Srtio3-Based Composites for Photocatalytic Panels in Solar Hydrogen Production
Abstract
1. Introduction
2. Experimental Part
2.1. Materials
2.2. Synthesis of SrTiO3 and SrTiO3:Al
2.3. Photodeposition of Cocatalysts
2.4. Application of Photocatalyst Powders on the Substrate
2.5. Characterization
2.6. Photocatalytic Measurements
3. Results and Discussion
3.1. Characterization of Samples
3.1.1. Microstructural and Morphological Properties
3.1.2. Surface Chemistry and Optical Properties
3.2. Nanomechanical Testing: Nanoindentation
3.3. Photocatalytic Performance
4. Conclusions and Future Prospectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chakravorty, A.; Roy, S. A Review of Photocatalysis, Basic Principles, Processes, and Materials. Sustain. Chem. Environ. 2024, 8, 100155. [Google Scholar] [CrossRef]
- Ly, N.H.; Gnanasekaran, L.; Aminabhavi, T.M.; Vasseghian, Y.; Joo, S.W. Photogenerated Charge Carriers in Photocatalytic Materials for Solar Hydrogen Evolution. Curr. Opin. Chem. Eng. 2025, 47, 101087. [Google Scholar] [CrossRef]
- Unveiling the Photocatalytic Marvels: Recent Advances in Solar Heterojunctions for Environmental Remediation and Energy Harvesting. Available online: https://www.researchgate.net/publication/377549060_Unveiling_the_photocatalytic_marvels_Recent_advances_in_solar_heterojunctions_for_environmental_remediation_and_energy_harvesting (accessed on 27 August 2025).
- Roy, S.; Darabdhara, J.; Ahmaruzzaman, M. Sustainable Degradation of Pollutants, Generation of Electricity and Hydrogen Evolution via Photocatalytic Fuel Cells: An Inclusive Review. Environ. Res. 2023, 236, 116702. [Google Scholar] [CrossRef] [PubMed]
- Molaei, M.J. Recent Advances in Hydrogen Production through Photocatalytic Water Splitting: A Review. Fuel 2024, 365, 131159. [Google Scholar] [CrossRef]
- Serik, A.; Kuspanov, Z.; Daulbayev, C. Cost-Effective Strategies and Technologies for Green Hydrogen Production. Renew. Sustain. Energy Rev. 2026, 226, 116242. [Google Scholar] [CrossRef]
- Zakria, H.S.; Othman, M.H.D.; Kamaludin, R.; Kadir, S.H.S.A.; Kurniawan, T.A.; Jilani, A. Immobilization Techniques of a Photocatalyst into and onto a Polymer Membrane for Photocatalytic Activity. RSC Adv. 2021, 11, 6985–7014. [Google Scholar] [CrossRef]
- Wang, G.; Lv, S.; Shen, Y.; Li, W.; Lin, L.; Li, Z. Advancements in Heterojunction, Cocatalyst, Defect and Morphology Engineering of Semiconductor Oxide Photocatalysts. J. Materiomics 2024, 10, 315–338. [Google Scholar] [CrossRef]
- Nasir, J.A.; ur Rehman, Z.; Shah, S.N.A.; Khan, A.; Butler, I.S.; Catlow, C.R.A. Recent Developments and Perspectives in CdS-Based Photocatalysts for Water Splitting. J. Mater. Chem. A 2020, 8, 20752–20780. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El-Nemr, M.A.; Elkatory, M.R.; Ragab, S.; Niculescu, V.-C.; El Nemr, A. Principles of Photocatalysts and Their Different Applications: A Review. Top. Curr. Chem. 2023, 381, 31. [Google Scholar] [CrossRef]
- Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts-Chen-2023-Advanced Materials-Wiley Online Library. Available online: https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202203836 (accessed on 27 August 2025).
- Bhakar, U.; Agarwal, A.; Sanghi, S. Exploring SrTiO3 and (Ba,Sr)TiO3-Based Hydroelectric Cells with Defect-Driven Mechanisms for Green Power Generation. Ceram. Int. 2025, 51, 18672–18680. [Google Scholar] [CrossRef]
- González, L.; Cano-Valencia, M.J.; Vento-Lujano, E. Visible-Light Photocatalytic Performance of SrTiO3 Nanoparticles Modified with Cobalt. Opt. Mater. 2024, 157, 116231. [Google Scholar] [CrossRef]
- Baratov, A.; Kuspanov, Z.; Shaimerdenov, A.; Yergaziyeva, G.; Yerlanuly, Y.; Daulbayev, C. Enhancing Photogenerated Charge Separation in Perovskite Semiconductors via Dual Cocatalyst Engineering. J. Water Process Eng. 2025, 77, 108573. [Google Scholar] [CrossRef]
- Serik, A.; Kuspanov, Z.; Bissenova, M.; Idrissov, N.; Yeleuov, M.; Umirzakov, A.; Daulbayev, C. Effective Photocatalytic Degradation of Sulfamethoxazole Using PAN/SrTiO3 Nanofibers. J. Water Process Eng. 2024, 66, 106052. [Google Scholar] [CrossRef]
- Kuspanov, Z.; Umirzakov, A.; Serik, A.; Baimenov, A.; Yeleuov, M.; Daulbayev, C. Multifunctional Strontium Titanate Perovskite-Based Composite Photocatalysts for Energy Conversion and Other Applications. Int. J. Hydrogen Energy 2023, 48, 38634–38654. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Zhai, Y.; Huang, Y.; Lee, S.; Cao, J. Improved Photocatalytic Activity of BaTiO3/La2Ti2O7 Heterojunction Composites via Piezoelectric-Enhanced Charge Transfer. Appl. Surf. Sci. 2021, 570, 151146. [Google Scholar] [CrossRef]
- Serik, A.; Idrissov, N.; Baratov, A.; Dikov, A.; Kislitsin, S.; Daulbayev, C.; Kuspanov, Z. Recent Progress in Photocatalytic Applications of Electrospun Nanofibers: A Review. Molecules 2024, 29, 4824. [Google Scholar] [CrossRef]
- Visible Light-Driven Photocatalysis of Al-Doped SrTiO3: Experimental and DFT Study. Available online: https://www.mdpi.com/1420-3049/29/22/5326 (accessed on 27 August 2025).
- Radu, I.; Borhan, A.; Gherca, D.; Dirtu, A.; Dirtu, D.; Popescu, D.; Husanu, M.; Pui, A. Cobalt Oxyhydroxide Co-Catalyst Loaded Onto Al:Srtio3 Surface to Boost Photocatalytic Performance. Mater. Chem. Phys. 2025, 332, 130274. [Google Scholar] [CrossRef]
- Zong, S.; Tian, L.; Guan, X.; Cheng, C.; Shi, J.; Guo, L. Photocatalytic Overall Water Splitting without Noble-Metal: Decorating CoP on Al-Doped SrTiO3. J. Colloid Interface Sci. 2022, 606, 491–499. [Google Scholar] [CrossRef]
- Abdelfattah, I.; El-Shamy, A.M. A Comparative Study for Optimizing Photocatalytic Activity of TiO2-Based Composites with ZrO2, ZnO, Ta2O5, SnO, Fe2O3, and CuO Additives. Sci. Rep. 2024, 14, 27175. [Google Scholar] [CrossRef]
- Radu, I.; Borhan, A.I.; Ghercă, D.; Popescu, D.G.; Borca, C.N.; Huthwelker, T.; Bulai, G.; Stoian, G.; Husanu, M.-A.; Pui, A. Enhancement of SrTiO3 Photocatalytic Efficiency by Al Doping: Answers from the Structure, Morphology and Electronic Properties Contributions. Ceram. Int. 2024, 50, 20664–20675. [Google Scholar] [CrossRef]
- Kuspanov, Z.; Serik, A.; Baratov, A.; Abdikarimova, U.; Idrissov, N.; Bissenova, M.; Daulbayev, C. Efficient Photocatalytic Hydrogen Evolution via Cocatalyst Loaded Al-Doped SrTiO3. Eurasian Chem.-Technol. J. 2024, 26, 133–140. [Google Scholar] [CrossRef]
- Murthy, D.H.K.; Nandal, V.; Furube, A.; Seki, K.; Katoh, R.; Lyu, H.; Hisatomi, T.; Domen, K.; Matsuzaki, H. Origin of Enhanced Overall Water Splitting Efficiency in Aluminum-Doped SrTiO3 Photocatalyst. Adv. Energy Mater. 2023, 13, 2302064. [Google Scholar] [CrossRef]
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; et al. Photocatalytic Solar Hydrogen Production from Water on a 100-M2 Scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, C.S.; Nalajala, N. A Scalable and Thin Film Approach for Solar Hydrogen Generation: A Review on Enhanced Photocatalytic Water Splitting. J. Mater. Chem. A 2021, 9, 1353–1371. [Google Scholar] [CrossRef]
- Xiong, A.; Ma, G.; Maeda, K.; Takata, T.; Hisatomi, T.; Setoyama, T.; Kubota, J.; Domen, K. Fabrication of Photocatalyst Panels and the Factors Determining Their Activity for Water Splitting. Catal. Sci. Technol. 2014, 4, 325–328. [Google Scholar] [CrossRef]
- Sun, T.; Benedictto, G.P.; Gonzalez, M.R.; Legnoverde, M.S.; Raymundo-Piñero, E.; Basaldella, E.I.; Ania, C. Photocatalytic Activity of NiZnAl Hydrotalcite-like Compound/Carbon Nitride Composites for the Degradation of Methylparaben. Catal. Today 2025, 459, 115432. [Google Scholar] [CrossRef]
- B., A.; Arasalike, J.; Rao, A.S.; Nagarkar, S.S.; Dutta, A.; Duttagupta, S.P.; Prabhu, S.S.; Pinto, R. Challenges in Photocatalytic Hydrogen Evolution: Importance of Photocatalysts and Photocatalytic Reactors. Int. J. Hydrogen Energy 2024, 81, 1442–1466. [Google Scholar] [CrossRef]
- Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future-Gunawan-2024-Advanced Materials-Wiley Online Library. Available online: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adma.202404618 (accessed on 27 August 2025).
- A Scalable Solar-Driven Photocatalytic System for Separated H2 and O2 Production from Water | Nature Communications. Available online: https://www.nature.com/articles/s41467-025-56314-x (accessed on 27 August 2025).
- Scaling up of Photocatalytic Systems for Large-Scale Hydrogen Generation|Applied Physics Reviews|AIP Publishing. Available online: https://pubs.aip.org/aip/apr/article-abstract/12/1/011303/3330351/Scaling-up-of-photocatalytic-systems-for-large?redirectedFrom=fulltext (accessed on 27 August 2025).
- Molar, J.; Herckes, P.; Fraser, M.P. Photocatalytic Abatement of Ambient NOx by TiO2 Coated Solar Panels. RSC Sustain. 2025, 3, 963–972. [Google Scholar] [CrossRef]
- SiO2/WO3/ZnO Based Self-Cleaning Coatings for Solar Cells | Journal of Sol-Gel Science and Technology. Available online: https://link.springer.com/article/10.1007/s10971-024-06351-7 (accessed on 27 August 2025).
- Kuspanov, Z.; Serik, A.; Tattibay, A.; Baratov, A.; Abdikarimova, U.; Bissenova, M.; Yeleyov, M.; Sakhiyev, S.; Daulbayev, C. Investigating and Correlating the Photocatalytic Activity of Synthesised Strontium Titanate Nanopowder with Calcination Temperature. Environ. Technol. Innov. 2024, 36, 103852. [Google Scholar] [CrossRef]
- Kudaibergen, A.D.; Kuspanov, Z.B.; Issadykov, A.N.; Beisenov, R.E.; Mansurov, Z.A.; Yeleuov, M.A.; Daulbayev, C.B. Synthesis, Structure, and Energetic Characteristics of Perovskite Photocatalyst SrTiO3: An Experimental and DFT Study. Eurasian Chem.-Technol. J. 2023, 25, 139–146. [Google Scholar] [CrossRef]
- Synthesis and Study of SrTiO3/TiO2 Hybrid Perovskite Nanotubes by Electrochemical Anodization. Available online: https://www.mdpi.com/1420-3049/29/5/1101 (accessed on 27 August 2025).
- Kuspanov, Z.; Serik, A.; Matsko, N.; Bissenova, M.; Issadykov, A.; Yeleuov, M.; Daulbayev, C. Efficient Photocatalytic Degradation of Methylene Blue via Synergistic Dual Co-Catalyst on SrTiO3@Al under Visible Light: Experimental and DFT Study. J. Taiwan Inst. Chem. Eng. 2024, 165, 105806. [Google Scholar] [CrossRef]
- Shen, Q.; Kang, W.; Ma, L.; Sun, Z.; Jin, B.; Li, H.; Miao, Y.; Jia, H.; Xue, J. Tuning the Anisotropic Facet of SrTiO3 to Promote Spatial Charge Separation for Enhancing Photocatalytic CO2 Reduction Properties. Chem. Eng. J. 2023, 478, 147338. [Google Scholar] [CrossRef]
- Crystal Facet Engineering on SrTiO3 Enhances Photocatalytic Overall Water Splitting | Journal of the American Chemical Society. Available online: https://pubs.acs.org/doi/10.1021/jacs.3c12062 (accessed on 27 August 2025).
- Hirayama, D.; Kawawaki, T.; Oguchi, S.; Ogano, M.; Kon, N.; Yasuda, T.; Higami, A.; Negishi, Y. Ultrafine Rhodium–Chromium Mixed-Oxide Cocatalyst with Facet-Selective Loading for Excellent Photocatalytic Water Splitting. J. Am. Chem. Soc. 2024, 146, 26808–26818. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic Water Splitting with a Quantum Efficiency of Almost Unity. Nature 2020, 581, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, X.; Zheng, S.; Lv, S.; Li, H.; Si, Z.; Wu, X.; Ran, R.; Weng, D.; Kang, F. Ni Single Atoms Anchored on Nitrogen-Doped Graphene as H2-Evolution Cocatalyst of SrTiO3(Al)/CoOx for Photocatalytic Overall Water Splitting. Carbon 2021, 183, 763–773. [Google Scholar] [CrossRef]
- Chen, G.; Li, R.; Huang, L. Advances in Photochemical Deposition for Controllable Synthesis of Heterogeneous Catalysts. Nanoscale 2023, 15, 13909–13931. [Google Scholar] [CrossRef]
- Wenderich, K.; Mul, G. Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem. Rev. 2016, 116, 14587–14619. [Google Scholar] [CrossRef]
- Zhao, Z.; Goncalves, R.V.; Barman, S.K.; Willard, E.J.; Byle, E.; Perry, R.; Wu, Z.; Huda, M.N.; Moulé, A.J.; Osterloh, F.E. Electronic Structure Basis for Enhanced Overall Water Splitting Photocatalysis with Aluminum Doped SrTiO3 in Natural Sunlight. Energy Environ. Sci. 2019, 12, 1385–1395. [Google Scholar] [CrossRef]
- Criteria for Efficient Photocatalytic Water Splitting Revealed by Studying Carrier Dynamics in a Model Al-doped SrTiO3 Photocatalyst-Li-2023-Angewandte Chemie International Edition-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202313537 (accessed on 27 August 2025).
- Effects of RhCrOx Cocatalyst Loaded on Different Metal Doped LaFeO3 Perovskites with Photocatalytic Hydrogen Performance under Visible Light Irradiation. Available online: https://www.mdpi.com/2073-4344/11/5/612 (accessed on 27 August 2025).
- Efficient Photocatalytic Water Splitting Using Al-Doped SrTiO3 Coloaded with Molybdenum Oxide and Rhodium–Chromium Oxide|ACS Catalysis. Available online: https://pubs.acs.org/doi/10.1021/acscatal.7b04264 (accessed on 27 August 2025).
- An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments | Journal of Materials Research. Available online: https://link.springer.com/article/10.1557/JMR.1992.1564 (accessed on 27 August 2025).
- Nanomechanical Properties of TiO2 Granular Thin Films|ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/10.1021/am100455q (accessed on 27 August 2025).
- Effects of SiO2 and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique. Available online: https://www.mdpi.com/2073-4360/13/9/1490 (accessed on 27 August 2025).
- Zambrano-Mera, D.F.; Espinoza-González, R.; Villarroel, R.; Rosenkranz, A.; Carvajal, N.; Pintor-Monroy, M.I.; Montaño-Figueroa, A.G.; Arellano-Jiménez, M.J.; Quevedo-López, M.; Valenzuela, P.; et al. Optical and Mechanical Properties of Zr-Oxide Doped TiO2/SiO2 Anti-Reflective Coatings for PV Glass Covers. Sol. Energy Mater. Sol. Cells 2022, 243, 111784. [Google Scholar] [CrossRef]
- Jiang, J.; Dong, X.; Wang, H.; Wang, F.; Li, Y.; Lu, Z. Enhanced Mechanical and Photocatalytic Performance of Cement Mortar Reinforced by Nano-TiO2 Hydrosol-Coated Sand. Cem. Concr. Compos. 2023, 137, 104906. [Google Scholar] [CrossRef]
- Goto, Y.; Hisatomi, T.; Wang, Q.; Higashi, T.; Ishikiriyama, K.; Maeda, T.; Sakata, Y.; Okunaka, S.; Tokudome, H.; Katayama, M.; et al. A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation. Joule 2018, 2, 509–520. [Google Scholar] [CrossRef]
№ | Sample | E, GPa | H, GPa |
---|---|---|---|
1.1 | STO:Al | 3.77 ± 2.70 | 0.18 ± 0.02 |
1.2 | STO:Al | 4.89 ± 2.22 | 0.20 ± 0.04 |
2.1 | Cocat/STO:Al | 5.40 ± 1.14 | 0.25 ± 0.0.4 |
2.2 | Cocat/STO:Al | 5.27 ± 1.07 | 0.23 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baratov, A.; Dikov, A.; Dikova, L.; Aldabergenova, T.; Zholdybayev, T.; Maksimkin, E.; Tsay, K.V. Srtio3-Based Composites for Photocatalytic Panels in Solar Hydrogen Production. Molecules 2025, 30, 3699. https://doi.org/10.3390/molecules30183699
Baratov A, Dikov A, Dikova L, Aldabergenova T, Zholdybayev T, Maksimkin E, Tsay KV. Srtio3-Based Composites for Photocatalytic Panels in Solar Hydrogen Production. Molecules. 2025; 30(18):3699. https://doi.org/10.3390/molecules30183699
Chicago/Turabian StyleBaratov, Aibol, Alexey Dikov, Lyubov Dikova, Tamara Aldabergenova, Timur Zholdybayev, Egor Maksimkin, and Kira V. Tsay. 2025. "Srtio3-Based Composites for Photocatalytic Panels in Solar Hydrogen Production" Molecules 30, no. 18: 3699. https://doi.org/10.3390/molecules30183699
APA StyleBaratov, A., Dikov, A., Dikova, L., Aldabergenova, T., Zholdybayev, T., Maksimkin, E., & Tsay, K. V. (2025). Srtio3-Based Composites for Photocatalytic Panels in Solar Hydrogen Production. Molecules, 30(18), 3699. https://doi.org/10.3390/molecules30183699