Colorimetric and SERS-Based Multimode Detection Platform for Cu(II) Ions Using Peptide–Gold Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. General Techniques
2.2. Materials
2.3. Synthesis of CW
2.4. Metal Ion Binding Studies Using UV-Visible and Emission Spectroscopy
2.5. Determination of Stoichiometry of Complex
2.6. Estimation of Binding Constant via Benesi-Hildebrand Approach
2.7. Calculation of Limit of Detection (LOD)
2.8. Preparation of CW-AuNPs
2.9. SERS-Based Detection
2.10. Test Paper Preparation and Optimization Conditions for Sensors
3. Results
3.1. Characterization and Photophysics for CW
3.2. Metal Ion Detection Using Spectroscopic Techniques
3.3. Surface Plasmon Resonance-Based Detection
3.3.1. Synthesis of CW-AuNPs and Photophysics
3.3.2. Metal Ion Sensing for CW-AuNPs
3.3.3. Paper-Strip-Based Colorimetric Response for Cu(II)
3.4. Surface-Enhanched Raman-Spectroscopy-Based Detection
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moustakas, M. The Role of Metal Ions in Biology, Biochemistry and Medicine. Materials 2021, 14, 549. [Google Scholar] [CrossRef]
- Turner, R.J. The Good, the Bad, and the Ugly of Metals as Antimicrobials. Biometals 2024, 37, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Attar, T. A Mini-Review on Importance and Role of Trace Elements in the Human Organism. Chem. Rev. Lett. 2020, 3, 117–130. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological Relevance and Mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Natasha; Murtaza, G.; Dumat, C.; Shahid, M. Copper Uptake, Essentiality, Toxicity, Detoxification and Risk Assessment in Soil-Plant Environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef]
- Hill, S.J.; Fisher, A.S. Atomic Absorption, Methods and Instrumentation. In Encyclopedia of Spectroscopy and Spectrometry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 37–43. ISBN 978-0-12-803224-4. [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Goullé, J.-P.; Mahieu, L.; Castermant, J.; Neveu, N.; Bonneau, L.; Lainé, G.; Bouige, D.; Lacroix, C. Metal and Metalloid Multi-Elementary ICP-MS Validation in Whole Blood, Plasma, Urine and Hair. Forensic Sci. Int. 2005, 153, 39–44. [Google Scholar] [CrossRef]
- Buffle, J.; Tercier-Waeber, M.-L. Voltammetric Environmental Trace-Metal Analysis and Speciation: From Laboratory to In Situ Measurements. TrAC Trends Anal. Chem. 2005, 24, 172–191. [Google Scholar] [CrossRef]
- Lu, M.; Fu, X.; Xie, H.; Liu, M.; Wei, P.; Zhang, W.; Xie, Y.; Qi, Y. Colorimetric Determination of Copper Ion Based on the Silver-Coated Gold Nanobipyramids. J. Food Compos. Anal. 2023, 120, 105363. [Google Scholar] [CrossRef]
- Cai, R.; Shoukat, C.A.; Zhang, C.; Gao, X.; Li, H.; Chen, J.; Ji, Y.; Wu, X. A Colorimetric Chemosensor for Sensitive and Selective Detection of Copper(II) Ions Based on Catalytic Oxidation of 1-Naphthylamine. Analyst 2023, 148, 3306–3311. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Tan, Y.-W.; Zhang, A.-H.; Li, Y.-Y.; Hu, J.-L.; Wu, J.-R.; Tian, Z.-Q.; Ting-Liang; Kang, Y.-F. The Highly Selective and Sensitive Fluorescence Probe for Detection of Copper(II) Ions and Its Bioimaging In Vitro and Vivo. Spectrochim Acta A Mol. Biomol. Spectrosc. 2024, 316, 124328. [Google Scholar] [CrossRef]
- Wang, H.; Cui, J.; Fang, X.; Zhang, W.; Wang, J.; Chen, S.; Qian, J. Fluorescent Detection of Copper Ions with Acylhydrazine-Based Probes: Effects of Substitute and Its Position. Dye. Pigment. 2022, 197, 109954. [Google Scholar] [CrossRef]
- Paranawithana, N.N.; Martins, A.F.; Clavijo Jordan, V.; Zhao, P.; Chirayil, S.; Meloni, G.; Sherry, A.D. A Responsive Magnetic Resonance Imaging Contrast Agent for Detection of Excess Copper(II) in the Liver In Vivo. J. Am. Chem. Soc. 2019, 141, 11009–11018. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Taylor, M.J.; Molinaro, G.; Anbu, S.; Verdu, M.; Jennings, L.; Mikulska, I.; Diaz-Moreno, S.; El Mkami, H.; Smith, G.M.; et al. Design of the Elusive Proteinaceous Oxygen Donor Copper Site Suggests a Promising Future for Copper for MRI Contrast Agents. Proc. Natl. Acad. Sci. USA 2023, 120, e2219036120. [Google Scholar] [CrossRef] [PubMed]
- Sannok, T.; Wechakorn, K.; Jantra, J.; Kaewchoay, N.; Teepoo, S. Silica nanoparticle–modified paper strip–based new rhodamine B chemosensor for highly selective detection of copper ions in drinking water. Anal. Bioanal. Chem. 2023, 415, 4703–4712. [Google Scholar] [CrossRef]
- Amalraj, A.; Ayyanu, R.; Pavadai, R.; Govindaraj, T.S.; Aham, E.C.; Li, X.; Deng, Y.; Zhang, Z. Smartphone Assisted Paper Strip-Based Colorimetric Sensing of Phosphate and Copper Ions Utilizing Bi-Ligand Intercalated Cobalt-MOF as a Dual Functional Nanozyme. J. Environ. Chem. Eng. 2024, 12, 113522. [Google Scholar] [CrossRef]
- Kumalasari, M.R.; Alfanaar, R.; Andreani, A.S. Gold Nanoparticles (AuNPs): A Versatile Material for Biosensor Application. Talanta Open 2024, 9, 100327. [Google Scholar] [CrossRef]
- Ferrari, E. Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors 2023, 13, 411. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.; Dhaka, P.; Singh, A.; Agarwala, P.; Sharma, K.; Bhargava, A.; Bhatia, S.; Launey, T.; Kaushik, R.; et al. A Label-Free Gold Nanoparticles Functionalized Peptide Dendrimer Biosensor for Visual Detection of Breakthrough Infections in COVID-19 Vaccinated Patients. Sens. Bio-Sens. Res. 2025, 47, 100718. [Google Scholar] [CrossRef]
- Parnsubsakul, A.; Oaew, S.; Surareungchai, W. Zwitterionic Peptide-Capped Gold Nanoparticles for Colorimetric Detection of Ni2+. Nanoscale 2018, 10, 5466–5473. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Xiong, Z.; Chen, X.; Sha, A.; Xiao, W.; Peng, L.; Zou, L.; Han, J.; Li, Q. Peptides Used for Heavy Metal Remediation: A Promising Approach. Int. J. Mol. Sci. 2024, 25, 6717. [Google Scholar] [CrossRef]
- Haridas, V.; Praveen Kumar, P.P.; Suresh, C.H. Cysteine-Based Fluorescence “Turn-on” Sensors for Cu2+ and Ag+. RSC Adv. 2014, 4, 56539–56542. [Google Scholar] [CrossRef]
- Jin, Z.; Yim, W.; Retout, M.; Housel, E.; Zhong, W.; Zhou, J.; Strano, M.S.; Jokerst, J.V. Colorimetric Sensing for Translational Applications: From Colorants to Mechanisms. Chem. Soc. Rev. 2024, 53, 7681–7741. [Google Scholar] [CrossRef]
- Boas, D.; Remennik, S.; Reches, M. Peptide-Capped Au and Ag Nanoparticles: Detection of Heavy Metals and Photochemical Core/Shell Formation. J. Colloid. Interface Sci. 2023, 631, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.; Kim, D.-Y.; Saratale, R.; Syed, A.; Ameen, F.; Ghodake, G. A Spectral Probe for Detection of Aluminum (III) Ions Using Surface Functionalized Gold Nanoparticles. Nanomaterials 2017, 7, 287. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, L.; Scardaci, V.; Scuderi, M.; Condorelli, M.; D’Urso, L.; Compagnini, G. Surface Plasmon Resonance of Gold Nanoparticle Aggregates Induced by Halide Ions. Mater. Chem. Phys. 2023, 308, 128245. [Google Scholar] [CrossRef]
- Tian, F.; Bonnier, F.; Casey, A.; Shanahan, A.E.; Byrne, H.J. Surface Enhanced Raman Scattering with Gold Nanoparticles: Effect of Particle Shape. Anal. Methods 2014, 6, 9116–9123. [Google Scholar] [CrossRef]
- Inoue, Y.; Yoshinare, Y.; Yamaguchi, A.; Oshima, A.; Yamaguchi, M.; Heya, A.; Sumitomo, K. Aggregation Control of Gold Nanoparticles and Surface-Enhanced Raman Scattering within Giant Unilamellar Vesicles. Langmuir 2025, 41, 9567–9573. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y.; Peng, Y.; Zhao, S.; Xu, M.; Zhang, L.; Huang, Z.; Shi, J.; Yang, Y. Recent Development of Surface-Enhanced Raman Scattering for Biosensing. J. Nanobiotechnol. 2023, 21, 149. [Google Scholar] [CrossRef]
- Kumar, P.P.P.; Saxena, S.; Joshi, R. Advancements in SERS: Revolutionizing Biomedical Analysis and Applications. Nanotheranostics 2025, 9, 216–261. [Google Scholar] [CrossRef]
- Kumar, P.P.P.; Suresh, C.H.; Haridas, V. A Supramolecular Approach to Metal Ion Sensing: Cystine-Based Designer Systems for Cu2+, Hg2+, Cd2+ and Pb2+ Sensing. RSC Adv. 2015, 5, 7842–7847. [Google Scholar] [CrossRef]
- Yin, J.; Wu, T.; Song, J.; Zhang, Q.; Liu, S.; Xu, R.; Duan, H. SERS-Active Nanoparticles for Sensitive and Selective Detection of Cadmium Ion (Cd2+). Chem. Mater. 2011, 23, 4756–4764. [Google Scholar] [CrossRef]
- Song, C.; Yang, B.; Zhu, Y.; Yang, Y.; Wang, L. Ultrasensitive Sliver Nanorods Array SERS Sensor for Mercury Ions. Biosens. Bioelectron. 2017, 87, 59–65. [Google Scholar] [CrossRef]
- Dugandžić, V.; Kupfer, S.; Jahn, M.; Henkel, T.; Weber, K.; Cialla-May, D.; Popp, J. A SERS-Based Molecular Sensor for Selective Detection and Quantification of Copper(II) Ions. Sens. Actuators B Chem. 2019, 279, 230–237. [Google Scholar] [CrossRef]
- Sapra, R.; Gupta, M.; Khare, K.; Chowdhury, P.K.; Haridas, V. Fluorescence by Self-Assembly: Autofluorescent Peptide Vesicles and Fibers. Analyst 2023, 148, 973–984. [Google Scholar] [CrossRef]
- Shao, J.; Kuiper, B.P.; Thunnissen, A.-M.W.H.; Cool, R.H.; Zhou, L.; Huang, C.; Dijkstra, B.W.; Broos, J. The Role of Tryptophan in π Interactions in Proteins: An Experimental Approach. J. Am. Chem. Soc. 2022, 144, 13815–13822. [Google Scholar] [CrossRef]
- Yugay, D.; Goronzy, D.P.; Kawakami, L.M.; Claridge, S.A.; Song, T.-B.; Yan, Z.; Xie, Y.-H.; Gilles, J.; Yang, Y.; Weiss, P.S. Copper Ion Binding Site in β-Amyloid Peptide. Nano Lett. 2016, 16, 6282–6289. [Google Scholar] [CrossRef] [PubMed]
- Wärmländer, S.; Tiiman, A.; Abelein, A.; Luo, J.; Jarvet, J.; Söderberg, K.L.; Danielsson, J.; Gräslund, A. Biophysical Studies of the Amyloid β-Peptide: Interactions with Metal Ions and Small Molecules. ChemBioChem 2013, 14, 1692–1704. [Google Scholar] [CrossRef] [PubMed]
- Brynn Hibbert, D.; Thordarson, P. The Death of the Job Plot, Transparency, Open Science and Online Tools, Uncertainty Estimation Methods and Other Developments in Supramolecular Chemistry Data Analysis. Chem. Commun. 2016, 52, 12792–12805. [Google Scholar] [CrossRef] [PubMed]
- Thordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. [Google Scholar] [CrossRef]
- Chatterjee, S.; Lou, X.-Y.; Liang, F.; Yang, Y.-W. Surface-Functionalized Gold and Silver Nanoparticles for Colorimetric and Fluorescent Sensing of Metal Ions and Biomolecules. Coord. Chem. Rev. 2022, 459, 214461. [Google Scholar] [CrossRef]
- Praveen Kumar, P.P.; Kathuria, L.; Haridas, V. Cysteine-Based Silver Nanoparticles as Dual Colorimetric Sensors for Cations and Anions. New J. Chem. 2016, 40, 8382–8389. [Google Scholar] [CrossRef]
- Gruszczyńska, E.; Lewkowicz, A.; Czarnomska, M.; Koczur, J.; Walczewska-Szewc, K.; Kaliszan, M.; Balwicki, Ł.; Bojarski, P. Spectroscopic Analysis of Tryptophan as a Potential Optical Biomarker for Estimating the Time of Death. Int. J. Mol. Sci. 2024, 25, 12915. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, A.Y.; Nishimura, Y.; Matsumoto, T.; Nakanishi, M.; Tsuboi, M. Characterization of a Few Raman Lines of Tryptophan. J. Raman Spectrosc. 1978, 7, 282–287. [Google Scholar] [CrossRef]
- Park, G.J.; Hwang, I.H.; Song, E.J.; Kim, H.; Kim, C. A Colorimetric and Fluorescent Sensor for Sequential Detection of Copper Ion and Cyanide. Tetrahedron 2014, 70, 2822–2828. [Google Scholar] [CrossRef]
- Deng, H.-H.; Li, G.-W.; Liu, A.-L.; Chen, W.; Lin, X.-H.; Xia, X.-H. Thermally Treated Bare Gold Nanoparticles for Colorimetric Sensing of Copper Ions. Microchim. Acta 2014, 181, 911–916. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Z.; Qu, W.; Shao, H.; Jiang, X. Colorimetric Detection of Mercury, Lead and Copper Ions Simultaneously Using Protein-Functionalized Gold Nanoparticles. Biosens. Bioelectron. 2011, 26, 4064–4069. [Google Scholar] [CrossRef]
- Lou, T.; Chen, L.; Chen, Z.; Wang, Y.; Chen, L.; Li, J. Colorimetric Detection of Trace Copper Ions Based on Catalytic Leaching of Silver-Coated Gold Nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 4215–4220. [Google Scholar] [CrossRef]
- Magarelli, G.; Da Silva, J.G.; Ribeiro, C.L.; De Freitas, T.V.; Rodrigues, M.A.; De Souza Gil, E.; Marraccini, P.; De Souza, J.R.; De Castro, C.S.P.; Bemquerer, M.P. A Voltammetric Peptide Biosensor for Cu2+ Metal Ion Quantification in Coffee Seeds. J. Inorg. Biochem. 2024, 251, 112441. [Google Scholar] [CrossRef]
- Nguyen, N.K.; Poduska, B.; Franks, M.; Bera, M.; MacCormack, I.; Lin, G.; Petroff, A.P.; Das, S.; Nag, A. A Copper-Selective Sensor and Its Inhibition of Copper-Amyloid Beta Aggregation. Biosensors 2024, 14, 247. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Q.; Yuan, W.; Xue, M.; Feng, W.; Li, F. Dye-Assembled Upconversion Nanocomposite for Luminescence Ratiometric in Vivo Bioimaging of Copper Ions. ACS Appl. Mater. Interfaces 2019, 11, 430–436. [Google Scholar] [CrossRef]
- Gerdan, Z.; Saylan, Y.; Denizli, A. Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines 2022, 13, 1298. [Google Scholar] [CrossRef]
- Safran, V.; Göktürk, I.; Derazshamshir, A.; Yılmaz, F.; Sağlam, N.; Denizli, A. Rapid Sensing of Cu+2 in Water and Biological Samples by Sensitive Molecularly Imprinted Based Plasmonic Biosensor. Microchem. J. 2019, 148, 141–150. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Guo, X.; Wen, Y.; Yang, H. Rapid and Selective Detection of Trace Cu2+ by Accumulation-Reaction-Based Raman Spectroscopy. Sens. Actuators B-Chem. 2019, 283, 278–283. [Google Scholar] [CrossRef]






| Sensor Type | Mode of Detection | Limit of Detection | Ref |
|---|---|---|---|
| Julolidine-containing naphthol-based probe | Colorimetric | 2 μM | [46] |
| Gold nanoparticles (AuNPs) | Colorimetric and UV-visible | 0.04 μM | [47] |
| Papain-functionalized AuNPs | Colorimetric | 200 nM | [48] |
| Silver-coated gold nanoparticles | Colorimetric | 1 nM | [49] |
| H-CVNITKQHTVTTTT-NH2 (peptide) | Electrochemical | 80 nM | [50] |
| Peptide–chelator | Fluorescence | 2 μM | [51] |
| Up-conversion lanthanides | Luminescence | 37 nmol/L | [52] |
| Molecularly imprinted nanofilm | Surface plasmon resonance | 0.027 µM | [53] |
| Molecularly imprinted nanoparticles | Surface plasmon resonance | NA | [54] |
| Pyridine––AuNPs | SERS | 50 nM | [35] |
| Silver nanoparticles | SERS | 10 pM | [55] |
| Peptide–AuNPs | SERS, colorimetric, fluorescence, paper strip | 0.3 μM through optical spectroscopy 76 nM with SPR detection 10 pM through SERS | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.P.P. Colorimetric and SERS-Based Multimode Detection Platform for Cu(II) Ions Using Peptide–Gold Nanoparticles. Colorants 2025, 4, 29. https://doi.org/10.3390/colorants4040029
Kumar PPP. Colorimetric and SERS-Based Multimode Detection Platform for Cu(II) Ions Using Peptide–Gold Nanoparticles. Colorants. 2025; 4(4):29. https://doi.org/10.3390/colorants4040029
Chicago/Turabian StyleKumar, Panangattukara Prabhakaran Praveen. 2025. "Colorimetric and SERS-Based Multimode Detection Platform for Cu(II) Ions Using Peptide–Gold Nanoparticles" Colorants 4, no. 4: 29. https://doi.org/10.3390/colorants4040029
APA StyleKumar, P. P. P. (2025). Colorimetric and SERS-Based Multimode Detection Platform for Cu(II) Ions Using Peptide–Gold Nanoparticles. Colorants, 4(4), 29. https://doi.org/10.3390/colorants4040029

