Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,741)

Search Parameters:
Keywords = DNA viruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2655 KiB  
Article
Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 (registering DOI) - 4 Aug 2025
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

16 pages, 2901 KiB  
Article
Unveiling the Genetic Landscape of Canine Papillomavirus in the Brazilian Amazon
by Jeneffer Caroline de Macêdo Sousa, André de Medeiros Costa Lins, Fernanda dos Anjos Souza, Higor Ortiz Manoel, Cleyton Silva de Araújo, Lorena Yanet Cáceres Tomaya, Paulo Henrique Gilio Gasparotto, Vyctoria Malayhka de Abreu Góes Pereira, Acácio Duarte Pacheco, Fernando Rosado Spilki, Mariana Soares da Silva, Felipe Masiero Salvarani, Cláudio Wageck Canal, Flavio Roberto Chaves da Silva and Cíntia Daudt
Microorganisms 2025, 13(8), 1811; https://doi.org/10.3390/microorganisms13081811 - 2 Aug 2025
Abstract
Papillomaviruses (PVs) are double-stranded DNA viruses known to induce a variety of epithelial lesions in dogs, ranging from benign hyperplasia to malignancies. In regions of rich biodiversity such as the Western Amazon, data on the circulation and genetic composition of canine papillomaviruses (CPVs) [...] Read more.
Papillomaviruses (PVs) are double-stranded DNA viruses known to induce a variety of epithelial lesions in dogs, ranging from benign hyperplasia to malignancies. In regions of rich biodiversity such as the Western Amazon, data on the circulation and genetic composition of canine papillomaviruses (CPVs) remain scarce. This study investigated CPV types present in oral and cutaneous papillomatous lesions in domiciled dogs from Acre and Rondônia States, Brazil. Sixty-one dogs with macroscopically consistent lesions were clinically evaluated, and tissue samples were collected for histopathological examination and PCR targeting the L1 gene. Among these, 37% were histologically diagnosed as squamous papillomas or fibropapillomas, and 49.2% (30/61) tested positive for papillomavirus DNA. Sequencing of the L1 gene revealed that most positive samples belonged to CPV1 (Lambdapapillomavirus 2), while one case was identified as CPV8 (Chipapillomavirus 3). Complete genomes of three CPV1 strains were obtained via high-throughput sequencing and showed high identity with CPV1 strains from other Brazilian regions. Phylogenetic analysis confirmed close genetic relationships among isolates across distinct geographic areas. These findings demonstrate the circulation of genetically conserved CPVs in the Amazon and reinforce the value of molecular and histopathological approaches for the accurate diagnosis and surveillance of viral diseases in domestic dogs, especially in ecologically complex regions. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

16 pages, 16075 KiB  
Article
Presence of Protozoan Viruses in Vaginal Samples from Pregnant Women and Their Association with Trichomoniasis
by Gegham Ghardyan, Lusine Abrahamyan, Karen Julhakyan, Hakob Davtyan, Norayr Martirosyan, Elina Arakelova, Hranush Avagyan, Sona Hakobyan, Tigranuhi Vardanyan, Naira Karalyan and Zaven Karalyan
Pathogens 2025, 14(8), 764; https://doi.org/10.3390/pathogens14080764 (registering DOI) - 1 Aug 2025
Viewed by 183
Abstract
This study was conducted in Armenia and included 32 pregnant women with TV infection and 30 healthy controls. The vaginal virome includes viruses that infect human cells and unicellular eukaryotes such as Trichomonas vaginalis (TV). Among these are Trichomonas vaginalis viruses (TVVs), double-stranded [...] Read more.
This study was conducted in Armenia and included 32 pregnant women with TV infection and 30 healthy controls. The vaginal virome includes viruses that infect human cells and unicellular eukaryotes such as Trichomonas vaginalis (TV). Among these are Trichomonas vaginalis viruses (TVVs), double-stranded RNA viruses from the Totiviridae family, and giant DNA viruses that replicate in protozoa. This study investigated the presence of TVVs and giant protozoan viruses in pregnant women with trichomoniasis in Armenia and explored their potential associations with adverse pregnancy outcomes. Vaginal and urethral samples were collected from 32 pregnant women with confirmed TV infection and 30 healthy pregnant controls. TVVs and giant viruses (Marseilleviridae, Mimiviridae, Phycodnaviridae) were detected using qRT-PCR. Viral RNA and DNA were extracted from clinical samples and TV cultures, followed by quantification and gene expression analysis. Selected TVVs were visualized via scanning electron microscopy. All TV-positive women carried at least one TVV strain, with 94% harboring multiple TVV types and TVV4 being the most common. TV infection was significantly associated with preterm birth and premature rupture of membranes (PPROM). Giant viruses were identified in all TV-positive cases but in only 40% of controls. Marseilleviridae gene expression was observed in TV cultures, suggesting possible interactions. These findings highlight a potential role for protozoan viruses in reproductive complications and warrant further investigation. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

8 pages, 405 KiB  
Brief Report
Characterization of DNA Viruses in Hindgut Contents of Protaetia brevitarsis Larvae
by Jean Geung Min, Namkyong Min, Binh T. Nguyen, Rochelle A. Flores and Dongjean Yim
Insects 2025, 16(8), 800; https://doi.org/10.3390/insects16080800 (registering DOI) - 1 Aug 2025
Viewed by 147
Abstract
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in [...] Read more.
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in animal health and homeostasis. We previously conducted a comparative analysis of the gut microbiota of third-instar larvae of P. brevitarsis obtained from five different farms and found significant differences in the composition of the gut bacterial microbiota between farms. To better understand the gut microbiota, the composition of DNA viruses in the hindgut contents of P. brevitarsis larvae obtained from five farms was investigated using metagenomic sequencing in this study. The β-diversity was significantly different between metagenomic data obtained from the five farms (PERMANOVA, pseudo-F = 46.95, p = 0.002). Family-based taxonomic analysis indicated that the relative abundance of viruses in the gut overall metagenome varied significantly between farms, with viral reads comprising approximately 41.2%, 15.0%, 4.3%, 4.0%, and 1.6% of metagenomic sequences from the farms Tohamsan gumbengi farm (TO), Secomnalagum gumbengi (IS), Gumbengi brothers (BR), Kyungpook farm (KB), and Jhbio (JH), respectively. More than 98% of the DNA viruses in the hindgut were bacteriophages, mainly belonging to the Siphoviridae family. At the species level, Phage Min1, infecting the genus Microbacterium, was detected in all farms, and it was the most abundant bacteriophage in intestinal microbiota, with a prevalence of 0.9% to 29.09%. The detected eukaryotic DNA viruses accounted for 0.01% to 0.06% of the intestinal microbiota and showed little or no relationship with insect viruses. Therefore, they most likely originated from contaminated feed or soil. These results suggest that the condition of substrates used as feed is more important than genetic factors in shaping the intestinal viral microbiota of P. brevitarsis larvae. These results can be used as reference data for understanding the hindgut microbiota of P. brevitarsis larvae and, more generally, the gut virome of insects. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

12 pages, 1650 KiB  
Communication
Salsolinol-Containing Senna silvestris Exerts Antiviral Activity Against Hepatitis B Virus
by Alberto Quintero, Maria Maillo, Nelson Gomes, Angel Fernández, Hector R. Rangel, Fabian Michelangeli and Flor H. Pujol
Plants 2025, 14(15), 2372; https://doi.org/10.3390/plants14152372 - 1 Aug 2025
Viewed by 153
Abstract
Several natural products have been shown to display antiviral activity against the hepatitis B virus (HBV), among a number of other viruses. In a previous study, the hydro-alcoholic extracts (n = 66) of 31 species from the Venezuelan Amazonian rain forest were tested [...] Read more.
Several natural products have been shown to display antiviral activity against the hepatitis B virus (HBV), among a number of other viruses. In a previous study, the hydro-alcoholic extracts (n = 66) of 31 species from the Venezuelan Amazonian rain forest were tested on the hepatoma cell line HepG2.2.15, which constitutively produces HBV. One of the species that exerted inhibitory activity on HBV replication was Senna silvestris. The aim of this study was the bioassay-guided purification of the ethanol fraction of leaves of S. silvestris, which displayed the most significant inhibitory activity against HBV. After solvent extraction and two rounds of reverse-phase HPLC purification, NMR analysis identified salsolinol as the compound that may exert the desired antiviral activity. The purified compound exerted inhibition of both HBV DNA and core HBV DNA. Pure salsolinol obtained from a commercial source also displayed anti-HBV DNA inhibition, with an approximate MIC value of 12 µM. Although salsolinol is widely used in Chinese traditional medicine to treat congestive heart failure, it has also been associated with Parkinson’s disease. More studies are warranted to analyze the effect of changes in its chemical conformation, searching for potent antiviral, perhaps dual agents against HBV and HIV, with reduced toxicity. Full article
Show Figures

Figure 1

21 pages, 2141 KiB  
Article
Integrating Full-Length and Second-Generation Transcriptomes to Elucidate the ApNPV-Induced Transcriptional Reprogramming in Antheraea pernyi Midgut
by Xinlei Liu, Ying Li, Xinfeng Yang, Xuwei Zhu, Fangang Meng, Yaoting Zhang and Jianping Duan
Insects 2025, 16(8), 792; https://doi.org/10.3390/insects16080792 (registering DOI) - 31 Jul 2025
Viewed by 123
Abstract
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 [...] Read more.
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 novel protein-coding genes, 17,736 novel alternative isoforms, 1664 novel long non-coding RNAs (lncRNAs), and 858 transcription factors (TFs). In addition, 2471 alternative splicing (AS) events and 3070 alternative polyadenylation (APA) sites were identified. Moreover, 3426 and 4796 differentially expressed genes (DEGs) and isoforms were identified after ApNPV infection, respectively, besides the differentially expressed lncRNAs (164), TFs (171), and novel isoforms of ApRelish (1) and ApSOCS2 (4). Enrichment analyses showed that KEGG pathways related to metabolism were suppressed, whereas GO terms related to DNA synthesis and replication were induced. Furthermore, the autophagy and apoptosis pathways were significantly enriched among the upregulated genes. Protein–protein interaction network (PPI) analysis revealed the coordinated downregulation of genes involved in mitochondrial ribosomes, V-type and F-type ATPases, and oxidative phosphorylation, indicating the disruption of host energy metabolism and organelle acidification. Moreover, coordinated upregulation of genes associated with cytoplasmic ribosomes was observed, suggesting that the infection by ApNPV interferes with host translational machinery. These results show that ApNPV infection reprograms energy metabolism, biosynthetic processes, and immune response in A. pernyi midgut. Our study provides a foundation for elucidating the mechanisms of A. pernyi–virus interactions, particularly how the viruses affect host defense strategies. Full article
(This article belongs to the Special Issue Genomics and Molecular Biology in Silkworm)
Show Figures

Graphical abstract

28 pages, 1184 KiB  
Review
Immune Modulation by Microbiota and Its Possible Impact on Polyomavirus Infection
by Giorgia Cianci, Gloria Maini, Matteo Ferraresi, Giulia Pezzi, Daria Bortolotti, Sabrina Rizzo, Silvia Beltrami and Giovanna Schiuma
Pathogens 2025, 14(8), 747; https://doi.org/10.3390/pathogens14080747 - 30 Jul 2025
Viewed by 332
Abstract
Polyomaviruses are a family of small DNA viruses capable of establishing persistent infections, and they can pose significant pathogenic risks in immunocompromised hosts. While traditionally studied in the context of viral reactivation and immune suppression, recent evidence has highlighted the gut microbiota as [...] Read more.
Polyomaviruses are a family of small DNA viruses capable of establishing persistent infections, and they can pose significant pathogenic risks in immunocompromised hosts. While traditionally studied in the context of viral reactivation and immune suppression, recent evidence has highlighted the gut microbiota as a critical regulator of host immunity and viral pathogenesis. This review examines the complex interactions between polyomaviruses, the immune system, and intestinal microbiota, emphasizing the role of short-chain fatty acids (SCFAs) in modulating antiviral responses. We explore how dysbiosis may facilitate viral replication, reactivation, and immune escape and also consider how polyomavirus infection can, in turn, alter microbial composition. Particular attention is given to the Firmicutes/Bacteroidetes ratio as a potential biomarker of infection risk and immune status. Therapeutic strategies targeting the microbiota, including prebiotics, probiotics, and fecal microbiota transplantation (FMT), are discussed as innovative adjuncts to immune-based therapies. Understanding these tri-directional interactions may offer new avenues for mitigating disease severity and improving patient outcomes during viral reactivation. Full article
Show Figures

Figure 1

18 pages, 5957 KiB  
Article
Genome-Wide Screening Reveals the Oncolytic Mechanism of Newcastle Disease Virus in a Human Colonic Carcinoma Cell Line
by Yu Zhang, Shufeng Feng, Gaohang Yi, Shujun Jin, Yongxin Zhu, Xiaoxiao Liu, Jinsong Zhou and Hai Li
Viruses 2025, 17(8), 1043; https://doi.org/10.3390/v17081043 - 25 Jul 2025
Viewed by 358
Abstract
Viral oncolysis is considered a promising cancer treatment method because of its good tolerability and durable anti-tumor effects. Compared with other oncolytic viruses, Newcastle disease virus (NDV) has some distinct advantages. As an RNA virus, NDV does not recombine with the host genome, [...] Read more.
Viral oncolysis is considered a promising cancer treatment method because of its good tolerability and durable anti-tumor effects. Compared with other oncolytic viruses, Newcastle disease virus (NDV) has some distinct advantages. As an RNA virus, NDV does not recombine with the host genome, making it safer compared with DNA viruses and retroviruses; NDV can induce syncytium formation, allowing the virus to spread among cells without exposure to host neutralizing antibodies; and its genome adheres to the hexamer genetic code rule (genome length as a multiple of six nucleotides), ensuring accurate replication, low recombination rates, and high genetic stability. Although wild-type NDV has a killing effect on various tumor cells, its oncolytic effect and working mechanism are diverse, increasing the complexity of generating engineered oncolytic viruses with NDV. This study aims to employ whole-genome CRISPR-Cas9 knockout screening and RNA sequencing to identify putative key regulatory factors involved in the interaction between NDV and human colon cancer HCT116 cells and map their global interaction networks. The results suggests that NDV infection disrupts cellular homeostasis, thereby exerting oncolytic effects by inhibiting cell metabolism and proliferation. Meanwhile, the antiviral immune response triggered by NDV infection, along with the activation of anti-apoptotic signaling pathways, may be responsible for the limited oncolytic efficacy of NDV against HCT116 cells. These findings not only enhance our understanding of the oncolytic mechanism of NDV against colonic carcinoma but also provide potential strategies and targets for the development of NDV-based engineered oncolytic viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

30 pages, 782 KiB  
Review
Immune Responses of Dendritic Cells to Zoonotic DNA and RNA Viruses
by Xinyu Miao, Yixuan Han, Yinyan Yin, Yang Yang, Sujuan Chen, Xinan Jiao, Tao Qin and Daxin Peng
Vet. Sci. 2025, 12(8), 692; https://doi.org/10.3390/vetsci12080692 - 24 Jul 2025
Viewed by 431
Abstract
Viral infections persistently challenge global health through immune evasion and zoonotic transmission. Dendritic cells (DCs) play a central role in antiviral immunity by detecting viral nucleic acids via conserved pattern recognition receptors, triggering interferon-driven innate responses and cross-presentation-mediated activation of cytotoxic CD8+ [...] Read more.
Viral infections persistently challenge global health through immune evasion and zoonotic transmission. Dendritic cells (DCs) play a central role in antiviral immunity by detecting viral nucleic acids via conserved pattern recognition receptors, triggering interferon-driven innate responses and cross-presentation-mediated activation of cytotoxic CD8+ T cells. This study synthesizes DC-centric defense mechanisms against viral subversion, encompassing divergent nucleic acid sensing pathways for zoonotic DNA and RNA viruses, viral counterstrategies targeting DC maturation and interferon signaling, and functional specialization of DC subsets in immune coordination. Despite advances in DC-based vaccine platforms, clinical translation is hindered by cellular heterogeneity, immunosuppressive microenvironments, and limitations in antigen delivery. Future research should aim to enhance the efficiency of DC-mediated immunity, thereby establishing a robust scientific foundation for the development of next-generation vaccines and antiviral therapies. A more in-depth exploration of DC functions and regulatory mechanisms may unlock novel strategies for antiviral intervention, ultimately paving the way for improved prevention and treatment of viral infections. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

17 pages, 1310 KiB  
Article
Assessment of Suppressive Effects of Negative Air Ions on Fungal Growth, Sporulation and Airborne Viral Load
by Stefan Mijatović, Andrea Radalj, Andjelija Ilić, Marko Janković, Jelena Trajković, Stefan Djoković, Borko Gobeljić, Aleksandar Sovtić, Gordana Petrović, Miloš Kuzmanović, Jelena Antić Stanković, Predrag Kolarž and Irena Arandjelović
Atmosphere 2025, 16(8), 896; https://doi.org/10.3390/atmos16080896 - 22 Jul 2025
Viewed by 317
Abstract
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting [...] Read more.
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting both healthy individuals and the immunosuppressed alike. This study investigated the abundance and diversity of airborne fungal spores in both hospital and residential environments, using custom designed air samplers with or without the presence of negative air ions (NAIs) inside the sampler. The main purpose of investigation was the assessment of biological effects of NAIs on fungal spore viability, deposition, mycelial growth, and sporulation, as well as airborne viral load. The precise assessment of mentioned biological effects is otherwise difficult to carry out due to low concentrations of studied specimens; therefore, specially devised and designed, ion-bioaerosol interaction air samplers were used for prolonged collection of specimens of interest. The total fungal spore concentrations were quantified, and fungal isolates were identified using cultural and microscopic methods, complemented by MALDI-TOF mass spectrometry. Results indicated no significant difference in overall spore concentration between environments or treatments; however, presence of NAIs induced a delay in the sporulation process of Cladosporium herbarum, Aspergillus flavus, and Aspergillus niger within 72 h. These effects of NAIs are for the first time demonstrated in this work; most likely, they are mediated by oxidative stress mechanisms. A parallel experiment demonstrated a substantially reduced concentration of aerosolized equine herpesvirus 1 (EHV-1) DNA within 10–30 min of exposure to NAIs, with more than 98% genomic load reduction beyond natural decay. These new results on the NAIs interaction with a virus, as well as new findings regarding the fungal sporulation, resulted in part from a novel interaction setup designed for experiments with the bioaerosols. Our findings highlight the potential of NAIs as a possible approach for controlling fungal sporulation and reducing airborne viral particle quantities in indoor environments. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

24 pages, 12430 KiB  
Article
DNAJ Homolog Subfamily C Member 11 Stabilizes SARS-CoV-2 NSP3 to Promote Double-Membrane Vesicle Formation
by Shuying Chen, Shanrong Yang, Xiaoning Li, Junqi Xiang, Jiangyu Cai, Yaokai Wang, Qingqing Li, Na Zang, Jiaxu Wang, Jian Shang and Yushun Wan
Viruses 2025, 17(8), 1025; https://doi.org/10.3390/v17081025 - 22 Jul 2025
Viewed by 367
Abstract
Coronaviruses, particularly those classified as highly pathogenic species, pose a significant threat to global health. These viruses hijack host cellular membranes and proteins to facilitate their replication, primarily through the formation of replication organelles (ROs). However, the precise regulatory mechanisms underlying RO formation [...] Read more.
Coronaviruses, particularly those classified as highly pathogenic species, pose a significant threat to global health. These viruses hijack host cellular membranes and proteins to facilitate their replication, primarily through the formation of replication organelles (ROs). However, the precise regulatory mechanisms underlying RO formation remain poorly understood. To elucidate these mechanisms, we conducted mass spectrometry analyses, identifying interactions between the host protein DnaJ homolog subfamily C member 11 (DNAJC11) and the SARS-CoV-2 nonstructural protein 3 (NSP3) protein. Notably, results showed that DNAJC11 depletion reduces SARS-CoV-2 infection, indicating possible positive regulatory involvement. But the ectopic expression of DNAJC11 did not lead to marked alterations in immune or inflammatory responses. DNAJC11 enhanced NSP3 expression stability through endogenous apoptosis pathways and facilitated its interaction with NSP4, thereby promoting the formation of double-membrane vesicles (DMVs). Knockdown of DNAJC11 reduced DMV number and size, accompanied by dysregulation of the endoplasmic reticulum and mitochondria. However, supplementation with DNAJC11 restored both DMV number and size. These findings provide novel insights into the role of DNAJC11 as a host factor that modulates DMV formation and supports SARS-CoV-2 replication by targeting the NSP3 protein. This study advances our understanding of the molecular interactions between host and viral components and highlights DNAJC11 as a potential target for antiviral interventions. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

17 pages, 2091 KiB  
Article
A Novel Parvovirus Associated with the Whitefly Bemisia tabaci
by Fani Gousi, Zineb Belabess, Nathalie Laboureau, Michel Peterschmitt and Mikhail M. Pooggin
Pathogens 2025, 14(7), 714; https://doi.org/10.3390/pathogens14070714 - 19 Jul 2025
Viewed by 364
Abstract
The whitefly Bemisia tabaci (Hemiptera: Aleyrodoidea) causes direct feeding damage to crop plants and transmits pathogenic plant viruses, thereby threatening global food security. Although whitefly-infecting RNA viruses are known and proposed as biocontrol agents, no insect DNA virus has been found in any [...] Read more.
The whitefly Bemisia tabaci (Hemiptera: Aleyrodoidea) causes direct feeding damage to crop plants and transmits pathogenic plant viruses, thereby threatening global food security. Although whitefly-infecting RNA viruses are known and proposed as biocontrol agents, no insect DNA virus has been found in any member of Aleyrodoidea. Using rolling circle amplification (RCA) of viral DNA from whiteflies collected from crop fields in Morocco, followed by Illumina sequencing of the RCA products, we found a novel insect single-stranded (ss) DNA parvovirus (family Parvoviridae) in addition to plant ssDNA geminiviruses transmitted by whiteflies. Based on its genome organization with inverted terminal repeats and evolutionarily conserved proteins mediating viral DNA replication (NS1/Rep) and encapsidation (VP), encoded on the forward and reverse strands, respectively, we named this virus Bemisia tabaci ambidensovirus (BtaDV) and classified it as a founding member of a new genus within the subfamily Densovirinae. This subfamily also contains three distinct genera of ambisense densoviruses of other hemipteran insects (Aphidoidea, Coccoidea, and Psylloidea). Furthermore, we provide evidence for the genetic variants of BtaDV circulating in whitefly populations and for its partial sequences integrated into the B. tabaci genome, with one integrant locus potentially expressing a fusion protein composed of viral Rep endonuclease and host DNA-binding domains. This suggests a long-term virus-host interaction and neofunctionalization of BtaDV-derived endogenous viral elements. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

15 pages, 1347 KiB  
Article
Investigation of the Prevalence of High-Risk Human Papillomavirus, Human Herpesvirus-8, and Herpes Simplex Virus-2 in Cervical Biopsy Samples Using the Real-Time PCR Method
by Ayfer Bakır, Betül Yüzügüldü, Eylül Beren Tanık, Muhammed Furkan Kürkçü, Gizem Korkut and Firdevs Şahin Duran
Trop. Med. Infect. Dis. 2025, 10(7), 200; https://doi.org/10.3390/tropicalmed10070200 - 17 Jul 2025
Viewed by 314
Abstract
Persistent high-risk human papillomavirus (HR-HPV) infection is closely associated with the development of cervical intraepithelial neoplasia (CIN) and cervical cancer. In recent years, the potential impact of viral co-infections on this process has also been investigated. This study investigated the presence of HR-HPV, [...] Read more.
Persistent high-risk human papillomavirus (HR-HPV) infection is closely associated with the development of cervical intraepithelial neoplasia (CIN) and cervical cancer. In recent years, the potential impact of viral co-infections on this process has also been investigated. This study investigated the presence of HR-HPV, HSV-1/2, and HHV-8 DNA in formalin-fixed paraffin-embedded (FFPE) cervical biopsy samples, as well as their association with lesion severity. A total of 276 FFPE cervical tissue samples were evaluated. Viral DNA was detected by real-time PCR. The samples were histopathologically classified as normal/non-dysplastic, low-grade (LSIL), and high-grade (HSIL) lesions. HR-HPV DNA was detected in 112 samples (40.6%), with the highest prevalence observed in the 30–39 age group (51.2%). Among the HPV-positive cases, 46.5% (52/112) had single-type infections, 32.1% (36/112) had multiple-type infections, and 21.4% (24/112) were untypable. Together, these categories accounted for all HPV-positive samples. The most common genotype was HPV-16 (16.7%). HHV-8 and HSV-2 DNA were not detected. HSV-1 DNA was detected in only three non-dysplastic, HPV-negative cervical samples. In conclusion, HR-HPV DNA was detected in 40.6% of cervical biopsy samples and showed a significant association with increasing histological severity, highlighting its critical role in the progression of cervical lesions. Although the absence of HHV-8 and HSV-2 suggests a limited contribution of these viruses to cervical disease, the use of a single real-time PCR assay limits the ability to draw generalized conclusions regarding their clinical relevance. Further large-scale, multicenter studies employing both tissue-based and serological approaches are needed to validate these findings and to better understand the dynamics of viral co-infections in cervical disease. Full article
(This article belongs to the Special Issue Molecular Epidemiology of Human Papillomavirus Infection)
Show Figures

Figure 1

34 pages, 2326 KiB  
Review
Non-Coding RNAs and Immune Evasion in Human Gamma-Herpesviruses
by Tablow S. Media, Laura Cano-Aroca and Takanobu Tagawa
Viruses 2025, 17(7), 1006; https://doi.org/10.3390/v17071006 - 17 Jul 2025
Viewed by 374
Abstract
Herpesviruses are DNA viruses that evade the immune response and persist as lifelong infections. Human gamma-herpesviruses Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) are oncogenic; they can lead to cancer. Oncogenic viruses are responsible for 10–15% of human cancer development, which can [...] Read more.
Herpesviruses are DNA viruses that evade the immune response and persist as lifelong infections. Human gamma-herpesviruses Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) are oncogenic; they can lead to cancer. Oncogenic viruses are responsible for 10–15% of human cancer development, which can have poor prognoses. Non-coding RNAs (ncRNAs) are RNAs that regulate gene expression without encoding proteins, and are being studied for their roles in viral immune evasion, infection, and oncogenesis. ncRNAs are classified by their size, and include long non-coding RNAs, microRNAs, and circular RNAs. EBV and KSHV manipulate host ncRNAs, and encode their own ncRNAs, regulating host processes and immune responses. Viral ncRNAs regulate host functions by post-transcriptionally modifying host RNAs, and by serving as mimics of other host RNAs, promoting immune evasion. ncRNAs in gamma-herpesvirus infection are also important for tumorigenesis, as dampening immune responses via ncRNAs can upregulate pro-tumorigenic pathways. Emerging topics such as RNA modifications, target-directed miRNA degradation, competing endogenous RNA networks, and lncRNA/circRNA–miRNA interactions provide new insights into ncRNA functions. This review compares ncRNAs and the mechanisms of viral immune evasion in EBV and KSHV, while also expanding on recent developments in the roles of ncRNAs in immune evasion, viral infection, and oncogenesis. Full article
Show Figures

Figure 1

21 pages, 4501 KiB  
Article
Functional Characterization of Dual-Initiation Codon-Derived V2 Proteins in Tomato Yellow Leaf Curl Virus
by Zhiyuan Wang, Pan Gong, Siwen Zhao, Fangfang Li and Xueping Zhou
Agronomy 2025, 15(7), 1726; https://doi.org/10.3390/agronomy15071726 - 17 Jul 2025
Viewed by 298
Abstract
Tomato yellow leaf curl virus (TYLCV) is a highly destructive pathogen of global tomato crops. The open reading frame (ORF) of TYLCV V2 contains two initiation codons (ATG1/V2-1 and ATG2/V2-2), producing distinct protein isoforms. Using custom antibodies, we confirmed V2-1 [...] Read more.
Tomato yellow leaf curl virus (TYLCV) is a highly destructive pathogen of global tomato crops. The open reading frame (ORF) of TYLCV V2 contains two initiation codons (ATG1/V2-1 and ATG2/V2-2), producing distinct protein isoforms. Using custom antibodies, we confirmed V2-1 and V2-2 expression in infected Nicotiana benthamiana and tomato plants. Deletion mutants revealed their specialized roles: V2-1 was indispensable for viral replication and systemic spread—its loss severely reduced pathogenicity and genome accumulation. V2-2 acted as an auxiliary factor, and its deletion attenuated symptoms but kept the virus infection. Host-specific effects were observed—V2-1 deletion led to lower viral DNA/coat protein levels in N. benthamiana than in tomato, suggesting host-dependent regulation. Mutant viruses declined progressively in tomato, indicating host defense clearance. Heterologous co-expression of both isoforms via potato virus X induced systemic necrosis in N. benthamiana, demonstrating functional synergy between isoforms. Both initiation codons were essential for V2-mediated suppression of transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). This study uncovers the mechanistic divergence of V2 isoforms in TYLCV infection, highlighting their collaborative roles in virulence and host manipulation. The findings advance understanding of geminivirus coding complexity and offer potential targets for resistance strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

Back to TopTop