Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (470)

Search Parameters:
Keywords = Cu2+ ions detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1832 KB  
Article
Integrated Monitoring of Water Quality, Metal Ions, and Antibiotic Residues, with Isolation and Optimization of Enrofloxacin-Degrading Bacteria in American Shad (Alosa sapidissima) Aquaculture Systems
by Yao Zheng, Jiajia Li, Ampeire Yona, Xiaofei Wang, Xue Li, Julin Yuan and Gangchun Xu
J. Xenobiot. 2025, 15(6), 174; https://doi.org/10.3390/jox15060174 - 22 Oct 2025
Viewed by 291
Abstract
This study investigated water quality, metal ion concentrations, and antibiotic residues specifically enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), across six American shad (Alosa sapidissima) aquaculture sites over a one-year period. Water and sediment samples were analyzed to determine contamination levels, [...] Read more.
This study investigated water quality, metal ion concentrations, and antibiotic residues specifically enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), across six American shad (Alosa sapidissima) aquaculture sites over a one-year period. Water and sediment samples were analyzed to determine contamination levels, and ENR-degrading bacteria were isolated from the culture environment to explore their potential use in bioremediation. Findings showed that NH3-N and total suspended solids (TSS) exceeded recommended standards at all sampling sites. Elevated levels of Li, Na (except S1), Fe, Ni (except S2 and S4), Sr, and Cu were found at site S3. Site S5 recorded the highest concentrations of Al, As, and Pb, while Cd was most abundant at S6. In sediments, S5 showed higher levels of Mg, K (except S3), Ca, Cr, Mn, Fe, Ni, As, Pb, Cu, and Zn (except S3). ENR and CIP were detected in all water and sediment samples, with a 100% detection rate. The highest ENR (16.68–3215.95 mg·kg−1) and CIP (3.90–459.60 mg·kg−1) concentrations in water occurred at site S6, following a seasonal pattern of autumn > winter > summer > spring. In sediments, the maximum ENR (41.43–133.67 mg·kg−1) and CIP (12.36–23.71 mg·kg−1) levels were observed in spring. Two ENR-degrading bacterial strains were successfully isolated and identified as Enterococcus and Bacillus. Optimal degradation was achieved at 30 °C, pH 8.0, 6% inoculum, and 3000 Lux, resulting in a 64.2% reduction in ENR after 72 h. Under slightly different conditions (25 °C, pH 10), degradation reached 58.5%. This study provides an efficient strain resource for the bioremediation of ENR pollution in the aquaculture water of American shad. Full article
Show Figures

Graphical abstract

21 pages, 2923 KB  
Review
Structure-Based Understanding of Cu2+ Coordination in Fluorescent Proteins for Metal Biosensor Applications—A Review
by Ki Hyun Nam
Biosensors 2025, 15(10), 675; https://doi.org/10.3390/bios15100675 - 7 Oct 2025
Viewed by 530
Abstract
Copper ions play essential roles in biological systems, but they can cause toxicity following dysregulation or excessive accumulation. In addition, environmental overexposure to Cu2+ can lead to serious agricultural and ecological issues. Accurate detection of Cu2+ is therefore critical in both [...] Read more.
Copper ions play essential roles in biological systems, but they can cause toxicity following dysregulation or excessive accumulation. In addition, environmental overexposure to Cu2+ can lead to serious agricultural and ecological issues. Accurate detection of Cu2+ is therefore critical in both medical diagnostics and environmental monitoring. Fluorescent proteins (FPs), which are widely used in molecular and cell biology, have been suggested as attractive modalities for metal ion detection owing to their biocompatibility and specific responsiveness to metal ions. The fluorescence emission of FPs is efficiently quenched by Cu2+ in a reversible manner, suggesting the potential to develop Cu2+-responsive biosensors. To develop highly sensitive and selective Cu2+ biosensors based on FPs, an understanding of Cu2+ binding to FPs is crucial, along with FP engineering guided by structural analysis. In this study, the molecular properties of FPs and their fluorescence responses to metal ions were reviewed. The crystal structures of FPs complexed with Cu2+ were analyzed, revealing both specific and nonspecific Cu2+ binding modes. This structural analysis provides insights into the potential of engineering FPs to enhance sensitivity and selectivity for Cu2+ detection. Full article
(This article belongs to the Special Issue Fluorescent Probes: Design and Biological Applications)
Show Figures

Figure 1

16 pages, 2870 KB  
Article
Coupling Rare-Earth Complexes with Carbon Dots via Surface Imprinting: A New Strategy for Spectroscopic Cu2+ Sensors
by Zuoyi Liu, Bo Hu and Minjia Meng
Molecules 2025, 30(19), 3967; https://doi.org/10.3390/molecules30193967 - 2 Oct 2025
Viewed by 393
Abstract
A surface molecularly imprinted ratiometric fluorescent sensor (Eu/CDs@SiO2@IIPs) was constructed for the selective and visual detection of Cu2+. The sensor integrates blue-emitting carbon dots as an internal reference and a custom-designed Eu(III) complex, Eu(MAA)2(2,9-phen), as both the [...] Read more.
A surface molecularly imprinted ratiometric fluorescent sensor (Eu/CDs@SiO2@IIPs) was constructed for the selective and visual detection of Cu2+. The sensor integrates blue-emitting carbon dots as an internal reference and a custom-designed Eu(III) complex, Eu(MAA)2(2,9-phen), as both the functional and fluorescent monomer within a surface-imprinted polymer layer, enabling efficient ratiometric fluorescence response. This structural design ensured that all fluorescent monomers were located at the recognition sites, thereby reducing background fluorescence interference and enhancing the accuracy of signal changes. Under optimized conditions, the sensor exhibited a detection limit of 2.79 nM, a wide linear range of 10–100 nM, and a rapid response time of 3.0 min. Moreover, the uncoordinated nitrogen atoms in the phenanthroline ligand improved resistance to interference from competing ions, significantly enhancing selectivity. Practical applicability was validated by spiked recovery tests in deionized and river water, with results showing good agreement with ICP-MS analysis. These findings highlight the potential of Eu/CDs@SiO2@IIPs as a sensitive, selective, and portable sensing platform for on-site monitoring of Cu2+ in complex water environments. Full article
(This article belongs to the Special Issue 5th Anniversary of the "Applied Chemistry" Section)
Show Figures

Figure 1

21 pages, 10742 KB  
Article
Polymer Films of 2-(Azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole: Surface Characterization and Electrochemical Sensing of Heavy Metals
by Cornelia Musina (Borsaru), Mihaela Cristea, Raluca Gavrilă, Oana Brincoveanu, Florin Constantin Comănescu, Veronica Anăstăsoaie, Gabriela Stanciu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(19), 3959; https://doi.org/10.3390/molecules30193959 - 2 Oct 2025
Viewed by 319
Abstract
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through [...] Read more.
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through oxidative electro polymerization on glassy carbon electrodes in L solutions in 0.1 M TBAP in acetonitrile. They were characterized through electrochemistry. The surface of chemically modified electrodes (CMEs) prepared through controlled potential electrolysis (CPE) at variable concentrations, potentials, and electric charges was characterized through scanning electron spectroscopy, atomic force microscopy, and Raman spectroscopy, which confirmed the films’ formation. Electrochemical sensing of the films deposited on these CMEs was tested with respect to heavy metal (HM) ion analysis in aqueous solutions to obtain sensors for HMs. The obtained CMEs presented the best characteristics for the recognition of Pb among the investigated HMs (Cd, Pb, Cu, and Hg). Calibration curves were obtained for the analysis of Pb(II) in aqueous solutions, which allowed for the estimation of a good detection limit of this cation (<10−8 M) for non-optimized CMEs. The resulting CMEs show promise for deployment in portable environmental monitoring systems, with implications for public health protection and environmental safety. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Figure 1

14 pages, 3115 KB  
Article
The Scattering Effect-Based Smartphone-Assisted Colorimetric Sensing for Alkaline Phosphatase Detection
by Hao Zhang
Biosensors 2025, 15(10), 650; https://doi.org/10.3390/bios15100650 - 1 Oct 2025
Viewed by 390
Abstract
A novel, cost-effective, label-free biosensing strategy has been established for real-time quantification of alkaline phosphatase (ALP) activity, integrating the Tyndall effect with smartphone imaging technology. This method utilizes a handheld laser diode to probe the enzyme-triggered in situ assembly of Cu-guanosine monophosphate (Cu-GMP) [...] Read more.
A novel, cost-effective, label-free biosensing strategy has been established for real-time quantification of alkaline phosphatase (ALP) activity, integrating the Tyndall effect with smartphone imaging technology. This method utilizes a handheld laser diode to probe the enzyme-triggered in situ assembly of Cu-guanosine monophosphate (Cu-GMP) coordination polymers, which exhibit tunable Tyndall scattering properties. In the absence of ALP, Cu2+ ions chelate with GMP to form Cu-GMP coordination polymers, generating an intense Tyndall effect. Conversely, ALP-mediated hydrolysis of GMP disrupts the formation of Cu-GMP coordination polymers, resulting in diminished light scattering. The intensity of the Tyndall effect is directly proportional to the concentration of Cu-GMP coordination polymers, which in turn correlates with ALP activity levels. A comprehensive investigation of experimental parameters was conducted, including pH, incubation temperature, GMP concentration, incubation time, synthesis duration, and CuSO4 concentration. Under optimized conditions, the developed smartphone-assisted colorimetric assay enables the detection of ALP activity within the range of 0.375–3.75 U/mL, with a limit of detection of 0.184 U/mL. The application of this method to serum samples yielded recovery rates ranging from 102.6% to 109.0%. In summary, this smartphone-based colorimetric platform offers a portable and versatile approach for instrument-free detection of ALP activity, with potential applications in point-of-care diagnostics and resource-limited settings. Full article
(This article belongs to the Special Issue Smartphone-Based Biosensor Devices)
Show Figures

Figure 1

17 pages, 2371 KB  
Article
Colorimetric and SERS-Based Multimode Detection Platform for Cu(II) Ions Using Peptide–Gold Nanoparticles
by Panangattukara Prabhakaran Praveen Kumar
Colorants 2025, 4(4), 29; https://doi.org/10.3390/colorants4040029 - 24 Sep 2025
Viewed by 612
Abstract
Excessive copper ions in the human body can cause a variety of diseases, such as gastrointestinal disorders, cirrhosis, and Alzheimer’s disease. Techniques like Inductively Coupled Plasma–Mass Spectroscopy and Atomic Absorption Spectroscopy are available for copper detection, but the associated cost issues for sample [...] Read more.
Excessive copper ions in the human body can cause a variety of diseases, such as gastrointestinal disorders, cirrhosis, and Alzheimer’s disease. Techniques like Inductively Coupled Plasma–Mass Spectroscopy and Atomic Absorption Spectroscopy are available for copper detection, but the associated cost issues for sample preparation and labor limit their application for on-site detection. Herein, we are reporting a versatile method for detecting copper ions using a peptide-functionalized gold nanoparticle sensor in combination with various optical spectroscopic techniques. The peptide (CW) exhibited selective sensing ability for Cu(II) with visual colorimetric and optical spectroscopic changes compared to other metal ions tested. CW showed a visual colorimetric response from colorless to light brown color after interaction with Cu(II). Converting CW to a gold nanoparticle appended (CW-AuNPs) nanoplatform enabled a multimodal detection platform for Cu (II), which utilizes colorimetric and optical spectrum changes and surface-enhanced Raman spectroscopy (SERS) to enable highly sensitive sensing of Cu(II), even at extremely low concentrations (76 nms.). CW-AuNPs exhibit a controlled aggregation property in the presence of Cu(II), resulting in the creation of hot spots for SERS-based detection. Moreover, the peptide unit attached to the gold nanoparticles serves both as a binding motif for Cu(II) and as a Raman reporter for Cu(II) sensing. Our comprehensive analysis, including solution-state and dry-mapping Raman spectroscopic studies, demonstrates remarkable picomolar sensitivity of the peptide–gold nanoparticle system for Cu(II) detection. Moreover, we prepared a paper test strip from CW-AuNPs and used it as a visual colorimetric platform for sensitive detection of copper ions. Full article
Show Figures

Figure 1

36 pages, 6718 KB  
Article
Transylvanian Grape Pomaces as Sustainable Sources of Antioxidant Phenolics and Fatty Acids—A Study of White and Red Cultivars
by Veronica Sanda Chedea, Liliana Lucia Tomoiagă, Mariana Ropota, Gabriel Marc, Floricuta Ranga, Maria Doinița Muntean, Alexandra Doina Sîrbu, Ioana Sorina Giurca, Maria Comșa, Ioana Corina Bocsan, Anca Dana Buzoianu, Hesham Kisher and Raluca Maria Pop
Antioxidants 2025, 14(10), 1152; https://doi.org/10.3390/antiox14101152 - 23 Sep 2025
Viewed by 609
Abstract
Grape pomace (GP), a significant by-product of winemaking, is gaining increasing recognition for its potential as a source of bioactive compounds with antioxidant and cardioprotective properties. This study aimed to characterize the polyphenolic profile, fatty acid composition, and antioxidant activity of 17 GP [...] Read more.
Grape pomace (GP), a significant by-product of winemaking, is gaining increasing recognition for its potential as a source of bioactive compounds with antioxidant and cardioprotective properties. This study aimed to characterize the polyphenolic profile, fatty acid composition, and antioxidant activity of 17 GP samples from Transylvanian cultivars. Polyphenolic content was determined using the Folin–Ciocalteu method and high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC–DAD–ESI MS) analysis. Fatty acid composition was analyzed using gas chromatography with flame ionization detection (GC–FID). Antioxidant capacity was assessed using five methods, which included the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2′-azino-bis (3-ethylbenzothialzoline-6-sulfonic acid) (ABTS) radical scavenging, ferric-reducing antioxidant power (FRAP), cupric ion reducing antioxidant capacity (CUPRAC), and reducing power (RP) assays. Additionally, all extracts were analyzed by Fourier transform infrared (FTIR) spectroscopy to identify the presence of functional groups and chemical bonds associated with bioactive compounds. The results showed that Neuburger (NE), Radames (RA), and Regent (RE) cultivars had the highest phenolic concentrations, particularly of catechin, epicatechin, and procyanidin dimers. NE and Feteascǎ Regalǎ (FR) exhibited the greatest radical scavenging and electron transfer activities across multiple antioxidant assays. Rose Blaj (RB) and Astra (AS) displayed the most favorable fatty acid profiles, with high unsaturated-to-saturated fatty acid (UFA/SFA) and hypocholesterolemic-to-hypercholesterolemic fatty acid (H/H) ratios, as well as low atherogenicity (AI) and thrombogenicity (TI) indices, suggesting cardioprotective potential. Additionally, RB and NE cultivars also demonstrated a strong chelation of Cu2+ and Fe2+ ions, enhancing their antioxidant efficacy by mitigating metal-catalyzed oxidative stress. These findings underscore the potential of GP, particularly from NE, RB, RA, and AS cultivars, the last three of which were homologated in Transylvania at SCDVV Blaj, as valuable sources of health-promoting compounds for use in food, nutraceuticals, and other health-related applications. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

17 pages, 1878 KB  
Article
Transition Metal Exchanged β Zeolites: CoM/β (M = Zn, Ce, and Cu) as Oxygen Electrode in Alkaline Media
by Jadranka Milikić, Katarina Rondović, Ljiljana Damjanović-Vasilić, Vladislav Rac, Rastko Vasilić and Dalibor Stanković
Processes 2025, 13(9), 2996; https://doi.org/10.3390/pr13092996 - 19 Sep 2025
Viewed by 373
Abstract
The zeolite structure, with its precisely distinct pores, settled cages, and adsorption sites, enables the formation and stabilization of isolated metal centers. These well-defined structures make metal-loaded zeolites promising catalysts. Three different β zeolites were synthesized by an aqueous ion-exchange procedure, firstly with [...] Read more.
The zeolite structure, with its precisely distinct pores, settled cages, and adsorption sites, enables the formation and stabilization of isolated metal centers. These well-defined structures make metal-loaded zeolites promising catalysts. Three different β zeolites were synthesized by an aqueous ion-exchange procedure, firstly with cobalt (Co), and secondly with zinc (Zn), cerium (Ce), and copper (Cu), to make three bimetallic CoZn/β, CoCe/β, and CoCu/β zeolites, respectively. X-ray powder diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive spectroscopy, and low-temperature nitrogen adsorption analysis revealed the structural, morphological, and surface properties of the studied materials, while optical properties were investigated by UV-Vis diffuse reflectance spectroscopy. The lowest onset potential of 1.67 V was obtained for both CoZn/β and CoCe/β, while the somewhat positive value of 1.70 V was observed for CoCu/β. CoZn/β exhibited the lowest value of Tafel slope of 89 mV dec−1, while slightly higher values of 109 and 113 mV dec−1 were calculated for CoCe/β and CoCu/β during ORR, respectively. CoZn/β showed four-electron pathways of ORR, CoCu/β showed a mixed ORR mechanism, while CoCe/β offered two-electron pathways of ORR. All presented results established that CoZn/β had the highest OER/ORR activity, followed by CoCu/β, while CoCe/β had the lowest activity detected. Full article
Show Figures

Figure 1

14 pages, 4225 KB  
Article
Portable Bacterial Cellulose-Based Fluorescent Sensor for Rapid and Sensitive Detection of Copper in Food and Environmental Samples
by Hongyuan Zhang, Qian Zhang, Xiaona Ji, Bing Han, Jieqiong Wang and Ce Han
Molecules 2025, 30(17), 3633; https://doi.org/10.3390/molecules30173633 - 5 Sep 2025
Viewed by 1193
Abstract
Copper ions (Cu2+), indispensable in physiological processes yet toxic at elevated concentrations, require sensitive on-site monitoring. Here, a portable fluorescent sensing film (Y-CDs@BCM) was fabricated by anchoring yellow-emitting carbon dots (Y-CDs) into bacterial cellulose films, which enables rapid and sensitive detection [...] Read more.
Copper ions (Cu2+), indispensable in physiological processes yet toxic at elevated concentrations, require sensitive on-site monitoring. Here, a portable fluorescent sensing film (Y-CDs@BCM) was fabricated by anchoring yellow-emitting carbon dots (Y-CDs) into bacterial cellulose films, which enables rapid and sensitive detection of Cu2+ in complex real-world samples. The yellow fluorescent carbon dots (Y-CDs) were synthesized with the aid of o-phenylenediamine and 1-octyl-3-methylimidazolium tetrafluoroborate as precursors, exhibiting excellent fluorescence stability. The fluorescence of Y-CDs was selectively quenched by Cu2+ via the inner filter effect (IFE), allowing quantitative analysis with superior sensitivity compared to existing methods. By adding bacterial cellulose (BC) as a solid support, aggregation-induced fluorescence quenching was effectively reduced, and sensor robustness and portability were improved. Through smartphone-based colorimetric analysis, the Y-CDs@BCM sensor enabled rapid, visual interpretation of Cu2+ detection (within 1 min). Furthermore, cell viability and in vivo assays confirmed the biocompatibility of Y-CDs, indicating their suitability for biological imaging. This work presents an environmentally friendly, reliable, and practical method for on-site Cu2+ monitoring, emphasizing its broad application potential in food safety control and environmental analysis. Full article
(This article belongs to the Special Issue Applications of Fluorescent Sensors in Food and Environment)
Show Figures

Figure 1

16 pages, 2129 KB  
Article
A Multimodal Convolutional Neural Network Framework for Intelligent Real-Time Monitoring of Etchant Levels in PCB Etching Processes
by Chuen-Sheng Cheng, Pei-Wen Chen, Hen-Yi Jen and Yu-Tang Wu
Mathematics 2025, 13(17), 2804; https://doi.org/10.3390/math13172804 - 1 Sep 2025
Viewed by 645
Abstract
In recent years, machine learning (ML) techniques have gained significant attention in time series classification tasks, particularly in industrial applications where early detection of abnormal conditions is crucial. This study proposes an intelligent monitoring framework based on a multimodal convolutional neural network (CNN) [...] Read more.
In recent years, machine learning (ML) techniques have gained significant attention in time series classification tasks, particularly in industrial applications where early detection of abnormal conditions is crucial. This study proposes an intelligent monitoring framework based on a multimodal convolutional neural network (CNN) to classify normal and abnormal copper ion (Cu2+) concentration states in the etching process in the printed circuit board (PCB) industry. Maintaining precise control Cu2+ concentration is critical in ensuring the quality and reliability of the etching processes. A sliding window approach is employed to segment the data into fixed-length intervals, enabling localized temporal feature extraction. The model fuses two input modalities—raw one-dimensional (1D) time series data and two-dimensional (2D) recurrence plots—allowing it to capture both temporal dynamics and spatial recurrence patterns. Comparative experiments with traditional machine learning classifiers and single-modality CNNs demonstrate that the proposed multimodal CNN significantly outperforms baseline models in terms of accuracy, precision, recall, F1-score, and G-measure. The results highlight the potential of multimodal deep learning in enhancing process monitoring and early fault detection in chemical-based manufacturing. This work contributes to the development of intelligent, adaptive quality control systems in the PCB industry. Full article
(This article belongs to the Special Issue Mathematics Methods of Robotics and Intelligent Systems)
Show Figures

Figure 1

15 pages, 2515 KB  
Article
Carbon Dot Integrated Cellulose-Based Green-Fluorescent Aerogel for Detection and Removal of Copper Ions in Water
by Guanyan Fu, Chenzhan Peng, Jiangrong Yu, Jiafeng Cao, Shilin Peng, Tian Zhao and Dong Xu
Gels 2025, 11(8), 655; https://doi.org/10.3390/gels11080655 - 18 Aug 2025
Viewed by 567
Abstract
Industrial pollution caused by Cu(II) ions remains one of the most critical environmental challenges worldwide. A novel green-fluorescent aerogel has been successfully developed for simultaneous sensing and adsorption of Cu(II) through the cross-linking of carboxymethyl nanocellulose and carbon dots (C dots) using epichlorohydrin [...] Read more.
Industrial pollution caused by Cu(II) ions remains one of the most critical environmental challenges worldwide. A novel green-fluorescent aerogel has been successfully developed for simultaneous sensing and adsorption of Cu(II) through the cross-linking of carboxymethyl nanocellulose and carbon dots (C dots) using epichlorohydrin as a linker. The C dots were synthesized by heating glucose and aspartate mixed solutions at 150 °C. Under UV illumination, the aerogel exhibited intense homogeneous green fluorescence originating from the uniformly dispersed C dots, whose emission can be efficiently quenched by Cu(II) ions. By leveraging smartphone-based imaging, the concentration of Cu(II) was quantified within the range of 5–200 µg/L, with a detection limit of 3.7 µg/L. The adsorption isotherm of Cu(II) onto the aerogel strictly conformed to the Freundlich isotherm model (fitting coefficient R2 = 0.9992), indicating a hybrid adsorption mechanism involving both physical adsorption and chemical complexation. The maximum adsorption capacity reached 149.62 mg/g, a value surpassing many reported adsorbents. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy analyses confirmed that the interactions between the aerogel and Cu(II) involved chelation and redox reactions, mediated by functional groups such as hydroxyl, amino, and carboxyl moieties. The straightforward fabrication process of the aerogel, coupled with its low cost, abundant raw materials, facile synthesis, and superior Cu(II) removal efficiency, positions this bifunctional fluorescent material as a promising candidate for large-scale environmental remediation applications. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

25 pages, 1218 KB  
Article
Enhancing the Selectivity of Nitroso-R-Salt for the Determination of Co(II) in Lithium Bioleaching Recovery of Smartphone Batteries Using a Combinatorial Methodology Approach
by David Ricart, Antonio David Dorado, Mireia Baeza and Conxita Lao-Luque
Nanomaterials 2025, 15(16), 1264; https://doi.org/10.3390/nano15161264 - 16 Aug 2025
Viewed by 726
Abstract
The selectivity of the colorimetric method for Co(II) determination using the nitroso-R-salt (NRS) in samples with complex matrices has been improved. Interferences caused by Cu(II), Fe(II), Fe(III), Mn(II), Al(III) and Ni(II) ions, which were present in the bioleach ate of lithium-ion batteries, have [...] Read more.
The selectivity of the colorimetric method for Co(II) determination using the nitroso-R-salt (NRS) in samples with complex matrices has been improved. Interferences caused by Cu(II), Fe(II), Fe(III), Mn(II), Al(III) and Ni(II) ions, which were present in the bioleach ate of lithium-ion batteries, have been solved through the sequential addition of masking agents: acetate, fluoride, ethylenediaminetetraacetic acid (EDTA), and strong acids (H2SO4). The absorbance of the NRS-Co(II) complex was typically measured at 525 nm, but it was also studied at 550 nm due to minimal interferences observed at 550 nm. The sequence of the masking agent’s addition showed a significant influence on the interference effect. The optimal sequence was sample, acetate–acetic acid buffer solution with dissolved fluoride, NRS, EDTA and H2SO4. The proposed method demonstrated robust performance at 550 nm, with a relative standard deviation (RSD) around 2%, and good accuracy (RV% around 100%). The limit of detection (LoD) was 0.1 mg L−1 and the limit of quantification (LoQ) was 0.3 mg L−1. The linear range extended up to 15 mg L−1 (R2 = 0.998). Real samples analyzed using the optimized method showed no significant differences when compared to results from atomic absorption spectroscopy, confirming its reliability. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

12 pages, 2021 KB  
Article
Dual-Mode Optical Detection of Sulfide Ions Using Copper-Anchored Nitrogen-Doped Graphene Quantum Dot Nanozymes
by Van Anh Ngoc Nguyen, Trung Hieu Vu, Phuong Thy Nguyen and Moon Il Kim
Biosensors 2025, 15(8), 528; https://doi.org/10.3390/bios15080528 - 13 Aug 2025
Viewed by 751
Abstract
We present a dual-mode optical sensing strategy for selective and sensitive detection of sulfide ions (S2−), employing copper-anchored nitrogen-doped graphene quantum dots (Cu@N-GQDs) as bifunctional nanozymes. The Cu@N-GQDs were synthesized via citric acid pyrolysis in the presence of ammonium hydroxide (serving [...] Read more.
We present a dual-mode optical sensing strategy for selective and sensitive detection of sulfide ions (S2−), employing copper-anchored nitrogen-doped graphene quantum dots (Cu@N-GQDs) as bifunctional nanozymes. The Cu@N-GQDs were synthesized via citric acid pyrolysis in the presence of ammonium hydroxide (serving as both nitrogen source and reductant) and copper chloride, leading to uniform incorporation of copper oxide species onto the N-GQD surface. The resulting nanohybrids exhibit two synergistic functionalities: intrinsic fluorescence comparable to pristine N-GQDs, and significantly enhanced peroxidase-like catalytic activity attributed to the anchored copper species. Upon interaction with sulfide ions, the system undergoes a dual-optical response: (i) fluorescence quenching via Cu-S complexation, and (ii) inhibition of peroxidase-like activity due to the deactivation of Cu catalytic centers via the interaction with S2−. This dual-signal strategy enables sensitive quantification of S2−, achieving detection limits of 0.5 µM (fluorescence) and 3.5 µM (colorimetry). The sensor demonstrates excellent selectivity over competing substances and high reliability and precision in real tap water samples. These findings highlight the potential of Cu@N-GQDs as robust, bifunctional, and field-deployable nanozyme probes for environmental and biomedical sulfide ion monitoring. Full article
(This article belongs to the Special Issue Advanced Optics and Photonics in Biosensing Applications)
Show Figures

Figure 1

16 pages, 2496 KB  
Article
Silicon Nanowires Sensor Modified with Cu (II) Phthalocyanine Derivative for Phosphate Monitoring
by Milaine Jebali, Zina Fredj, Sameh Daboussi, Mounir Ben Ali and Mohamed Hassen
Chemosensors 2025, 13(8), 297; https://doi.org/10.3390/chemosensors13080297 - 9 Aug 2025
Viewed by 901
Abstract
This study reports the development of a highly sensitive electrochemical sensor for phosphate ion detection, utilizing silicon nanowires (SiNWs) as the transducing elements and a novel copper (II) phthalocyanine-acrylate polymer adduct (Cu (II) Pc-PAA) as the functional sensing layer. Silicon nanowires were fabricated [...] Read more.
This study reports the development of a highly sensitive electrochemical sensor for phosphate ion detection, utilizing silicon nanowires (SiNWs) as the transducing elements and a novel copper (II) phthalocyanine-acrylate polymer adduct (Cu (II) Pc-PAA) as the functional sensing layer. Silicon nanowires were fabricated via metal-assisted chemical etching (MACE) with etching durations of 15, 25, 35, 45, and 60 min. The SiNWs etched for 15 min exhibited the highest sensitivity, showing superior electrochemical performance. Functionalized SiNWs were systematically evaluated for phosphate ion (HPO42−) detection over a wide concentration range (10−10 to 10−6 M) using Mott–Schottky measurements. The surface morphology of the SiNWs was thoroughly characterized before and after Cu (II) Pc-PAA layer functionalization. The sensing material was analyzed using contact angle goniometry and scanning electron microscopy (SEM), confirming both its uniform distribution and effective immobilization. The sensor displayed a Nernstian behavior with a sensitivity of 28.25 mV/Decade and an exceptionally low limit of detection (LOD) of 1.5 nM. Furthermore, the capacitive sensor exhibited remarkable selectivity toward phosphate ions, even in the presence of potentially interfering anions such as Cl, NO3, SO42− and ClO4. These results confirm the sensor’s high sensitivity, selectivity, and fast response, underscoring its suitability for environmental phosphate ion monitoring. Full article
Show Figures

Figure 1

11 pages, 1257 KB  
Communication
Glutathione-Stabilized Copper Nanoclusters as a Switch-Off Fluorescent Sensor for Sensing of Quercetin in Tea Samples
by Xueqing Gao and Xuming Zhuang
Foods 2025, 14(15), 2750; https://doi.org/10.3390/foods14152750 - 6 Aug 2025
Viewed by 614
Abstract
Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-allergic properties, is extensively found in foods and holds significant importance for human health. In this study, a simple switch-off fluorescent sensor based on copper nanoclusters (Cu NCs) was proposed for the sensitive determination of [...] Read more.
Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-allergic properties, is extensively found in foods and holds significant importance for human health. In this study, a simple switch-off fluorescent sensor based on copper nanoclusters (Cu NCs) was proposed for the sensitive determination of quercetin. Glutathione acted as the reducing and protective agent in the synthesized process of Cu NCs via a facile, green one-pot method. As anticipated, the glutathione-capped Cu NCs (GSH-Cu NCs) exhibited favorable water solubility and ultrasmall size. The fluorescence property of GSH-Cu NCs was further enhanced with Al3+ ion through the aggregation-induced emission effect. When quercetin was present in the sample solution, the system exhibited effective fluorescence quenching, which was attributed to the internal filter effect. The GSH-Cu NCs/Al3+-based fluorescent sensor showed a good linear relationship to quercetin in the concentration range from 0.1 to 60 μM. A detection limit of 24 nM was obtained. Moreover, the constructed sensor was employed for the successful determination of quercetin in tea samples. Full article
(This article belongs to the Special Issue Development and Application of Biosensors in the Food Field)
Show Figures

Figure 1

Back to TopTop