Presence of Protozoan Viruses in Vaginal Samples from Pregnant Women and Their Association with Trichomoniasis
Abstract
1. Introduction
1.1. Vaginal Virome
1.2. Trichomonas Vaginalis and TVVs
1.3. Giant Protozoan Viruses in Human Samples
2. Materials and Methods
2.1. Participants and Ethical Approval
2.2. Sample Collection
2.3. Diagnostic Testing (TV Detection)
2.4. Viral Nucleic Acid Extraction
2.5. Detection of TVVs and Giant Viruses
2.6. SEM Imaging
2.7. Statistical Analysis
3. Results
3.1. Association Between TV Infection and Pregnancy Complications
3.2. Prevalence of TVV Subtypes in Infected Patients
3.3. Quantitative Analysis of TVV RNA Levels in Vaginal Swabs and T. vaginalis Cultures
3.4. Electron Microscopy Visualization of TVV Particles in TV Cultures
3.5. Detection of Giant DNA Viruses in Vaginal Samples from TV-Infected and Uninfected Women
3.6. Transcriptional Activity of Giant Virus Genes in TV Cultures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full term |
hMPV | Human metapneumovirus |
RT-PCR | Reverse transcription polymerase chain reaction |
CT | Computed tomography |
PMCT | Postmortem computed tomography |
ED | Emergency department |
ICU | Intensive care unit |
DM | Diabetes mellitus |
HTN | Hypertension |
COPD | Chronic obstructive pulmonary disease |
GI | Gastrointestinal |
CNS | Central nervous system |
DAD | Diffuse alveolar damage |
LRTI | Lower respiratory tract infection |
CRP | C-reactive protein |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
ALP | Alkaline phosphatase |
LDH | Lactate dehydrogenase |
GGT | Gamma-glutamyl transferase |
H&E | Hematoxylin and eosin |
IHC | Immunohistochemistry |
DNA | Deoxyribonucleic acid |
RNA | Ribonucleic acid |
References
- Jakobsen, R.R.; Haahr, T.; Humaidan, P.; Jensen, J.S.; Kot, W.P.; Castro-Mejia, J.L.; Deng, L.; Leser, T.D.; Nielsen, D.S. Characterization of the Vaginal DNA Virome in Health and Dysbiosis. Viruses 2020, 12, 1143. [Google Scholar] [CrossRef]
- Britto, A.M.A.; Siqueira, J.D.; Curty, G.; Goes, L.R.; Policarpo, C.; Meyrelles, A.R.; Furtado, Y.; Almeida, G.; Giannini, A.L.M.; Machado, E.S.; et al. Microbiome analysis of Brazilian women cervix reveals specific bacterial abundance correlation to RIG-like receptor gene expression. Front. Immunol. 2023, 14, 1147950. [Google Scholar] [CrossRef]
- Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull. World Health Organ. 2019, 97, 548–562P. [Google Scholar] [CrossRef]
- Van Gerwen, O.T.; Opsteen, S.A.; Graves, K.J.; Muzny, C.A. Trichomoniasis. Infect. Dis. Clin. N. Am. 2023, 37, 245–265. [Google Scholar] [CrossRef] [PubMed]
- Menezes, C.B.; Frasson, A.P.; Tasca, T. Trichomoniasis—Are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microb. Cell 2016, 3, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Swygard, H.; Seña, A.C.; Hobbs, M.M.; Cohen, M.S. Trichomoniasis: Clinical manifestations, diagnosis and management. Sex. Transm. Infect. 2004, 80, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Masha, S.C.; Cools, P.; Sanders, E.J.; Vaneechoutte, M.; Crucitti, T. Trichomonas vaginalis and HIV infection acquisition: A systematic review and meta-analysis. Sex. Transm. Infect. 2019, 95, 36–42. [Google Scholar] [CrossRef]
- Dessì, D.; Margarita, V.; Cocco, A.R.; Marongiu, A.; Fiori, P.L.; Rappelli, P. Trichomonas vaginalis and Mycoplasma hominis: New tales of two old friends. Parasitology 2019, 146, 1150–1155. [Google Scholar] [CrossRef]
- Goodman, R.P.; Freret, T.S.; Kula, T.; Geller, A.M.; Talkington, M.W.; Tang-Fernandez, V.; Suciu, O.; Demidenko, A.A.; Ghabrial, S.A.; Beach, D.H.; et al. Clinical isolates of Trichomonas vaginalis concurrently infected by strains of up to four Trichomonasvirus species (Family Totiviridae). J. Virol. 2011, 85, 4258–4270. [Google Scholar] [CrossRef]
- Fraga, J.; Rojas, L.; Sariego, I.; Fernández-Calienes, A. Double-stranded RNA viral infection of Trichomonas vaginalis and correlation with genetic polymorphism of isolates. Exp. Parasitol. 2011, 127, 593–599. [Google Scholar] [CrossRef]
- Manny, A.R.; Hetzel, C.A.; Mizani, A.; Nibert, M.L. Discovery of a Novel Species of Trichomonasvirus in the Human Parasite Trichomonas vaginalis Using Transcriptome Mining. Viruses 2022, 14, 548. [Google Scholar] [CrossRef]
- Ding, H.; Gong, P.; Yang, J.; Li, J.; Li, H.; Zhang, G.; Zhang, X. Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis. Korean J. Parasitol. 2017, 55, 121–128. [Google Scholar] [CrossRef]
- El-Gayar, E.K.; Mokhtar, A.B.; Hassan, W.A. Molecular characterization of double-stranded RNA virus in Trichomonas vaginalis Egyptian isolates and its association with pathogenicity. Parasitol. Res. 2016, 115, 4027–4036. [Google Scholar] [CrossRef]
- Lu, X.; Lu, Q.; Zhu, R.; Sun, M.; Chen, H.; Ge, Z.; Jiang, Y.; Wang, Z.; Zhang, L.; Zhang, W.; et al. Metagenomic analysis reveals the diversity of the vaginal virome and its association with vaginitis. Front. Cell. Infect. Microbiol. 2025, 15, 1582553. [Google Scholar] [CrossRef] [PubMed]
- Gelbart, S.M.; Thomason, J.L.; Osypowski, P.J.; Kellett, A.V.; James, J.A.; Broekhuizen, F.F. Growth of Trichomonas vaginalis in commercial culture media. J. Clin. Microbiol. 1990, 28, 962–964. [Google Scholar] [CrossRef] [PubMed]
- Karalyan, Z.A.; Ghonyan, S.A.; Poghosyan, D.A.; Hakobyan, L.H.; Avagyan, H.R.; Avetisyan, A.S.; Abroyan, L.O.; Poghosyan, A.A.; Hakobyan, S.A.; Manukyan, G.P. Infection of Human Macrophage-Like Cells by African Swine Fever Virus. Front. Biosci. 2024, 29, 164. [Google Scholar] [CrossRef]
- Yin, J.L.; Shackel, N.A.; Zekry, A.; McGuinness, P.H.; Richards, C.; Van Der Putten, K.; Mccaughan, G.; Eris, J.M.; Bishop, G.A. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol. Cell Biol. 2001, 79, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Jehee, I.; van der Veer, C.; Himschoot, M.; Hermans, M.; Bruisten, S. Direct detection of Trichomonas vaginalis virus in Trichomonas vaginalis positive clinical samples from the Netherlands. J. Virol. Methods 2017, 250, 1–5. [Google Scholar] [CrossRef]
- Avagyan, H.R.; Hakobyan, S.A.; Poghosyan, A.A.; Bayramyan, N.V.; Arzumanyan, H.H.; Abroyan, L.O.; Avetisyan, A.S.; Hakobyan, L.A.; Karalova, E.M.; Karalyan, Z.A. African Swine Fever Virus Manipulates the Cell Cycle of G0-Infected Cells to Access Cellular Nucleotides. Viruses 2022, 14, 1593. [Google Scholar] [CrossRef]
- Anderson, N.G.; Waters, D.A.; Nunley, C.E.; Gibson, R.F.; Schilling, R.M.; Denny, E.C.; Cline, G.; Babelay, E.; Perardi, T.E. K-Series centrifuges I. Development of the K-II continuous-sample-flow-with-banding centrifuge system for vaccine purification. Anal. Biochem. 1969, 32, 460–494. [Google Scholar] [CrossRef]
- Allsworth, J.E.; Ratner, J.A.; Peipert, J.F. Trichomoniasis and other sexually transmitted infections: Results from the 2001–2004 National Health and Nutrition Examination Surveys. Sex. Transm. Dis. 2009, 36, 738–744. [Google Scholar] [CrossRef]
- Asmah, R.H.; Blankson, H.N.A.; Seanefu, K.A.; Obeng-Nkrumah, N.; Awuah-Mensah, G.; Cham, M.; Ayeh-Kumi, P.F. Trichomoniasis and associated co-infections of the genital tract among pregnant women presenting at two hospitals in Ghana. BMC Womens Health 2017, 17, 130. [Google Scholar] [CrossRef]
- Hirt, R.P. Trichomonas vaginalis virulence factors: An integrative overview. Sex. Transm. Infect. 2013, 89, 439–443. [Google Scholar] [CrossRef]
- Graves, K.J.; Ghosh, A.P.; Kissinger, P.J.; Muzny, C.A. Trichomonas vaginalis virus: A review of the literature. Int. J. STD AIDS 2019, 30, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Khanaliha, K.; Masoumi-Asl, H.; Bokharaei-Salim, F.; Tabatabaei, A.; Naghdalipoor, M. Double-stranded RNA viral infection of Trichomonas vaginalis (TVV1) in Iranian isolates. Microb. Pathog. 2017, 109, 56–60. [Google Scholar] [CrossRef]
- Bahadory, S.; Aminizadeh, S.; Taghipour, A.; Bokharaei-Salim, F.; Khanaliha, K.; Razizadeh, M.H.; Soleimani, A.; Beikzadeh, L.; Khatami, A. A systematic review and meta-analysis on the global status of Trichomonas vaginalis virus in Trichomonas vaginalis. Microb. Pathog. 2021, 158, 105058. [Google Scholar] [CrossRef] [PubMed]
- Cotch, M.F.; Pastorek, J.G., 2nd; Nugent, R.P.; Hillier, S.L.; Gibbs, R.S.; Martin, D.H.; Eschenbach, D.A.; Edelman, R.; Carey, C.J.; Regan, J.A.; et al. Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex. Transm. Dis. 1997, 24, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Margarita, V.; Marongiu, A.; Diaz, N.; Dessì, D.; Fiori, P.L.; Rappelli, P. Prevalence of double-stranded RNA virus in Trichomonas vaginalis isolated in Italy and association with the symbiont Mycoplasma hominis. Parasitol. Res. 2019, 118, 3565–3570. [Google Scholar] [CrossRef]
- Masha, S.C.; Cools, P.; Crucitti, T.; Sanders, E.J.; Vaneechoutte, M. Molecular typing of Trichomonas vaginalis isolates by actin gene sequence analysis and carriage of T. vaginalis viruses. Parasites Vectors 2017, 10, 537. [Google Scholar] [CrossRef]
- Stout, M.J.; Brar, A.K.; Herter, B.N.; Rankin, A.; Wylie, K.M. The plasma virome in longitudinal samples from pregnant patients. Front. Cell. Infect. Microbiol. 2023, 13, 1061230. [Google Scholar] [CrossRef]
- Happel, A.U.; Varsani, A.; Balle, C.; Passmore, J.A.; Jaspan, H. The Vaginal Virome-Balancing Female Genital Tract Bacteriome, Mucosal Immunity, and Sexual and Reproductive Health Outcomes? Viruses 2020, 12, 832. [Google Scholar] [CrossRef]
- Wylie, K.M.; Wylie, T.N.; Cahill, A.G.; Macones, G.A.; Tuuli, M.G.; Stout, M.J. The vaginal eukaryotic DNA virome and preterm birth. Am. J. Obs. Gynecol. 2018, 219, 189.e1–189.e12. [Google Scholar] [CrossRef]
- Li, F.; Chen, C.; Wei, W.; Wang, Z.; Dai, J.; Hao, L.; Song, L.; Zhang, X.; Zeng, L.; Du, H.; et al. The metagenome of the female upper reproductive tract. Gigascience 2018, 7, giy107. [Google Scholar] [CrossRef]
- Colson, P.; Fancello, L.; Gimenez, G.; Armougom, F.; Desnues, C.; Fournous, G.; Yoosuf, N.; Million, M.; La Scola, B.; Raoult, D. Evidence of the megavirome in humans. J. Clin. Virol. 2013, 57, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Lu, X.J.; Zhang, Y.; Cheung, C.P.; Lam, S.; Zhang, F.; Tang, W.; Ching, J.Y.L.; Zhao, R.; Chan, P.K.S.; et al. Gut mucosal virome alterations in ulcerative colitis. Gut 2019, 68, 1169–1179. [Google Scholar] [CrossRef]
- Saadi, H.; Reteno, D.G.; Colson, P.; Aherfi, S.; Minodier, P.; Pagnier, I.; Raoult, D.; La Scola, B. Shan virus: A new mimivirus isolated from the stool of a Tunisian patient with pneumonia. Intervirology 2013, 56, 424–429. [Google Scholar] [CrossRef]
- Ansari, M.H.; Ebrahimi, M.; Fattahi, M.R.; Gardner, M.G.; Safarpour, A.R.; Faghihi, M.A.; Lankarani, K.B. Viral metagenomic analysis of fecal samples reveals an enteric virome signature in irritable bowel syndrome. BMC Microbiol. 2020, 20, 123. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, K.; Garg, A.; Pandey, A.D.; Sharma, H.; Kumar, M.; Vrati, S. Insights into the human gut virome by sampling a population from the Indian subcontinent. J. Gen. Virol. 2022, 103, 001774. [Google Scholar] [CrossRef]
- Sitaraman, L.; Lewicky-Gaupp, C.; Rao, S.S. Postpartum Anorectal and Pelvic Floor Disorders: Evaluation, Treatment, and Prevention. Curr. Gastroenterol. Rep. 2025, 27, 48. [Google Scholar] [CrossRef]
- Arroyo, R.; González-Robles, A.; Martínez-Palomo, A.; Alderete, J.F. Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence. Mol. Microbiol. 1993, 7, 299–309. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghardyan, G.; Abrahamyan, L.; Julhakyan, K.; Davtyan, H.; Martirosyan, N.; Arakelova, E.; Avagyan, H.; Hakobyan, S.; Vardanyan, T.; Karalyan, N.; et al. Presence of Protozoan Viruses in Vaginal Samples from Pregnant Women and Their Association with Trichomoniasis. Pathogens 2025, 14, 764. https://doi.org/10.3390/pathogens14080764
Ghardyan G, Abrahamyan L, Julhakyan K, Davtyan H, Martirosyan N, Arakelova E, Avagyan H, Hakobyan S, Vardanyan T, Karalyan N, et al. Presence of Protozoan Viruses in Vaginal Samples from Pregnant Women and Their Association with Trichomoniasis. Pathogens. 2025; 14(8):764. https://doi.org/10.3390/pathogens14080764
Chicago/Turabian StyleGhardyan, Gegham, Lusine Abrahamyan, Karen Julhakyan, Hakob Davtyan, Norayr Martirosyan, Elina Arakelova, Hranush Avagyan, Sona Hakobyan, Tigranuhi Vardanyan, Naira Karalyan, and et al. 2025. "Presence of Protozoan Viruses in Vaginal Samples from Pregnant Women and Their Association with Trichomoniasis" Pathogens 14, no. 8: 764. https://doi.org/10.3390/pathogens14080764
APA StyleGhardyan, G., Abrahamyan, L., Julhakyan, K., Davtyan, H., Martirosyan, N., Arakelova, E., Avagyan, H., Hakobyan, S., Vardanyan, T., Karalyan, N., & Karalyan, Z. (2025). Presence of Protozoan Viruses in Vaginal Samples from Pregnant Women and Their Association with Trichomoniasis. Pathogens, 14(8), 764. https://doi.org/10.3390/pathogens14080764