Investigation on the Impurity Removal Behavior During the Electron Beam Melting of V-Al Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Raw Material Analysis
3.2. Changes in Impurity Content
3.3. Thermodynamic Analysis of Inclusion Removal
3.3.1. Thermodynamic Theoretical Analysis of First Melting
3.3.2. Thermodynamic Theoretical Analysis of First Melting
3.3.3. Thermodynamic Theoretical Analysis of Second Melting
3.4. Microstructure Evolution
3.4.1. Analysis of the First Melting
3.4.2. Analysis of the Secondary Melting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duan, G.; Yuan, Y.; Zhang, Y. A novel approach to eliminate the negative effects of SO42− and NH4+ on vanadium extraction from the high-calcium shale during the internal recycling of vanadium industrial wastewater. J. Environ. Chem. Eng. 2024, 12, 113484. [Google Scholar] [CrossRef]
- Zhou, Z.; Jin, J.; Zhu, Y.; Han, Y.; Bai, Z.; Tang, Z. Effect of roasting temperature on vanadium extraction, kinetics, phase transformation, and microstructure evolution of vanadium-bearing shale during suspension oxidation roasting process. Adv. Powder Technol. 2023, 34, 104233. [Google Scholar] [CrossRef]
- Liang, F.; Zou, Z.; Long, F.; Chen, M.; Yu, F.; Zhang, S.; Jia, S.; Nong, J. Al-doped flower-like VO2 (B) microspheres as high-performance cathode materials for lithium-ion batteries. J. Electroanal. Chem. 2024, 963, 118288. [Google Scholar] [CrossRef]
- Bai, R.; Fan, C.; Bi, X.; Wang, Z.; Li, C.; Kong, F. Influence of Mo/V coupled multi-electron reactions and the crystalline phase transition of VO2 on high specific capacity of lithium-ion batteries. J. Solid State Chem. 2024, 331, 124532. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Z.; Chen, H. In-situ preparation of amorphous VO2@rGO cathode for ultra-high capacity and ultra-long cycle life aqueous zinc ion batteries. J. Colloid 2023, 649, 372–383. [Google Scholar] [CrossRef]
- Ning, Y.; Wang, B.; Jin, F.; Yang, J.; Zhang, J.; Luo, H.; Wu, F.; Zhang, Z.; Zhang, H.; Zhou, Y.; et al. A rational VO2 nanotube/graphene binary sulfur host for superior lithium-sulfur batteries. J. Alloys 2020, 838, 155504. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, L.; Wang, L.; Liu, Z.; Liu, L.; Sui, X.; Cao, L.; Su, C.; Wu, H. Monte Carlo analyses and experimental investigation of the vanadium self-powered neutron detector in 60Co source and research pulsed reactor. Nucl. Instrum. 2023, 1056, 168704. [Google Scholar] [CrossRef]
- Yuan, R.; Li, S.; Che, Y.S.; He, J.; Song, J.; Yang, B. A critical review on extraction and refining of vanadium metal. Int. J. Refract. Met. Hard Mater. 2021, 101, 105696. [Google Scholar] [CrossRef]
- Li, C.; Jiang, T.; Wen, J.; Yu, T.; Li, F. Review of leaching, separation and recovery of vanadium from roasted products of vanadium slag. Hydrometallurgy 2024, 226, 106313. [Google Scholar] [CrossRef]
- Thomason, J.S.; Johannes, E.; Last, H.; Earle, C.; Kelly, J. Estimating Supply, Demand, and Base Case Shortfalls for High Purity Chromium and High Purity Vanadium for US Defense and Essential Civilian Applications in Support of the Strategic and Critical Materials 2019 Report on Stockpile Requirements; Institute for Defense Analyses: Alexandria, VA, USA, 2019. [Google Scholar]
- Choudhury, A.; Hengsberger, E. Electron beam melting and refining of metals and alloys. ISIJ Int. 1992, 32, 673–681. [Google Scholar] [CrossRef]
- Oh, J.-M.; Lee, B.-K.; Park, H.-K.; Lim, J.W. Preparation and purity evaluation of 5N-grade ruthenium by electron beam melting. Mater. Trans. 2012, 53, 1680–1684. [Google Scholar] [CrossRef]
- Sankar, M.; Mirji, K.V.; Prasad, V.S.; Baligidad, R.G.; Gokhale, A.A. Purification of niobium by electron beam melting. High Temp. Mater. 2016, 35, 621–627. [Google Scholar] [CrossRef]
- Rappleye, D.; Haun, R. Production of Pure Vanadium: Industry Review and Feasibility Study of Electron Beam Melt Refining of V-Al Alloys. J. Sustain. Metall. 2021, 7, 755–766. [Google Scholar] [CrossRef]
- Kucukturk, G.; Akallalar, H. Investigating the effect of electron beam melting parameters on the Ti6Al4V alloy: A simulation study. Trans. Famena 2022, 46, 45–58. [Google Scholar] [CrossRef]
- Carlson, O.; Schmidt, F.; Krupp, W.J.J. A Process for Preparing High-Purity Vanadium. Metall. Trans. 1966, 18, 320–323. [Google Scholar] [CrossRef]
- Schmidt, F.; Carlson, O.N. Method for Preparing High Purity Vanadium. Google Patents 4610720, 9 September 1986. [Google Scholar]
- Peng, Y.; Wang, J. Preparation of High-purity Vanadium Ingot by Electron Beam Cold Hearth Furnace Melting. Baosteel Technol. 2012, 5, 17–22. [Google Scholar]
- Dai, Y.; Yang, B. Vacuum Metallurgy of Non-Ferrous Metal Materials; Beijing Metallurgical Industry Press: Beijing, China, 2000. [Google Scholar]
- Brandes, E.A.; Brook, G. Smithells Metals Reference Book; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Miki, T.; Morita, K.; Sano, N.J.M. Thermodynamics of phosphorus in molten silicon. Metallurgical 1996, 27, 937–941. [Google Scholar] [CrossRef]
- Jiang, G.; Liu, Y.; Li, Y. Improvement of Calculation Methods for Activity Coefficients of Components in Multicomponent Alloy Melts. Acta Metall. Sin. 2007, 43, 503–508. [Google Scholar]
- You, Q.; Shi, S.; You, X.; Tan, Y.; Wang, Y.; Li, J. Evaporation behavior of Ni, Cr and Fe in Inconel 718 superalloy during electron beam smelting. Vacuum 2017, 135, 135–141. [Google Scholar] [CrossRef]
- Katskov, D.A.; Shtepan, A.M.; Grinshtein, I.L.; Pupyshev, A.A. Atomization of Aluminum-Oxide in electrothermal atomic-absorption analysis. Spectrochim. Acta Part B At. Spectrosc. 1992, 47, 1023–1041. [Google Scholar] [CrossRef]
- Hoch, M.; Johnston, H.L. Formation, stability and crystal structure of the solid aluminum suboxides: Al2O and AlO. J. Am. Chem. Soc. 1954, 76, 2560–2561. [Google Scholar] [CrossRef]
- Chen, J.; He, J.; Lin, J. Vanadium and Vanadium Metallurgy; Beijing Metallurgical Industry Press: Beijing, China, 1983. [Google Scholar]
- Yang, S. Vanadium Metallurgy; Beijing Metallurgical Industry Press: Beijing, China, 2010. [Google Scholar]
Element | V | Al | Si | Fe | Mo | Cr |
---|---|---|---|---|---|---|
wt. % | 84.58 | 15.19 | 0.035 | 0.024 | 0.001 | 0.0024 |
Element | Nb | Ni | W | C | N | O |
wt. % | <0.0005 | <0.0005 | 0.002 | 0.019 | 0.026 | 0.12 |
Serial Number | Melting Power (kW) | Melting Time (s) | Mass Before Melting (kg) | Mass After Melting (kg) | Mass Loss Rate (%) |
---|---|---|---|---|---|
1.1 | 40 | 709 | 2.5 | 2.05 | 18.0 |
1.2 | 45 | 723 | 2.5 | 2.04 | 18.4 |
1.3 | 50 | 715 | 2.5 | 2.01 | 19.6 |
1.4 | 55 | 727 | 2.5 | 1.92 | 23.2 |
Serial Number | Melting Power (kW) | Melting Time (s) | Mass Before Melting (kg) | Mass After Melting (kg) | Mass Loss Rate (%) |
---|---|---|---|---|---|
2.1 | 40 | 762 | 2.05 | 1.84 | 10.2 |
2.2 | 45 | 776 | 2.04 | 1.76 | 13.7 |
2.3 | 50 | 781 | 2.01 | 1.75 | 12.9 |
2.4 | 55 | 759 | 1.92 | 1.66 | 13.5 |
Power | 40 kW | 45 kW | 50 kW | 55 kW | ||
---|---|---|---|---|---|---|
Content (ppm) | ||||||
Element | ||||||
Al | 2800 | 2300 | 2200 | 1700 | ||
Si | 260 | 280 | 290 | 290 | ||
Fe | 160 | 120 | 79 | 56 | ||
W | 31 | 31 | 33 | 33 | ||
Mo | 12 | 13 | 13 | 13 | ||
Cr | 6.1 | 1.7 | 0.39 | 0.044 | ||
Nb | 2 | 2.3 | 2.3 | 2.4 | ||
Ti | 2.6 | 2.4 | 2.3 | 2.3 | ||
Co | 0.2 | 0.16 | 0.16 | 0.15 | ||
Ni | 5.3 | 4.2 | 4.1 | 3.9 | ||
Total Amount of Impurities | 3279 | 2755 | 2624 | 2101 | ||
Purity (wt.%) | 99.67% | 99.72% | 99.74% | 99.79% |
Power | 40 kW | 45 kW | 50 kW | 55 kW | ||
---|---|---|---|---|---|---|
Content (ppm) | ||||||
Element | ||||||
Al | 2100 | 1800 | 110 | 200 | ||
Si | 280 | 290 | 300 | 310 | ||
Fe | 91 | 44 | 23 | 20 | ||
W | 36 | 38 | 40 | 42 | ||
Mo | 13 | 14 | 16 | 19 | ||
Cr | 0.9 | 0.088 | 0.041 | 0.012 | ||
Nb | 2.5 | 2.5 | 2.8 | 5.1 | ||
Ti | 2.4 | 2.1 | 1.9 | 1.8 | ||
Co | 0.16 | 0.12 | 0.087 | 0.1 | ||
Ni | 4 | 2.9 | 2.1 | 2 | ||
Total Amount of Impurities | 2530 | 2194 | 494 | 600 | ||
Purity (wt.%) | 99.75% | 99.78% | 99.95% | 99.94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Wu, S.; Guo, S.; Zhu, B.; Qiu, H.; Jiang, W.; Yan, X. Investigation on the Impurity Removal Behavior During the Electron Beam Melting of V-Al Alloy. Materials 2025, 18, 1710. https://doi.org/10.3390/ma18081710
Yang Z, Wu S, Guo S, Zhu B, Qiu H, Jiang W, Yan X. Investigation on the Impurity Removal Behavior During the Electron Beam Melting of V-Al Alloy. Materials. 2025; 18(8):1710. https://doi.org/10.3390/ma18081710
Chicago/Turabian StyleYang, Zixin, Shuaishuai Wu, Shengli Guo, Baohong Zhu, Haochen Qiu, Wei Jiang, and Xuehui Yan. 2025. "Investigation on the Impurity Removal Behavior During the Electron Beam Melting of V-Al Alloy" Materials 18, no. 8: 1710. https://doi.org/10.3390/ma18081710
APA StyleYang, Z., Wu, S., Guo, S., Zhu, B., Qiu, H., Jiang, W., & Yan, X. (2025). Investigation on the Impurity Removal Behavior During the Electron Beam Melting of V-Al Alloy. Materials, 18(8), 1710. https://doi.org/10.3390/ma18081710