Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = Cr2O3–SiO2-TiO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5487 KB  
Article
Effect of Addition of Cr on the Structural Properties of Copper Films on BaTiO3 Ceramic Substrates
by Fengtian Shi, Heda Bai, Yuanhao Liao, Jin Li and Xiangli Liu
Materials 2025, 18(21), 4851; https://doi.org/10.3390/ma18214851 - 23 Oct 2025
Viewed by 339
Abstract
In the application of ceramic dielectric filters, to achieve electromagnetic shielding of signals and subsequent integrated applications, it is necessary to carry out metallization treatment on their surfaces. The quality of metallization directly affects the performance of the filter. However, when in use, [...] Read more.
In the application of ceramic dielectric filters, to achieve electromagnetic shielding of signals and subsequent integrated applications, it is necessary to carry out metallization treatment on their surfaces. The quality of metallization directly affects the performance of the filter. However, when in use, the filter may encounter harsh environmental conditions. Therefore, the surface-metallized film needs to have strong corrosion resistance to ensure its long-term stability during use. In this paper, Cu films and copper–chromium alloy films were fabricated on Si (100) substrates and BaTiO3 ceramic substrates by HiPIMS technology. The effects of different added amounts of Cr on the microstructure, electrical conductivity, and corrosion resistance of the Cu films were studied. The results show that with an increase in Cr content, the preferred orientation of the (111) crystal plane gradually weakens, and the grains of the Cu-Cr alloy film gradually decrease. The particles on the film surface are relatively coarse, increasing the surface roughness of the film. However, after doping, the film still maintains a relatively low surface roughness. After doping with Cr, the resistivity of the film increases with the increase in Cr content. The film–substrate bonding force shows a trend of first increasing and then decreasing with the increase in Cr content. Among them, when the Cr content is 2 at.%, the film–substrate bonding force is the greatest. The Cu-Cr alloy film has good corrosion resistance in static corrosion. With the increase in Cr content, the Tafel slope of the cathode increases, and the polarization resistance Rp also increases with the increase in Cr content. After the addition of Cr, both the oxide film resistance and the charge transfer resistance of the electrode reaction of the Cu-Cr alloy film are greater than those of the Cu film. This indicates that the addition of Cr reduces the corrosion rate of the alloy film and enhances its corrosion resistance in a NaCl solution. 2 at.% Cr represents a balanced trade-off in composition. While ensuring the film is dense, uniform, and has good electrical conductivity, the adhesion between the film and the substrate is maximized, and the corrosion resistance of the Cu film is also improved. Full article
(This article belongs to the Special Issue Advanced Thin Films: Structural, Optical, and Electrical Properties)
Show Figures

Figure 1

29 pages, 30122 KB  
Article
Micro-Structured Multifunctional Greener Coatings Obtained by Plasma Spray
by Spyridoula G. Farmaki, Dimitrios A. Exarchos, Panagiota T. Dalla, Elias A. Ananiadis, Vasileios Kechagias, Alexandros E. Karantzalis and Theodore E. Matikas
Appl. Mech. 2025, 6(4), 76; https://doi.org/10.3390/applmech6040076 - 13 Oct 2025
Viewed by 413
Abstract
The increasing reliance on conventional coatings such as WC-Co raises serious environmental and health concerns due to the toxicity of cobalt and the ecological footprint of these materials. To address this challenge, the present study explores the development of eco-friendly multifunctional coatings via [...] Read more.
The increasing reliance on conventional coatings such as WC-Co raises serious environmental and health concerns due to the toxicity of cobalt and the ecological footprint of these materials. To address this challenge, the present study explores the development of eco-friendly multifunctional coatings via the Plasma Spray (PS) process, using titanium (Ti), silicon carbide (SiC), and tungsten carbide-cobalt (WC-Co) mixtures as alternative feedstocks. Steel substrates were coated under different deposition strategies (powder mixing, layer-by-layer) and current settings (800-900 A). The coatings were characterized by scanning electron microscopy (SEM/EDX), 3D profilometry, sliding wear testing, and potentiodynamic corrosion measurements. Results showed that Ti-WC (mix, 900 A) and Ti-SiC (layer, 900 A) coatings achieved the most favorable performance, combining excellent adhesion, uniform coverage, reduced porosity, and improved resistance to wear and corrosion compared to conventional Cr2O3 coatings. Notably, Ti-WC coatings provided surface roughness values comparable to Cr2O3, while significantly lowering the environmental impact. These findings demonstrate that PS-based Ti-WC and Ti-SiC systems can serve as sustainable and high-performance alternatives for protective applications in harsh environments, particularly in marine industries, supporting the transition toward coatings with reduced ecological footprint. Full article
Show Figures

Figure 1

16 pages, 8519 KB  
Article
The Oxidation and Corrosion Resistance of AlCrNbSiTiN Multi-Principal Element Nitride Coatings
by Zhenbo Lan, Jiangang Deng, Heng Xu, Zhuolin Xu, Zhengqi Wen, Wei Long, Lei Zhang, Ruoxi Wang, Jie Liu and Yanming Chen
Materials 2025, 18(20), 4663; https://doi.org/10.3390/ma18204663 - 10 Oct 2025
Viewed by 431
Abstract
Multi-principal element nitrides have great application potential in protective coatings. However, the investigation of the oxidation and corrosion resistance of multi-principal element nitride coatings is still insufficient. The synthesis and high-temperature performance of AlCrNbSiTiN multi-principal element nitride coatings fabricated through optimized arc ion [...] Read more.
Multi-principal element nitrides have great application potential in protective coatings. However, the investigation of the oxidation and corrosion resistance of multi-principal element nitride coatings is still insufficient. The synthesis and high-temperature performance of AlCrNbSiTiN multi-principal element nitride coatings fabricated through optimized arc ion plating (AIP) were explored. Leveraging the high ionization efficiency and ion kinetic energy characteristic of AIP, coatings with significantly fewer internal defects were obtained. These coatings demonstrate superior mechanical properties, including a maximum hardness of 36.5 GPa and critical crack propagation resistance (CPR) values approaching 2000 N2. Optimal coatings exhibited exceptional water vapor corrosion resistance (5.15 at% O after 200 h). The coatings prepared at −150 V had the optimal corrosion resistance, with the coating resistance and corrosion current density being 1.68 × 104 Ω·cm2 and 0.79 μA·cm−2, respectively. AlCrNbSiTiN coatings produced under these optimized AIP conditions exhibit remarkably high-temperature oxidation, highlighting their potential for use in demanding engineering applications. Full article
(This article belongs to the Special Issue Advanced Science and Technology of High Entropy Materials)
Show Figures

Figure 1

25 pages, 46515 KB  
Article
Parental Affinities and Environments of Bauxite Genesis in the Salt Range, Northwestern Himalayas, Pakistan
by Muhammad Khubab, Michael Wagreich, Andrea Mindszenty, Shahid Iqbal, Katerina Schöpfer and Matee Ullah
Minerals 2025, 15(9), 993; https://doi.org/10.3390/min15090993 - 19 Sep 2025
Viewed by 718
Abstract
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene [...] Read more.
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene bauxite deposits of the Salt Range, Pakistan, provide an opportunity for deciphering their ore genesis and parental affinities. The deposits occur as lenticular bodies and are typically composed of three consecutive stratigraphic facies from base to top: (1) massive dark-red facies (L-1), (2) composite conglomeratic–pisolitic facies (L-2), and (3) Kaolinite-rich clayey facies (L-3). Results from optical microscopy, X-ray powder diffraction (XRPD), and scanning electron microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDS) reveal that facies L-1 contains kaolinite, hematite, and goethite as major minerals, with minor amounts of muscovite, quartz, anatase, and rutile. In contrast, facies L-2 primarily consists of kaolinite, boehmite, hematite, gibbsite, goethite, alunite/natroalunite, and zaherite, with anatase, rutile, and quartz as minor constituents. L-3 is dominated by kaolinite, quartz, and anatase, while hematite and goethite exist in minor concentrations. Geochemical analysis reveals elevated concentrations of Al2O3, Fe2O3, SiO2, and TiO2. Trace elements, including Th, U, Ga, Y, Zr, Nb, Hf, V, and Cr, exhibit a positive trend across all sections when normalized to Upper Continental Crust (UCC) values. Field observations and analytical data suggest a polygenetic origin of these deposits. L-1 suggests in situ lateritization of some sort of precursor materials, with enrichment in stable and ultra-stable heavy minerals such as zircon, tourmaline, rutile, and monazite. This facies is mineralogically mature with bauxitic components, but lacks the typical bauxitic textures. In contrast, L-2 is texturally and mineralogically mature, characterized by various-sized pisoids and ooids within a microgranular-to-microclastic matrix. The L-3 mineralogy and texture suggest that the conditions were still favorable for bauxite formation. However, the ongoing tectonic activities and wet–dry climate cycles post-depositionally disrupted the bauxitization process. The accumulation of highly stable detrital minerals, such as zircon, rutile, tourmaline, and monazite, indicates prolonged weathering and multiple cycles of sedimentary reworking. These deposits have parental affinity with acidic-to-intermediate/-argillaceous rocks, resulting from the weathering of sediments derived from UCC sources, including cratonic sandstone and shale. Full article
Show Figures

Graphical abstract

12 pages, 4017 KB  
Article
Srtio3-Based Composites for Photocatalytic Panels in Solar Hydrogen Production
by Aibol Baratov, Alexey Dikov, Lyubov Dikova, Tamara Aldabergenova, Timur Zholdybayev, Egor Maksimkin and Kira V. Tsay
Molecules 2025, 30(18), 3699; https://doi.org/10.3390/molecules30183699 - 11 Sep 2025
Viewed by 700
Abstract
This study investigates photocatalytic cells based on cocatalyst-loaded SrTiO3:Al and nano-SiO2 as a porous binder, immobilized on frosted glass. Comprehensive analysis confirmed the successful incorporation of aluminum into SrTiO3, increasing oxygen vacancy concentration and enhancing charge transfer. The [...] Read more.
This study investigates photocatalytic cells based on cocatalyst-loaded SrTiO3:Al and nano-SiO2 as a porous binder, immobilized on frosted glass. Comprehensive analysis confirmed the successful incorporation of aluminum into SrTiO3, increasing oxygen vacancy concentration and enhancing charge transfer. The deposition of RhCr2O3 and CoOOH cocatalysts significantly improved photocatalytic activity, boosting hydrogen and oxygen evolution rates to 3.8401 and 1.6319 mmol g−1 h−1, respectively. The introduction of nano-SiO2 increased hardness (0.23–0.25 GPa) and Young’s modulus (5.27–5.40 GPa), reinforcing structural integrity. The development of efficient photocatalytic panels requires a multifaceted strategy that considers chemical, mechanical, and optical properties together with stability, durability, and energy efficiency. Future research should focus on optimizing these key parameters to enhance system performance for industrial applications. Full article
Show Figures

Figure 1

17 pages, 3153 KB  
Review
Fabrication and Properties of Hard Coatings by a Hybrid PVD Method
by Rui Zhang, Qimin Wang, Yuxiang Xu, Lisheng Li and Kwang Ho Kim
Lubricants 2025, 13(9), 390; https://doi.org/10.3390/lubricants13090390 - 1 Sep 2025
Cited by 1 | Viewed by 1263
Abstract
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition [...] Read more.
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition conditions, nano-composite coatings are fabricated, which can be tailored to possess combining properties of super hardness, low friction coefficient, and excellent thermal/chemical stability. For the deposition with larger rotating periods, layer-by-layer deposition was observed. By the nano-multilayered coating design, superior mechanical properties (hardness ≥ 35 GPa), modulated residual stresses, and enhanced high-temperature properties can be obtained. In addition, lubricious elements, low friction (friction coefficient < 0.4), and low wear (<10−5 mm3/N∙m) both at ambient temperature and high temperature can be realized. Among these coatings, some have been specifically designed to achieve outstanding cutting performance in high-speed cutting applications. Several nitride and oxide hard coatings, such as AlTiN, TiAlN/TiSiN, AlCrN/Cu, and AlCrO, were deposited using a hybrid industrial physical vapor deposition (PVD) coating system. The microstructure, mechanical properties, and cutting performance of these coatings will be discussed. Full article
(This article belongs to the Special Issue Wear and Friction of High-Performance Coatings and Hardened Surfaces)
Show Figures

Figure 1

13 pages, 2879 KB  
Article
Reoxidation of IF Steel Caused by Cr2O3-Based Stuffing Sand and Its Optimization
by Chenhui Wu, Youquan Peng, Jiqing Zhang, Jianhua Zhang and Xin Xie
Materials 2025, 18(17), 3945; https://doi.org/10.3390/ma18173945 - 22 Aug 2025
Viewed by 567
Abstract
Stuffing sand, as a critical auxiliary material, plays an important role in ladle teeming during the continuous casting process and is closely related to steel cleanliness. Based on thermodynamic calculations, a melting test in a vacuum induction furnace, and industrial statistical data analysis, [...] Read more.
Stuffing sand, as a critical auxiliary material, plays an important role in ladle teeming during the continuous casting process and is closely related to steel cleanliness. Based on thermodynamic calculations, a melting test in a vacuum induction furnace, and industrial statistical data analysis, the reoxidation of IF steel caused by conventional Cr2O3-based stuffing sand was investigated. The results show that Cr2O3-based stuffing sand is one of the main factors resulting in the reoxidation of IF steel. [Al] and [Ti] in IF steel can be oxidized by FeO, Cr2O3, and SiO2 from the Cr2O3-based stuffing sand, which leads to the mass burning loss of [Al] and [Ti], thus resulting in the deterioration of steel cleanliness. After reoxidation caused by Cr2O3-based stuffing sand, the [Cr] content in IF steel increases by 70 ppm on average. To avoid reoxidation pollution by conventional Cr2O3-based stuffing sand, a new kind of Al2O3-based stuffing sand with low reactivity was developed and applied in industrial production. After adopting this new kind of stuffing sand, the burning loss of [Al] and [Ti] decreases by 41.3% and 24.2%, respectively, and the total oxygen content (T.[O]) of the steel in the tundish decreases by 35.2% compared with the conventional Cr2O3-based stuffing sand. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

14 pages, 2180 KB  
Article
Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound
by Jiahui Song, Yunmei Long, Yifan He, Yichen Li, Dianqi Huang, Yan Gu, Xingyao Wang, Jinlong Wang and Minghui Chen
Coatings 2025, 15(8), 914; https://doi.org/10.3390/coatings15080914 - 5 Aug 2025
Viewed by 1138
Abstract
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it [...] Read more.
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it forms a porous oxide film predominantly composed of TiO2, which fails to provide adequate protection. Applying high-temperature protective coatings is therefore essential. Oxides demonstrating protective efficacy at elevated temperatures include Al2O3, Cr2O3, and SiO2. The Pilling–Bedworth Ratio (PBR)—defined as the ratio of the volume of the oxide formed to the volume of the metal consumed—serves as a critical criterion for assessing oxide film integrity. A PBR value greater than 1 but less than 2 indicates superior film integrity and enhanced oxidation resistance. Among common oxides, Al2O3 exhibits a PBR value within this optimal range (1−2), rendering aluminum-based compound coatings the most extensively utilized. Aluminum coatings can be applied via methods such as pack cementation, thermal spraying, and hot-dip aluminizing. Pack cementation, being the simplest to operate, is widely employed. In this study, a powder mixture with the composition Al:Al2O3:NH4Cl:CeO2 = 30:66:3:1 was used to aluminize γ-TiAl intermetallic compound specimens via pack cementation at 600 °C for 5 h. Subsequent isothermal oxidation at 900 °C for 20 h yielded an oxidation kinetic curve adhering to the parabolic rate law. This treatment significantly enhanced the high-temperature oxidation resistance of the γ-TiAl intermetallic compound, thereby broadening its potential application scenarios. Full article
(This article belongs to the Special Issue Advances in Corrosion, Oxidation, and/or Wear-Resistant Coatings)
Show Figures

Figure 1

13 pages, 2746 KB  
Article
A Cl-Dominant Analogue of Annite Occurs at the Eastern Edge of the Oktyabrsky Cu-Ni-PGE Deposit, Norilsk, Russia
by Andrei Y. Barkov, Giovanni Orazio Lepore, Luca Bindi, Robert F. Martin, Taras Panikorovskii, Ivan I. Nikulin and Sergey A. Silyanov
Minerals 2025, 15(6), 640; https://doi.org/10.3390/min15060640 - 12 Jun 2025
Viewed by 549
Abstract
A Cl-rich annitic mica is present in zones in taxitic gabbro–dolerite enriched in base metal sulfides in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). Other Cl-enriched minerals in the assemblage include hastingsite (4.06 wt.% Cl), ferro-hornblende (2.53 wt.%), [...] Read more.
A Cl-rich annitic mica is present in zones in taxitic gabbro–dolerite enriched in base metal sulfides in the eastern portion of the Oktyabrsky deposit in the Norilsk complex (Russia). Other Cl-enriched minerals in the assemblage include hastingsite (4.06 wt.% Cl), ferro-hornblende (2.53 wt.%), and chlorapatite (>6 wt.%). New wavelength-dispersive electron probe analyses reveal compositions with up to 7.75 wt.% Cl, corresponding to the formula K0.742Na0.047Ca0.007)Σ0.796 (Fe2+2.901Mg0.078Mn0.047Ti0.007Cr0.003)Σ3.036 (Si3.190Al0.782)Σ3.972O10 (Cl1.105OH0.854F0.041)Σ2.000 based on 22 negative charges per formula unit, in which OH(calc.) = 2 − (Cl + F). Unfortunately, the grain size of the Cl-dominant mica precluded a single-crystal X-ray diffraction study even though its EBSD pattern confirms its identity as a member of the Mica group. We present results of a refinement of a crystal from the same mineralized sample containing 0.90(6) apfu Cl [R1 = 7.89% for 3720 unique reflections]. The mica is monoclinic, space group C2/m, a 5.3991(4), b 9.3586(6), c 10.2421(10) Å, β 100.873(9)°, V = 508.22(7) Å3, Z = 2. We also describe physical properties and provide a Raman spectrum. Among the mica compositions acquired from the same sample, a high Cl content is correlated with relative enrichment in Si, Mn, and Na and with a depletion in Al, Mg (low Mg#), K, Cr, and Ti. The buildup in Cl in the ore-forming environment is ultimately due to efficient fractional crystallization of the basic magma, with possible contributions from the Devonian metasedimentary sequences that it intruded. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

10 pages, 2934 KB  
Article
Ion Substitution Behavior and Chromatographic Study of “Ya’an Green” Seal Stone
by Yicong Sun, Yigeng Wang, Zixuan Wang, Zheng Zhang, Mingming Xie, Zhuchun Peng, Bin Meng, Siqi Yang and Endong Zu
Crystals 2025, 15(5), 420; https://doi.org/10.3390/cryst15050420 - 29 Apr 2025
Viewed by 460
Abstract
In recent years, domestic research on the ion substitution behavior and chromaticity of the mineral composition of “Ya’an Green” remains insufficient, while there is almost no relevant research on “Ya’an Green” abroad. In this study, X-ray powder diffraction (XRD), electron probe microanalysis (EPMA), [...] Read more.
In recent years, domestic research on the ion substitution behavior and chromaticity of the mineral composition of “Ya’an Green” remains insufficient, while there is almost no relevant research on “Ya’an Green” abroad. In this study, X-ray powder diffraction (XRD), electron probe microanalysis (EPMA), infrared spectroscopy (IR), ultraviolet–visible spectroscopy (UV-Vis), and colorimetry were employed. The results indicate that the green and yellow matrices of “Ya’an Green” are primarily composed of muscovite, with rutile also present in the yellow matrix. In contrast, the white–green samples are mainly composed of quartz, with muscovite as a secondary mineral. Additionally, it was observed that the (004) crystal plane of muscovite exhibits a peak shift to lower 2θ angles, attributed to the substitution of Al3+ by ions with larger radii, such as Ba2+, Cr3+, and Fe2+, leading to an increase in unit cell parameters and a consequent shift in the peak to lower wavenumbers. The main elements of “Ya’an Green” are Al, Si, and K, with minor elements including Na, Fe, and Cr. Furthermore, Mg2+, Ca2+, Ti4+, Cr3+, and Fe2+ in the samples can substitute for Al3+ through isomorphic substitution. The infrared spectrum of muscovite in the ‘Ya’an Green’ sample shows three typical absorption peaks, 422 cm−1 and 513 cm−1 caused by Si-O bending vibration, 697 cm−1 and 837 cm−1 caused by Si-O-Al vibration, 948 cm−1 caused by O-H bending vibration, and 3647 cm−1 caused by O-H stretching vibration. The peak at 837 cm−1 exhibits varying degrees of shift due to the substitution of Al3+ by ions with larger radii. The ultraviolet–visible spectra display two broad absorption bands at 422 nm and 615 nm, which are caused by Cr3+ transition, indicating that Cr is the chromogenic element responsible for the green color. A correlation was observed between the Cr3+ content and the hue angle h in “Ya’an Green” samples: the higher the Cr3+ content, the closer the hue angle is to 136°, resulting in a darker green color, while lower Cr3+ content leads to a deviation from the dark green hue. This study establishes for the first time the correlation between the mineral composition of ‘Ya’an Green’ and its chromatic parameters and explores the linear relationship between its color and the number of color-causing elements and elemental substitution, which provide data support and theoretical models for the study of the color of seal stones. Full article
Show Figures

Figure 1

16 pages, 5388 KB  
Article
Effects of Composition on Melt Fillability and Impact Resistance of TiAl Alloys for Thin-Blade Turbine Wheels: Laboratory Predictions and Product Verification
by Toshimitsu Tetsui, Yu-Yao Lee, Thomas Vaubois and Pierre Sallot
Metals 2025, 15(5), 474; https://doi.org/10.3390/met15050474 - 22 Apr 2025
Cited by 2 | Viewed by 531
Abstract
Scaling up the production of TiAl turbine wheels for passenger car turbochargers requires the fabrication of thin blades that are similar to those of nickel-based superalloys. To achieve this, the molten metal fillability and impact resistance of thin blades must be improved. In [...] Read more.
Scaling up the production of TiAl turbine wheels for passenger car turbochargers requires the fabrication of thin blades that are similar to those of nickel-based superalloys. To achieve this, the molten metal fillability and impact resistance of thin blades must be improved. In this study, the effects of composition on these properties are predicted using simple laboratory experiments with binary, ternary, and practical alloys and are then verified with actual turbine wheels. The melt fillability of the turbine wheel blade is predicted using the amount of molten metal passing through an Al2O3-1%SiO2 mesh. The binary alloy exhibits the best fillability, which is reduced by the addition of Cr and Si. Charpy impact tests on as-cast materials at 25 and 850 °C show that the addition of Cr and Mn improves the impact resistance, but the addition of Nb, W, Mo and Si reduces it. Therefore, the molten metal fillability and/or impact resistance of practical TiAl alloys containing such additives owing to other requirements are low and require improvement for use in thin-blade turbine wheel applications. Full article
(This article belongs to the Special Issue Properties, Microstructure and Forming of Intermetallics)
Show Figures

Figure 1

16 pages, 4641 KB  
Article
Optimizing the High-Temperature Oxidation Resistance of Nb-Si-Based Alloys by Adding Different Ti/Mo/Hf Elements
by Youwei Zhang, Zhongde Shan, Lei Luo, Zhaobo Li, Xiao Liang, Yanqing Su, Tao Yang, Yong Zang and Dehua Jin
Metals 2025, 15(4), 439; https://doi.org/10.3390/met15040439 - 14 Apr 2025
Viewed by 729
Abstract
As a candidate material for turbine blades in aerospace engines, Nb-Si-based alloys have attracted significant research attention due to their high melting point and low density. However, their poor high-temperature oxidation resistance limits practical applications. Different alloying elements, including Ti, Mo, and Hf, [...] Read more.
As a candidate material for turbine blades in aerospace engines, Nb-Si-based alloys have attracted significant research attention due to their high melting point and low density. However, their poor high-temperature oxidation resistance limits practical applications. Different alloying elements, including Ti, Mo, and Hf, were added to Nb-Si-based alloys to study the microstructural evolution of alloys. Additionally, the oxidation behavior and the oxidation kinetics of different alloys, as well as the morphology and microstructure of oxide scale and interior alloys at 1523 K from 1 h to 20 h were analyzed systematically. The current findings indicated that the Mo element is more conducive to promoting the formation of high-temperature precipitates of β-Nb5Si3 than the Ti and Hf elements. Inversely, the Ti element tends to cause the transition from high-temperature-phase β-Nb5Si3 to low-temperature-phase α-Nb5Si3, while the Hf element improves the appearance of the γ-Nb5Si3 phase but inhibits the other phases and refines the primary Nbss effectively. Noteworthily, compared with the oxidation weight gain of different alloys, Nb-16Si-20Ti-5Mo-3Hf-2Al-2Cr alloy has excellent high-temperature oxidation resistance, in which the oxidation products are TiNb2O7, Nb2O5, SiO2, TiO2, and HfO2. It can be determined that in the oxidation process, the Ti element will preferentially form an oxide film of TiO2, thereby wrapping around the matrix phases, protecting the matrix, and improving the antioxidant capacity, while the Hf element can form an infinite solid solution with the matrix and consume the small number of oxygen atoms entering the matrix, so as to achieve the effect of improving the oxidation resistance. Full article
Show Figures

Figure 1

22 pages, 4447 KB  
Article
Geochronological and Geochemical Characterization of Triassic Felsic Volcanics in the Youjiang Basin, Southwest China: Implications for Tectonic Evolution of Eastern Tethyan Geodynamics
by Kai Dong, Zhuoyang Li, Xiaoli Fei, Yongqing Wang and Xiaohu Deng
Minerals 2025, 15(4), 398; https://doi.org/10.3390/min15040398 - 9 Apr 2025
Viewed by 495
Abstract
The Youjiang Basin is situated at the junction between the Tethyan and Pacific tectonic domains, and its Permian–Triassic volcanic rocks provide important geological archives recording the tectonic evolution and collisional interactions between the South China and Indochina blocks. This study employed LA-ICP-MS zircon [...] Read more.
The Youjiang Basin is situated at the junction between the Tethyan and Pacific tectonic domains, and its Permian–Triassic volcanic rocks provide important geological archives recording the tectonic evolution and collisional interactions between the South China and Indochina blocks. This study employed LA-ICP-MS zircon U-Pb geochronology and whole-rock geochemistry to investigate interbedded Triassic felsic volcanics. Felsic volcanic rocks in Youjiang Basin were erupted during the Early–Middle Triassic period (ca. 241~251 Ma) and are situated within the strata of the Beisi, Baifeng, and Banba Formations. These rocks in the Daqingshan area are rich in SiO2 (66.8~72.7 wt%), K2O (1.4~5.1 wt%), U (5.2~6.7 ppm), and Th (26~32.1 ppm). Conversely, they are depleted in MgO (0.6~1.4 wt%), TiO2 (0.5~0.9 wt%), Cr (13.1~19.7 ppm), Ni (7.3~10.1 ppm), and negative Eu anomalies (Eu/Eu* = 0.41~0.52), and they also exhibit negative zircon εHf(t) values. It is inferred that these Triassic felsic volcanics originated from the partial melting of crustal rocks in high-pressure environments such as the garnet stability zone within the deep mantle. These felsic volcanic rocks were likely generated during the transitional stage from island arc subduction to syn-collisional settings. Notably, the syn-collisional interaction between South China and Indochina blocks exerted significantly greater tectonic control on the Youjiang Basin than oceanic subduction. Full article
Show Figures

Figure 1

17 pages, 9240 KB  
Article
Investigation on the Impurity Removal Behavior During the Electron Beam Melting of V-Al Alloy
by Zixin Yang, Shuaishuai Wu, Shengli Guo, Baohong Zhu, Haochen Qiu, Wei Jiang and Xuehui Yan
Materials 2025, 18(8), 1710; https://doi.org/10.3390/ma18081710 - 9 Apr 2025
Viewed by 683
Abstract
This study systematically investigated the behavior of impurity removal during the electron beam melting (EBM) process of V-Al alloy. Characterization techniques such as ICP, GDMS, SEM, EPMA, and TEM were used to analyze the composition content and microscopic element distribution of V-Al alloy [...] Read more.
This study systematically investigated the behavior of impurity removal during the electron beam melting (EBM) process of V-Al alloy. Characterization techniques such as ICP, GDMS, SEM, EPMA, and TEM were used to analyze the composition content and microscopic element distribution of V-Al alloy and purified metal samples. Additionally, based on thermodynamic principles, the saturation vapor pressure and evaporation coefficients of impurity elements were calculated. The results indicate that the evaporation coefficients of Al, Fe, Co, Ni, Cr, and Ti exceed 1, enabling their effective removal during the melting process, thereby reducing their concentrations. In contrast, Si, Mo, Nb, and W exhibit evaporation coefficients significantly lower than 1, making their removal difficult. Instead, their concentrations increase due to the enrichment effect. Microstructural analysis reveals that Al migrates toward high-temperature regions, forming enrichment zones at the surface layer in contact with the electron beam. In contrast, Si, C, and O exhibit bidirectional migration characteristics, accumulating at both the upper and lower surfaces of the plate-shaped ingot. TEM observations indicate that some C reacts with V to form V2C, which has a higher melting point than vanadium, making further removal difficult. Full article
Show Figures

Figure 1

11 pages, 4211 KB  
Communication
Investigation of the Influence of Adhesion Layers on the Gas Sensing Performance of CuO/Cu2O Thin Films
by Christian Maier, Larissa Egger, Anton Köck and Klaus Reichmann
Chemosensors 2025, 13(3), 80; https://doi.org/10.3390/chemosensors13030080 - 2 Mar 2025
Cited by 1 | Viewed by 2070
Abstract
This parameter study examines the impact of two distinct adhesion layers, chromium (Cr) and titanium (Ti), on the performance of CuO/Cu2O-based chemoresistive gas sensors by varying the layer thickness. The sensing material utilised on a Si-SiO2 sensor chip with Pt [...] Read more.
This parameter study examines the impact of two distinct adhesion layers, chromium (Cr) and titanium (Ti), on the performance of CuO/Cu2O-based chemoresistive gas sensors by varying the layer thickness. The sensing material utilised on a Si-SiO2 sensor chip with Pt electrodes is an ultrathin CuO/Cu2O film fabricated through thermal deposition of Cu and subsequent oxidation. The sensors were evaluated by measuring the change in electrical resistance against a range of target gases, including carbon monoxide (CO), carbon dioxide (CO2) and a mixture of hydrocarbons (HCMix), in order to assess any potential cross-sensitivity issues. As the reactions occur at the surface, the surface was characterised by scanning electron microscopy (SEM) and the composition by grazing incidence X-Ray diffraction (GIXRD) measurement to gain further insight into the influence of the adhesion layer on the sensing performance. Full article
(This article belongs to the Special Issue Recent Advances in Metal Oxide-Based Gas Sensors)
Show Figures

Figure 1

Back to TopTop