Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = ESKAPE Gram-negative bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 2176 KB  
Review
Biofilm and Outer Membrane Vesicle Formation in ESKAPE Gram-Negative Bacteria: A Comprehensive Review
by Giedrė Valdonė Sakalauskienė and Aurelija Radzevičienė
Int. J. Mol. Sci. 2025, 26(20), 9857; https://doi.org/10.3390/ijms26209857 - 10 Oct 2025
Viewed by 635
Abstract
Antimicrobial resistance (AMR) is a growing global threat, exacerbated by the adaptive mechanisms of Gram-negative ESKAPE pathogens, which include biofilm formation and outer membrane vesicle (OMV) production. Biofilms create robust protective barriers that shield bacterial communities from immune responses and antibiotic treatments, while [...] Read more.
Antimicrobial resistance (AMR) is a growing global threat, exacerbated by the adaptive mechanisms of Gram-negative ESKAPE pathogens, which include biofilm formation and outer membrane vesicle (OMV) production. Biofilms create robust protective barriers that shield bacterial communities from immune responses and antibiotic treatments, while OMVs contribute to both defense and offense by carrying antibiotic-degrading enzymes and delivering virulence factors to host cells. These mechanisms not only enhance bacterial survival but also increase the virulence and persistence of infections, making them a significant concern in clinical settings. This review explores the molecular processes that drive biofilm and OMV formation, emphasizing their critical roles in the development of AMR. By understanding these mechanisms, new therapeutic strategies can be developed to disrupt these defenses, potentially improving the efficacy of existing antibiotics and slowing the spread of resistance. Additionally, the use of OMVs in vaccine development and drug delivery offers promising avenues for future research. Addressing these challenges requires a comprehensive approach, combining advanced research with innovative therapies to combat the escalating threat of AMR and improve patient outcomes. Full article
(This article belongs to the Special Issue Mechanisms in Biofilm Formation, Tolerance and Control: 2nd Edition)
Show Figures

Figure 1

24 pages, 3099 KB  
Article
Comprehensive Assessment of Health Risks Associated with Gram-Negative Bacterial Contamination on Healthcare Personnel Gowns in Clinical Settings
by Daniela Moreno-Torres, Carlos Alberto Jiménez-Zamarripa, Sandy Mariel Munguía-Mogo, Claudia Camelia Calzada-Mendoza, Clemente Cruz-Cruz, Emilio Mariano Durán-Manuel, Antonio Gutiérrez-Ramírez, Graciela Castro-Escarpulli, Madeleine Edith Vélez-Cruz, Oscar Sosa-Hernández, Araceli Rojas-Bernabé, Beatriz Leal-Escobar, Omar Agni García-Hernández, Enzo Vásquez-Jiménez, Gustavo Esteban Lugo-Zamudio, María Concepción Tamayo-Ordóñez, Yahaira de Jesús Tamayo-Ordóñez, Dulce Milagros Razo Blanco-Hernández, Benito Hernández-Castellanos, Julio César Castañeda-Ortega, Marianela Paredes-Mendoza, Miguel Ángel Loyola-Cruz and Juan Manuel Bello-Lópezadd Show full author list remove Hide full author list
Microorganisms 2025, 13(7), 1687; https://doi.org/10.3390/microorganisms13071687 - 18 Jul 2025
Viewed by 2013
Abstract
Microbiological contamination of healthcare workers’ gowns represents a critical risk for the transmission of healthcare-associated infections (HAIs). Despite their use as protective equipment, gowns can act as reservoirs of antibiotic-resistant bacteria, favouring the spread of pathogens between healthcare workers and patients. The presence [...] Read more.
Microbiological contamination of healthcare workers’ gowns represents a critical risk for the transmission of healthcare-associated infections (HAIs). Despite their use as protective equipment, gowns can act as reservoirs of antibiotic-resistant bacteria, favouring the spread of pathogens between healthcare workers and patients. The presence of these resistant bacteria on healthcare workers’ gowns highlights the urgent need to address this risk as part of infection control strategies. The aim of this work was to assess the microbiological risks associated with the contamination of healthcare staff gowns with Gram-negative bacteria, including the ESKAPE group, and their relationship with antimicrobial resistance. An observational, cross-sectional, prospective study was conducted in 321 hospital workers. The imprinting technique was used to quantify the bacterial load on the gowns, followed by bacterial identification by MALDI-TOF mass spectrometry. In addition, antimicrobial resistance profiles were analysed, and tests for carbapenemases and BLEE production were performed. The ERIC-PCR technique was also used for molecular analysis of Pantoea eucrina clones. Several Gram-negative bacteria were identified, including bacteria of the ESKAPE group. The rate of microbiological contamination of the gowns was 61.05% with no association with the sex of the healthcare personnel. It was observed that critical areas of the hospital, such as intensive care units and operating theatres, showed contamination by medically important bacteria. In addition, some strains of P. eucrina showed resistance to carbapenemics and cephalosporins. ERIC-PCR analysis of P. eucrina isolates showed genetic heterogeneity, indicating absence of clonal dissemination. Healthcare personnel gowns are a significant reservoir of pathogenic bacteria, especially in critical areas of Hospital Juárez de México. It is essential to implement infection control strategies that include improving the cleaning and laundering of gowns and ideally eliminating them from clothing to reduce the risk of transmission of nosocomial infections. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

25 pages, 2181 KB  
Article
Discovery of a Potent Antimicrobial Peptide Through Rational Design: A New Frontier in Pathogen Control
by Bruna Agrillo, Monica Ambrosio, Rosa Luisa Ambrosio, Marta Gogliettino, Marco Balestrieri, Alessandra Porritiello, Maria Francesca Peruzy, Andrea Mancusi, Luigi Nicolais and Gianna Palmieri
Biomolecules 2025, 15(7), 989; https://doi.org/10.3390/biom15070989 - 11 Jul 2025
Viewed by 999
Abstract
The increasing circulation of multi-drug-resistant pathogens, coupled with the sluggish development of new antibiotics, is weakening our capacity to combat human infections, resulting in elevated death tolls. To address this worldwide crisis, antimicrobial peptides (AMPs) are viewed as promising substitutes or adjuvants for [...] Read more.
The increasing circulation of multi-drug-resistant pathogens, coupled with the sluggish development of new antibiotics, is weakening our capacity to combat human infections, resulting in elevated death tolls. To address this worldwide crisis, antimicrobial peptides (AMPs) are viewed as promising substitutes or adjuvants for combating bacterial infections caused by multidrug-resistant organisms. Here, the antimicrobial activity and structural characterization of a novel 13-amino acid cationic peptide named RKW (RKWILKWLRTWKK-NH2), designed based on known AMPs sequences and the identification of a key tryptophan-rich structural motif, were described. RKW displayed a broad-spectrum and potent antimicrobial and antibiofilm activity against Gram-positive and Gram-negative pathogens, including ESKAPE bacteria and fungi with minimal inhibitory concentrations (MBC) ranging from 5 µM to 20 μM. Structural results by fluorescence and Circular Dichroism (CD) spectroscopy revealed that the peptide was folded into a regular α-helical conformation in a membrane-like environment, remaining stable in a wide range of pH and temperature for at least 48 h of incubation. Furthermore, RKW showed low toxicity in vitro against mammalian fibroblast cells, indicating its potential as a promising candidate for the development of new antimicrobial or antiseptic strategies. Full article
Show Figures

Figure 1

25 pages, 1759 KB  
Review
Harnessing the Potential of Antibacterial and Antibiofilm Phytochemicals in the Combat Against Superbugs: A One Health Perspective
by Suma Sarojini, Saranya Jayaram, Sandhya Kalathilparambil Santhosh, Pragyan Priyadarshini, Manikantan Pappuswamy and Balamuralikrishnan Balasubramanian
Antibiotics 2025, 14(7), 692; https://doi.org/10.3390/antibiotics14070692 - 9 Jul 2025
Cited by 1 | Viewed by 1898
Abstract
The war between humans and bacteria started centuries ago. With the advent of antibiotics, there was a temporary ceasefire in this war, but the scenario soon started becoming worse with the emergence of drug-resistant strains within years of the deployment of antibiotics in [...] Read more.
The war between humans and bacteria started centuries ago. With the advent of antibiotics, there was a temporary ceasefire in this war, but the scenario soon started becoming worse with the emergence of drug-resistant strains within years of the deployment of antibiotics in the market. With the surge in the misuse of antibiotics, there was a drastic increase in the number of multidrug-resistant (MDR) and extensively drug-resistant bacterial strains, even to antibiotics like Methicillin and vancomycin, aggravating the healthcare scenario. The threat of MDR ESKAPE pathogens is particularly high in nosocomial infections, where biofilms formed by bacteria create a protective barrier that makes them highly resistant to antibiotics, complicating the treatment efforts. Scientists are looking at natural and sustainable solutions, as several studies have projected deaths contributed by drug-resistant bacteria to go beyond 50 million by 2050. Many plant-derived metabolites have shown excellent antibacterial and antibiofilm properties that can be tapped for combating superbugs. The present review explores the current status of various studies on antibacterial plant metabolites like alkaloids and flavonoids and their mechanisms in disrupting biofilms and killing bacteria by way of inhibiting key survival strategies of bacteria like motility, quorum-sensing, reactive oxygen species production, and adhesion. These mechanisms were found to be varied in Gram-positive, Gram-negative, and acid-fast bacteria like Mycobacterium tuberculosis, which will be discussed in detail. The successful tapping of the benefits of such plant-derived chemicals in combination with evolving techniques of nanotechnology and targeted drug delivery can go a long way in achieving the goal of One Health, which advocates the unity of multiple practices for the optimal health of people, animals, and the environment. Full article
Show Figures

Figure 1

14 pages, 1820 KB  
Article
Broad-Spectrum Gramicidin S Derivatives with Potent Activity Against Multidrug-Resistant Gram-Negative ESKAPE Pathogens
by John T. Kalyvas, Yifei Wang, Ornella Romeo, John R. Horsley and Andrew D. Abell
Antibiotics 2025, 14(5), 423; https://doi.org/10.3390/antibiotics14050423 - 22 Apr 2025
Cited by 2 | Viewed by 1267
Abstract
Background/Objectives: Multidrug-resistant Gram-negative ESKAPE pathogens, including E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii, pose a significant global health threat. Gramicidin S, a potent cyclic antimicrobial peptide, is largely ineffective against these bacteria, and its high haemolytic toxicity [...] Read more.
Background/Objectives: Multidrug-resistant Gram-negative ESKAPE pathogens, including E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii, pose a significant global health threat. Gramicidin S, a potent cyclic antimicrobial peptide, is largely ineffective against these bacteria, and its high haemolytic toxicity limits its clinical usage. This study reports on several novel gramicidin S analogues with improved efficacy and safety profiles against multidrug-resistant Gram-negative bacteria. Methods: A total of 19 gramicidin S derivatives were synthesised using Fmoc-based solid-phase peptide synthesis with targeted substitutions to enhance cationicity and modulate hydrophobicity. Minimum inhibitory concentrations (MICs) were determined against standard Gram-negative and Gram-positive strains. Haemolytic toxicity and in vitro nephrotoxicity were evaluated using human red blood cells and HEK-293 cells, respectively. All peptides were characterised by RP-HPLC and HRMS. Results: The selective incorporation of DArg and Trp significantly enhanced activity against Gram-negative bacteria while reducing cytotoxicity. Peptide 8 improved the therapeutic index (TI) against E. coli by 10-fold (MIC: 8 µg/mL; TI: 4.10) compared to gramicidin S (MIC: 32 µg/mL; TI: 0.38). Peptide 9 exhibited an 8-fold potency increase against K. pneumoniae and a 25-fold TI improvement. Peptide 19 enhanced activity against P. aeruginosa 8-fold over gramicidin S, while peptide 7 showed a 27-fold TI enhancement. All active peptides retained broad-spectrum activity against S. aureus, including MRSA. Conclusions: The findings highlight the critical role of balancing hydrophobicity and cationicity to overcome species-specific resistance mechanisms. Our gramicidin S analogues demonstrate potent broad-spectrum activity with significantly reduced toxicity compared to the parent peptide, providing a robust platform for the development of new antibiotics against ESKAPE bacterial pathogens. Full article
(This article belongs to the Special Issue ESKAPE and MDRO Pathogens: Infections and Antimicrobial Treatment)
Show Figures

Figure 1

18 pages, 3344 KB  
Article
Chondroitin Sulfate/Cyanocobalamin–Chitosan Polyelectrolyte Complexes for Improved Oral Delivery of Colistin
by Natallia V. Dubashynskaya, Andrey Y. Borovskoy, Anton N. Bokatyi, Tatiana S. Sall, Tatiana S. Egorova, Elena V. Demyanova, Ekaterina A. Murashko and Yury A. Skorik
Polysaccharides 2025, 6(1), 21; https://doi.org/10.3390/polysaccharides6010021 - 7 Mar 2025
Cited by 1 | Viewed by 1637
Abstract
Introduction. The rise of multidrug resistance in Gram-negative ESKAPE pathogens is a critical challenge for modern healthcare. Colistin (CT), a peptide antibiotic, remains a last-resort treatment for infections caused by these superbugs due to its potent activity against Gram-negative bacteria and the rarity [...] Read more.
Introduction. The rise of multidrug resistance in Gram-negative ESKAPE pathogens is a critical challenge for modern healthcare. Colistin (CT), a peptide antibiotic, remains a last-resort treatment for infections caused by these superbugs due to its potent activity against Gram-negative bacteria and the rarity of resistance. However, its clinical use is severely limited by high nephro- and neurotoxicity, low oral bioavailability, and other adverse effects. A promising strategy to improve the biopharmaceutical properties and safety profile of antibiotics is the development of biopolymer-based delivery systems, also known as nanoantibiotics. Objective. The aim of this study was to develop polyelectrolyte complexes (PECs) for the oral delivery of CT to overcome its major limitations, such as poor bioavailability and toxicity. Methods. PECs were formulated using chondroitin sulfate (CHS) and a cyanocobalamin–chitosan conjugate (CSB12). Vitamin B12 was incorporated as a targeting ligand to enhance intestinal permeability through receptor-mediated transport. The resulting complexes (CHS-CT-CSB12) were characterized for particle size, ζ-potential, encapsulation efficiency, and drug release profile under simulated gastrointestinal conditions (pH 1.6, 6.5, and 7.4). The antimicrobial activity of the encapsulated CT was evaluated in vitro against Pseudomonas aeruginosa. Results. The CHS-CT-CSB12 PECs exhibited a hydrodynamic diameter of 446 nm and a ζ-potential of +28.2 mV. The encapsulation efficiency of CT reached 100% at a drug loading of 200 µg/mg. In vitro release studies showed that approximately 70% of the drug was released within 1 h at pH 1.6 (simulating gastric conditions), while a cumulative CT release of 80% over 6 h was observed at pH 6.5 and 7.4 (simulating intestinal conditions). This release profile suggests the potential use of enteric-coated capsules or specific administration guidelines, such as taking the drug on an empty stomach with plenty of water. The antimicrobial activity of encapsulated CT against P. aeruginosa was comparable to that of the free drug, with a minimum inhibitory concentration of 1 µg/mL for both. The inclusion of vitamin B12 in the PECs significantly improved intestinal permeability, as evidenced by an apparent permeability coefficient (Papp) of 1.1 × 10−6 cm/s for CT. Discussion. The developed PECs offer several advantages over conventional CT formulations. The use of vitamin B12 as a targeting ligand enhances drug absorption across the intestinal barrier, potentially increasing oral bioavailability. In addition, the controlled release of CT in the intestinal environment reduces the risk of systemic toxicity, particularly nephro- and neurotoxicity. These findings highlight the potential of CHS-CT-CSB12 PECs as a nanotechnology-based platform for improving the delivery of CT and other challenging antibiotics. Conclusions. This study demonstrates the promising potential of CHS-CT-CSB12 PECs as an innovative oral delivery system for CT that addresses its major limitations and improves its therapeutic efficacy. Future work will focus on in vivo evaluation of the safety and efficacy of the system, as well as exploring its applicability for delivery of other antibiotics with similar challenges. Full article
Show Figures

Figure 1

43 pages, 4242 KB  
Review
Unseen Enemy: Mechanisms of Multidrug Antimicrobial Resistance in Gram-Negative ESKAPE Pathogens
by Giedrė Valdonė Sakalauskienė, Lina Malcienė, Edgaras Stankevičius and Aurelija Radzevičienė
Antibiotics 2025, 14(1), 63; https://doi.org/10.3390/antibiotics14010063 - 9 Jan 2025
Cited by 9 | Viewed by 5568
Abstract
Multidrug antimicrobial resistance (AMR) represents a formidable challenge in the therapy of infectious diseases, triggered by the particularly concerning gram-negative Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. Designated as a [...] Read more.
Multidrug antimicrobial resistance (AMR) represents a formidable challenge in the therapy of infectious diseases, triggered by the particularly concerning gram-negative Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. Designated as a “priority” in 2017, these bacteria continue to pose a significant threat in 2024, particularly during the worldwide SARS-CoV-2 pandemic, where coinfections with ESKAPE members contributed to worsened patient outcomes. The declining effectiveness of current treatments against these pathogens has led to an increased disease burden and an increase in mortality rates globally. This review explores the sophisticated mechanisms driving AMR in gram-negative ESKAPE bacteria, focusing on Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter spp. Key bacterial mechanisms contributing to resistance include limitations in drug uptake, production of antibiotic-degrading enzymes, alterations in drug target sites, and enhanced drug efflux systems. Comprehending these pathways is vital for formulating innovative therapeutic strategies and tackling the ongoing threat posed by these resistant pathogens. Full article
(This article belongs to the Topic Challenges and Future Prospects of Antibacterial Therapy)
Show Figures

Figure 1

18 pages, 4581 KB  
Article
Seasonal Characterization of the Aerobiome in Hematopoietic Stem Cell Transplant Rooms: Potential Risk for Immunosuppressed Patients
by Emilio Mariano Durán-Manuel, Edgar Fiscal-Baxin, Andres Emmanuel Nolasco-Rojas, Miguel Ángel Loyola-Cruz, Clemente Cruz-Cruz, Marianela Paredes-Mendoza, Adolfo López-Ornelas, Dulce Milagros Razo Blanco-Hernández, Nayeli Goreti Nieto-Velázquez, Aída Verónica Rodríguez-Tovar, Adrián Ramírez-Granillo, Enzo Vásquez-Jiménez, Verónica Fernández-Sánchez, Erika Gómez-Zamora, Mónica Alethia Cureño-Díaz, Andrea Milán-Salvatierra, Carlos Alberto Jiménez-Zamarripa, Claudia Camelia Calzada-Mendoza and Juan Manuel Bello-López
Microorganisms 2024, 12(11), 2352; https://doi.org/10.3390/microorganisms12112352 - 18 Nov 2024
Cited by 1 | Viewed by 1652
Abstract
Infections pose a risk for patients undergoing hematopoietic stem cell (HSC) transplants due to their immunosuppression, making them susceptible to opportunistic infections. Therefore, understanding the composition of the aerobiome in this area is vital. The aim of this study was to characterize the [...] Read more.
Infections pose a risk for patients undergoing hematopoietic stem cell (HSC) transplants due to their immunosuppression, making them susceptible to opportunistic infections. Therefore, understanding the composition of the aerobiome in this area is vital. The aim of this study was to characterize the aerobiome in an HSC transplant area, evaluating the impact of infrastructure and health personnel operations on air contamination. The environmental parameters and aerobiome of the HSC transplant area at Hospital Juárez de México were quantified over one year. Finally, a double-entry Vester matrix was constructed to classify problems according to their degree of causality. The abundance and taxonomic diversity of the aerobiome were dependent on seasonality, environmental factors, and high-efficiency filtration. Gram-positive bacteria predominated, followed by fungi and Gram-negative bacteria. ANOVA revealed significant differences in the bacterial aerobiome but not in the fungal aerobiome among the transplant rooms. Clinically, fungi such as Aspergillus fumigatus, Alternaria spp., Cladosporium spp., and Penicillium spp. were identified. ESKAPE bacteria typing revealed clonal dispersion. Finally, the Vester matrix highlighted critical problems associated with contamination due to the absence of HEPA filtration and non-adherence in patient management practices. HEPA filtration and positive pressure are essential to improve the air quality and reduce the microbiological load. However, the control areas will depend on patient management and routine activities, such as entry protocols in controlled areas. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

13 pages, 1626 KB  
Article
Enhancing Antibacterial Efficacy: Combining Novel Bacterial Topoisomerase Inhibitors with Efflux Pump Inhibitors and Other Agents Against Gram-Negative Bacteria
by Maša Zorman, Maja Kokot, Irena Zdovc, Lidija Senerovic, Mina Mandic, Nace Zidar, Andrej Emanuel Cotman, Martina Durcik, Lucija Peterlin Mašič, Nikola Minovski, Marko Anderluh and Martina Hrast Rambaher
Antibiotics 2024, 13(11), 1081; https://doi.org/10.3390/antibiotics13111081 - 13 Nov 2024
Viewed by 2904
Abstract
Background: The novel bacterial topoisomerase inhibitors (NBTIs) developed in our laboratory show potent on-target enzyme inhibition but suffer from low activity against Gram-negative bacteria. Methods: With the aim of improving the antibacterial activity of our compounds against Gram-negative bacteria, we tested them in [...] Read more.
Background: The novel bacterial topoisomerase inhibitors (NBTIs) developed in our laboratory show potent on-target enzyme inhibition but suffer from low activity against Gram-negative bacteria. Methods: With the aim of improving the antibacterial activity of our compounds against Gram-negative bacteria, we tested them in combination with different efflux pump inhibitors (EPIs), a strategy that showed promise in several other classes of antimicrobials. We also investigated the combined effect of NBTIs with ATP-competitive inhibitors of bacterial type II topoisomerases (ACIs), as well as the antibiofilm properties of our compounds and the combination with EPIs against early and mature Acietobacter baumannii biofilm. Results: Our results demonstrate that combinations of NBTIs with EPI Phenylalanine-arginyl-β-naphthylamide significantly reduce the corresponding NBTIs’ minimal inhibitory concentration values and show potentiation of A. baumannii biofilm inhibition as compared to NBTIs alone. Although combinations of NBITs and ACIs did not show synergistic effects, the FIC index value calculations revealed additive effects for all the combinations of a selected NBTI in combination with three ACIs in all the assayed Gram-negative bacteria from the ESKAPE group. Conclusions: These results show for the first time that combinations of NBTIs with either EPIs or a different class of the topoisomerase inhibitors may be a beneficial strategy to combat difficult-to-treat bacterial infections. Full article
Show Figures

Graphical abstract

30 pages, 1547 KB  
Review
Klebsiella in Wildlife: Clonal Dynamics and Antibiotic Resistance Profiles, a Systematic Review
by Micaela Quintelas, Vanessa Silva, Sara Araújo, Maria Teresa Tejedor-Junco, José Eduardo Pereira, Gilberto Igrejas and Patricia Poeta
Pathogens 2024, 13(11), 945; https://doi.org/10.3390/pathogens13110945 - 30 Oct 2024
Cited by 5 | Viewed by 4194
Abstract
Klebsiella spp. are a genus of Gram-negative, opportunistic bacteria frequently found in the flora of the mucosal membranes of healthy animals and humans, and in the environment. Species of this group can cause serious infections (meningitis, sepsis, bacteraemia, urinary tract infections, liver damage) [...] Read more.
Klebsiella spp. are a genus of Gram-negative, opportunistic bacteria frequently found in the flora of the mucosal membranes of healthy animals and humans, and in the environment. Species of this group can cause serious infections (meningitis, sepsis, bacteraemia, urinary tract infections, liver damage) and possible death in immunocompromised organisms (and even in immunocompetent ones in the case of hypervirulent K. pneumoniae) that are exposed to them. K. pneumoniae is part of the ESKAPE organisms, and so it is important to understand this genus in terms of multidrug-resistant bacteria and as a carrier of antibiotic resistance mechanisms. As it is a durable bacterium, it survives well even in hostile environments, making it possible to colonize all kinds of habitats, even the mucosal flora of wildlife. This systematic review explores the prevalence of Klebsiella spp. bacteria in wild animals, and the possibility of transmission to humans according to the One Health perspective. The isolates found in this review proved to be resistant to betalactams (blaTEM, blaOXA-48…), aminoglycosides (strAB, aadA2…), fosfomycin, tetracyclines, sulphonamides, trimethoprim, phenicols (catB4), and polymyxins (mcr4). Full article
Show Figures

Figure 1

31 pages, 4738 KB  
Article
Synthesized Bis-Triphenyl Phosphonium-Based Nano Vesicles Have Potent and Selective Antibacterial Effects on Several Clinically Relevant Superbugs
by Silvana Alfei, Guendalina Zuccari, Francesca Bacchetti, Carola Torazza, Marco Milanese, Carlo Siciliano, Constantinos M. Athanassopoulos, Gabriella Piatti and Anna Maria Schito
Nanomaterials 2024, 14(16), 1351; https://doi.org/10.3390/nano14161351 - 15 Aug 2024
Cited by 9 | Viewed by 2312
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens due to antibiotic misuse translates into obstinate infections with high morbidity and high-cost hospitalizations. To oppose these MDR superbugs, new antimicrobial options are necessary. Although both quaternary ammonium salts (QASs) and phosphonium salts (QPSs) possess antimicrobial [...] Read more.
The increasing emergence of multidrug-resistant (MDR) pathogens due to antibiotic misuse translates into obstinate infections with high morbidity and high-cost hospitalizations. To oppose these MDR superbugs, new antimicrobial options are necessary. Although both quaternary ammonium salts (QASs) and phosphonium salts (QPSs) possess antimicrobial effects, QPSs have been studied to a lesser extent. Recently, we successfully reported the bacteriostatic and cytotoxic effects of a triphenyl phosphonium salt against MDR isolates of the Enterococcus and Staphylococcus genera. Here, aiming at finding new antibacterial devices possibly active toward a broader spectrum of clinically relevant bacteria responsible for severe human infections, we synthesized a water-soluble, sterically hindered quaternary phosphonium salt (BPPB). It encompasses two triphenyl phosphonium groups linked by a C12 alkyl chain, thus embodying the characteristics of molecules known as bola-amphiphiles. BPPB was characterized by ATR-FTIR, NMR, and UV spectroscopy, FIA-MS (ESI), elemental analysis, and potentiometric titrations. Optical and DLS analyses evidenced BPPB tendency to self-forming spherical vesicles of 45 nm (DLS) in dilute solution, tending to form larger aggregates in concentrate solution (DLS and optical microscope), having a positive zeta potential (+18 mV). The antibacterial effects of BPPB were, for the first time, assessed against fifty clinical isolates of both Gram-positive and Gram-negative species. Excellent antibacterial effects were observed for all strains tested, involving all the most concerning species included in ESKAPE bacteria. The lowest MICs were 0.250 µg/mL, while the highest ones (32 µg/mL) were observed for MDR Gram-negative metallo-β-lactamase-producing bacteria and/or species resistant also to colistin, carbapenems, cefiderocol, and therefore intractable with currently available antibiotics. Moreover, when administered to HepG2 human hepatic and Cos-7 monkey kidney cell lines, BPPB showed selectivity indices > 10 for all Gram-positive isolates and for clinically relevant Gram-negative superbugs such as those of E. coli species, thus being very promising for clinical development. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

14 pages, 2008 KB  
Article
Combinations of Bacteriophage Are Efficacious against Multidrug-Resistant Pseudomonas aeruginosa and Enhance Sensitivity to Carbapenem Antibiotics
by Christopher J. Kovacs, Erika M. Rapp, William R. Rankin, Sophia M. McKenzie, Brianna K. Brasko, Katherine E. Hebert, Beth A. Bachert, Andrew R. Kick, F. John Burpo and Jason C. Barnhill
Viruses 2024, 16(7), 1000; https://doi.org/10.3390/v16071000 - 21 Jun 2024
Cited by 8 | Viewed by 3517
Abstract
The Gram-negative ESKAPE bacterium Pseudomonas aeruginosa has become a pathogen of serious concern due its extensive multi-drug resistance (MDR) profile, widespread incidences of hospital-acquired infections throughout the United States, and high occurrence in wound infections suffered by warfighters serving abroad. Bacteriophage (phage) therapy [...] Read more.
The Gram-negative ESKAPE bacterium Pseudomonas aeruginosa has become a pathogen of serious concern due its extensive multi-drug resistance (MDR) profile, widespread incidences of hospital-acquired infections throughout the United States, and high occurrence in wound infections suffered by warfighters serving abroad. Bacteriophage (phage) therapy has received renewed attention as an alternative therapeutic option against recalcitrant bacterial infections, both as multi-phage cocktails and in combination with antibiotics as synergistic pairings. Environmental screening and phage enrichment has yielded three lytic viruses capable of infecting the MDR P. aeruginosa strain PAO1. Co-administration of each phage with the carbapenem antibiotics ertapenem, imipenem, and meropenem generated enhanced overall killing of bacteria beyond either phage or drug treatments alone. A combination cocktail of all three phages was completely inhibitory to growth, even without antibiotics. The same 3× phage cocktail also disrupted PAO1 biofilms, reducing biomass by over 75% compared to untreated biofilms. Further, the phage cocktail demonstrated broad efficacy as well, capable of infecting 33 out of 100 diverse clinical isolate strains of P. aeruginosa. Together, these results indicate a promising approach for designing layered medical countermeasures to potentiate antibiotic activity and possibly overcome resistance against recalcitrant, MDR bacteria such as P. aeruginosa. Combination therapy, either by synergistic phage-antibiotic pairings, or by phage cocktails, presents a means of controlling mutations that can allow for bacteria to gain a competitive edge. Full article
(This article belongs to the Special Issue Phage-Bacteria Interplay in Health and Disease, Second Edition)
Show Figures

Figure 1

25 pages, 1321 KB  
Article
Synthesis of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Promising Scaffolds for the Development of Antimicrobial Candidates Targeting Multidrug-Resistant Bacterial and Fungal Pathogens
by Povilas Kavaliauskas, Birutė Grybaitė, Birutė Sapijanskaitė-Banevič, Rita Vaickelionienė, Vidmantas Petraitis, Rūta Petraitienė, Ethan Naing, Andrew Garcia, Ramunė Grigalevičiūtė and Vytautas Mickevičius
Antibiotics 2024, 13(2), 193; https://doi.org/10.3390/antibiotics13020193 - 17 Feb 2024
Cited by 9 | Viewed by 4047
Abstract
Infections caused by multidrug-resistant bacterial and fungal pathogens represent a significant global health concern, contributing to increased morbidity and mortality rates. Therefore, it is crucial to develop novel compounds targeting drug-resistant microbial strains. Herein, we report the synthesis of amino acid derivatives bearing [...] Read more.
Infections caused by multidrug-resistant bacterial and fungal pathogens represent a significant global health concern, contributing to increased morbidity and mortality rates. Therefore, it is crucial to develop novel compounds targeting drug-resistant microbial strains. Herein, we report the synthesis of amino acid derivatives bearing an incorporated 4-hydroxyphenyl moiety with various substitutions. The resultant novel 3-((4-hydroxyphenyl)amino)propanoic acid derivatives 237 exhibited structure-dependent antimicrobial activity against both ESKAPE group bacteria and drug-resistant Candida species. Furthermore, these derivatives demonstrated substantial activity against Candida auris, with minimum inhibitory concentrations ranging from 0.5 to 64 µg/mL. Hydrazones 1416, containing heterocyclic substituents, showed the most potent and broad-spectrum antimicrobial activity. This activity extended to methicillin-resistant Staphylococcus aureus (MRSA) with MIC values ranging from 1 to 8 µg/mL, vancomycin-resistant Enterococcus faecalis (0.5–2 µg/mL), Gram-negative pathogens (MIC 8–64 µg/mL), and drug-resistant Candida species (MIC 8–64 µg/mL), including Candida auris. Collectively, these findings underscore the potential utility of the novel 3-((4-hydroxyphenyl)amino)propanoic acid scaffold for further development as a foundational platform for novel antimicrobial agents targeting emerging and drug-resistant bacterial and fungal pathogens. Full article
(This article belongs to the Special Issue Discovery and Development of the Novel Antimicrobial Agent)
Show Figures

Figure 1

21 pages, 570 KB  
Article
Enhancing Commercial Antibiotics with Trans-Cinnamaldehyde in Gram-Positive and Gram-Negative Bacteria: An In Vitro Approach
by Natalia Ferrando, María Rosa Pino-Otín, Diego Ballestero, Guillermo Lorca, Eva María Terrado and Elisa Langa
Plants 2024, 13(2), 192; https://doi.org/10.3390/plants13020192 - 10 Jan 2024
Cited by 9 | Viewed by 2975
Abstract
One strategy to mitigate the emergence of bacterial resistance involves reducing antibiotic doses by combining them with natural products, such as trans-cinnamaldehyde (CIN). The objective of this research was to identify in vitro combinations (CIN + commercial antibiotic (ABX)) that decrease the minimum [...] Read more.
One strategy to mitigate the emergence of bacterial resistance involves reducing antibiotic doses by combining them with natural products, such as trans-cinnamaldehyde (CIN). The objective of this research was to identify in vitro combinations (CIN + commercial antibiotic (ABX)) that decrease the minimum inhibitory concentration (MIC) of seven antibiotics against 14 different Gram-positive and Gram-negative pathogenic bacteria, most of them classified as ESKAPE. MIC values were measured for all compounds using the broth microdilution method. The effect of the combinations on these microorganisms was analyzed through the checkboard assay to determine the type of activity (synergy, antagonism, or addition). This analysis was complemented with a kinetic study of the synergistic combinations. Fifteen synergistic combinations were characterized for nine of the tested bacteria. CIN demonstrated effectiveness in reducing the MIC of chloramphenicol, streptomycin, amoxicillin, and erythromycin (94–98%) when tested on Serratia marcescens, Staphylococcus aureus, Pasteurella aerogenes, and Salmonella enterica, respectively. The kinetic study revealed that when the substances were tested alone at the MIC concentration observed in the synergistic combination, bacterial growth was not inhibited. However, when CIN and the ABX, for which synergy was observed, were tested simultaneously in combination at these same concentrations, the bacterial growth inhibition was complete. This demonstrates the highly potent in vitro synergistic activity of CIN when combined with commercial ABXs. This finding could be particularly beneficial in livestock farming, as this sector witnesses the highest quantities of antimicrobial usage, contributing significantly to antimicrobial resistance issues. Further research focused on this natural compound is thus warranted for this reason. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 3454 KB  
Article
Gram-Negative ESKAPE Bacteria Surveillance in COVID-19 Pandemic Exposes High-Risk Sequence Types of Acinetobacter baumannii MDR in a Tertiary Care Hospital
by Mónica Alethia Cureño-Díaz, Estibeyesbo Said Plascencia-Nieto, Miguel Ángel Loyola-Cruz, Clemente Cruz-Cruz, Andres Emmanuel Nolasco-Rojas, Emilio Mariano Durán-Manuel, Gabriela Ibáñez-Cervantes, Erika Gómez-Zamora, María Concepción Tamayo-Ordóñez, Yahaira de Jesús Tamayo-Ordóñez, Claudia Camelia Calzada-Mendoza and Juan Manuel Bello-López
Pathogens 2024, 13(1), 50; https://doi.org/10.3390/pathogens13010050 - 4 Jan 2024
Cited by 12 | Viewed by 3534
Abstract
The interruption of bacteriological surveillance due to the COVID-19 pandemic brought serious consequences, such as the collapse of health systems and the possible increase in antimicrobial resistance. Therefore, it is necessary to know the rate of resistance and its associated mechanisms in bacteria [...] Read more.
The interruption of bacteriological surveillance due to the COVID-19 pandemic brought serious consequences, such as the collapse of health systems and the possible increase in antimicrobial resistance. Therefore, it is necessary to know the rate of resistance and its associated mechanisms in bacteria causing hospital infections during the pandemic. The aim of this work was to show the phenotypic and molecular characteristics of antimicrobial resistance in ESKAPE bacteria in a Mexican tertiary care hospital in the second and third years of the pandemic. For this purpose, during 2021 and 2022, two hundred unduplicated strains of the ESKAPE group (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) were collected from various clinical sources and categorized by resistance according to the CLSI. An analysis of variance (ANOVA) complemented by the Tukey test was performed to search for changes in antimicrobial susceptibility profiles during the study period. Finally, the mechanisms of resistance involved in carbapenem resistance were analyzed, and the search for efflux pumps and high-risk sequence types in A. baumannii was performed by multilocus analysis (MLST). The results showed no changes in K. pneumoniae resistance during the period analyzed. Decreases in quinolone resistance were identified in E. coli (p = 0.039) and P. aeruginosa (p = 0.03). Interestingly, A. baumannii showed increases in resistance to penicillins (p = 0.004), aminoglycosides (p < 0.001, p = 0.027), carbapenems (p = 0.027), and folate inhibitors (p = 0.001). Several genes involved in carbapenem resistance were identified (blaNDM, blaVIM, blaOXA, blaKPC, blaOXA-40, and blaOXA-48) with a predominance of blaOXA-40 and the adeABCRS efflux pump in A. baumannii. Finally, MLST analysis revealed the presence of globally distributed sequence types (ST369 and ST758) related to hospital outbreaks in other parts of the world. The results presented demonstrate that the ESKAPE group has played an important role during the COVID-19 pandemic as nosocomial antibiotic-resistant pathogens and in particular A. baumannii MDR as a potential reservoir of resistance genes. The implications of the increases in antimicrobial resistance in pathogens of the ESKAPE group and mainly in A. baumannii during the COVID-19 pandemic are analyzed and discussed. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

Back to TopTop