Eur. Phys. J. C 2021, 81, 848. [Google Scholar] [CrossRef]
- Maurya, S.K.; Pradhan, A.; Banerjee, A.; Tello-Ortiz, F.; Jasim, M.K. Anisotropic solution for compact star in 5D Einstein-Gauss-Bonnet gravity. Mod. Phys. Lett. A 2021, 36, 2150231. [Google Scholar] [CrossRef]
- Kaisavelu, A.; Govender, M.; Hansraj, S.; Kupranandan, D. A class of polytropic stars in Einstein-Gauss-Bonnet gravity. Eur. Phys. J. Plus 2021, 136, 1029. [Google Scholar] [CrossRef]
- Jasim, M.K.; Maurya, S.K.; Singh, K.N.; Nag, R. Anisotropic strange star in 5D Einstein-Gauss-Bonnet gravity. Entropy 2021, 23, 1015. [Google Scholar] [CrossRef]
- Zubair, M.; Farooq, M.; Bhar, P.; Azmat, H. Modeling of stellar solutions in Einstein-Gauss-Bonnet gravity. Chin. J. Phys. 2024, 88, 129. [Google Scholar] [CrossRef]
- Bhar, P.; Govender, M.; Sharma, R. A comparative study between EGB gravity and GTR by modelling compact stars. Eur. Phys. J. C 2017, 77, 109. [Google Scholar] [CrossRef]
- Bhar, P.; Govender, M. Charged compact star model in Einstein-Maxwell-Gauss-Bonnet gravity. Astrophys. Space Sci. 2019, 364, 186. [Google Scholar] [CrossRef]
- Brassel, B.P.; Maharaj, S.D.; Goswami, R. Extended naked conical singularity in radiation collapse in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2018, 48, 064013. [Google Scholar] [CrossRef]
- Ilyas, M.; Shah, N.A.; Khan, F.; Habib, R. Dynamics of compact objects in higher-order curvature gravity using Finch–Skea spacetime. Eur. Phys. J. C 2025, 85, 253. [Google Scholar] [CrossRef]
- Pretel, J.M.Z.; Jorás, S.E.; Reis, R.R.R.; Duarte, S.B.; Arbañil, J.D.V. Compact stars in scalar–tensor theories with a single-well potential and the corresponding f(R) theory. Phys. Dark. Universe 2024, 43, 101394. [Google Scholar] [CrossRef]
- Naseer, T.; Rehman, A.; Sharif, M.; Alessa, N.; Aty, A.H.A. Stellar dynamics in modified gravity theory: Implications of anisotropic fluid composition and electric charge in modeling compact objects. Phys. Dark. Universe 2025, 48, 101394. [Google Scholar] [CrossRef]
- Shabani, H.; De, A.; Loo, T.H.; Saridakis, E.N. Cosmology of f(Q) gravity in non-flat Universe. Eur. Phys. J. C 2024, 84, 285. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Eid, A. New black hole solution in f(R) theory and its related physics. Universe 2025, 11, 175. [Google Scholar] [CrossRef]
- Singh, A. Dynamical systems of modified Gauss–Bonnet gravity: Cosmological implications. Eur. Phys. J. C 2025, 85, 24. [Google Scholar] [CrossRef]
- Ailiga, M.; Mallik, S.; Narain, G. Lorentzian Robin universe of Gauss-Bonnet gravity. Gen. Relativ. Gravit. 2025, 59, 29. [Google Scholar] [CrossRef]
- Creci, G.; Hinderer, T.; Steinhoff, J. Tidal properties of neutron stars in scalar-tensor theories of gravity. arXiv 2023, arXiv:2308.11323. [Google Scholar] [CrossRef]
- Asad, H.; Yousaf, Z. Study of anisotropic fluid distributed hyperbolically in f(R,T,Q) gravity. Universe 2022, 8, 630. [Google Scholar] [CrossRef]
- Bajardi, F.; D’Agostino, R.; Benetti, M.; De Falco, V.; Capozziello, S. Early and late time cosmology: The f(R) gravity perspective. Eur. Phys. J. Plus 2022, 137, 1239. [Google Scholar] [CrossRef]
- Dadhich, N.; Molina, A.; Khugaev, A. Uniform density static fluid sphere in Einstein-Gauss-Bonnet gravity and its universality. Phys. Rev. D 2010, 81, 104026. [Google Scholar] [CrossRef]
- Maharaj, S.D.; Hansraj, S.; Sahoo, P. New solution generating algorithm for isotropic static Einstein-Gauss-Bonnet metrics. Eur. Phys. J. C 2021, 81, 1113. [Google Scholar] [CrossRef]
- Patel, L.K.; Mehta, N.P.; Maharaj, S.D. Higher dimensional relativistic-fluid spheres. Il Nuovo Cimento B 1997, 112, 1037. [Google Scholar]
- Krori, K.D.; Borgohain, P.; Das, K. Interior Schwarzschild-like solution in higher dimensions. Phys. Lett. A 1988, 132, 321. [Google Scholar] [CrossRef]
- Ponce de Leon, J.; Cruz, N. Hydrostatic equilibrium of a perfect fluid sphere with exterior higher dimensional Schwarzschild spacetime. Gen. Relativ. Gravit. 2000, 32, 1207. [Google Scholar] [CrossRef]
- Shen, Y.G.; Tan, Z.Q. Global regular solution in higher dimensional Schwarzschild spacetime. Phys. Lett. A 1989, 142, 341. [Google Scholar] [CrossRef]
- Das, A.; DeBenedictis, A. Spherical gravitating systems of arbitrary dimension. Prog. Theor. Phys. 2002, 108, 119. [Google Scholar] [CrossRef]
- Tangherlini, F.R. Schwarzschild field in n dimensions and the dimensionality of space problem. Il Nuovo Cimento 1963, 27, 636. [Google Scholar] [CrossRef]
- Delgaty, M.S.R.; Lake, K. Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations. Comput. Phys. Commun. 1998, 115, 395. [Google Scholar] [CrossRef]
- Myers, R.C.; Perry, M.J. Black holes in higher dimensional space-times. Ann. Phys. 1986, 172, 304. [Google Scholar] [CrossRef]
- Gumede, S.; Maharaj, S.D.; Govinder, K. The role of dimensions in gravitating relativistic shear-free fluids. Eur. Phys. J. C 2024, 84, 862. [Google Scholar] [CrossRef]
- Naicker, S.; Brassel, B.P.; Maharaj, S.D. Higher dimensional heat conducting models with vanishing shear. Afr. Mat. 2025, 36, 46. [Google Scholar] [CrossRef]
- Naicker, S.; Maharaj, S.D.; Brassel, B.P. Isotropic perfect fluids in modified gravity. Universe 2023, 9, 47. [Google Scholar] [CrossRef]
- Paul, B.C. On the mass of a uniform density star in higher dimensions. Class. Quantum Grav. 2001, 18, 2637. [Google Scholar] [CrossRef]
- Ghosh, S.G.; Deshkar, D.W. Horizons of radiating black holes in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2008, 77, 047504. [Google Scholar] [CrossRef]
- Brassel, B.P.; Maharaj, S.D.; Goswami, R. Higher-dimensional radiating black holes in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2019, 100, 024001. [Google Scholar] [CrossRef]
- Brassel, B.P.; Goswami, R.; Maharaj, S.D. Cosmic censorship and charged radiation in second order Lovelock gravity. Ann. Phys. 2022, 446, 169138. [Google Scholar] [CrossRef]
- Naicker, S.; Maharaj, S.D.; Brassel, B.P. Charged fluids in higher order gravity. Eur. Phys. J. C 2023, 83, 343. [Google Scholar] [CrossRef]
- Ismail, M.O.E.; Maharaj, S.D.; Brassel, B.P. The Chini integrability condition in second order Lovelock gravity. Eur. Phys. J. C 2024, 84, 1330. [Google Scholar] [CrossRef]
- Boulware, D.G.; Deser, S. String-generated gravity models. Phys. Rev. Lett. 1985, 55, 2656. [Google Scholar] [CrossRef]
- Durgapal, M.C.; Bannerji, R. New analytical stellar model in general relativity. Phys. Rev. D 1983, 27, 328. [Google Scholar] [CrossRef]
- Davis, S.C. Generalized Israel junction conditions for a Gauss-Bonnet brane world. Phys. Rev. D 2003, 67, 024030. [Google Scholar] [CrossRef]
- Brassel, B.P.; Maharaj, S.D.; Goswami, R. Stars and junction conditions in Einstein-Gauss-Bonnet gravity. Class. Quantum Grav. 2023, 40, 125004. [Google Scholar] [CrossRef]
- Musgrave, P.; Lake, K. Junctions and thin shells in general relativity using computer algebra I: The Darmois-Israel formalism. Class. Quantum Grav. 1996, 13, 1885. [Google Scholar] [CrossRef]
- Poisson, E. A Relativist’s Toolkit; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Wiltshire, D.L. Spherically symmetric solutions of Einstein-Maxwell theory with a Gauss-Bonnet term. Phys. Lett. B 1986, 169, 36. [Google Scholar] [CrossRef]
- Kumar, J.; Bharti, P. Relativistic models for anisotropic compact stars: A review. New Astron. Rev. 2022, 95, 101662. [Google Scholar] [CrossRef]
- Wilson, S.J. Exact solution of a static charged sphere in general relativity. Can. J. Phys. 1969, 47, 2401. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maharaj, S.D.; Naicker, S.; Brassel, B.P. Constant Density Models in Einstein–Gauss–Bonnet Gravity. Universe 2025, 11, 220. https://doi.org/10.3390/universe11070220
Maharaj SD, Naicker S, Brassel BP. Constant Density Models in Einstein–Gauss–Bonnet Gravity. Universe. 2025; 11(7):220. https://doi.org/10.3390/universe11070220
Chicago/Turabian StyleMaharaj, Sunil D., Shavani Naicker, and Byron P. Brassel. 2025. "Constant Density Models in Einstein–Gauss–Bonnet Gravity" Universe 11, no. 7: 220. https://doi.org/10.3390/universe11070220
APA StyleMaharaj, S. D., Naicker, S., & Brassel, B. P. (2025). Constant Density Models in Einstein–Gauss–Bonnet Gravity. Universe, 11(7), 220. https://doi.org/10.3390/universe11070220