Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound
Abstract
1. Introduction
2. Materials and Methods
2.1. Coating Process
2.2. Isothermal Oxidation
2.3. Analyzing Methods
3. Results
3.1. The Influence of the Composition of the Diffusion Accelerator on the γ-TiAl-Intermetallic-Compound-Powder-Embedded Aluminized Coating
3.2. The Influence of Different Aluminizing Times
3.3. Surface Morphology Analysis
3.4. Research on High-Temperature Oxidation Resistance
3.4.1. Oxidation Kinetics Curve
3.4.2. Analysis of the Oxidation Resistance of Aluminized Coating After Constant Temperature Oxidation at 800 ℃ for 20 H
3.4.3. Analysis of the Oxidation Resistance of Aluminized Coating After Constant Temperature Oxidation at 900 ℃ for 20 H
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamaguchi, M.; Inui, H.; Ito, K. High-temperatures structural intermetallics. Acta Mater. 2000, 48, 307–322. [Google Scholar] [CrossRef]
- Clemens, H.; Mayer, S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 2013, 15, 191. [Google Scholar] [CrossRef]
- Vaben, R.; Jarligo, M.O.; Steinke, T.; Mack, D.E.; Stöver, D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010, 205, 938–942. [Google Scholar] [CrossRef]
- Wu, L.; Wu, J.; Wu, W.; Hou, G.-Y.; Cao, H.-Z.; Tang, Y.-P.; Zhang, H.-B.; Zheng, G.-Q. High temperature oxidation resistance of γ-TiAl alloy with pack aluminizing and electrodeposited SiO2 composite coating. Corros. Sci. 2018, 146, 18–27. [Google Scholar] [CrossRef]
- Brady, M.P.; Brindley, W.J.; Smialek, J.L.; Locci, I.E. The oxidation and protection of gamma titanium aluminides. JOM 1996, 48, 46–50. [Google Scholar] [CrossRef]
- Gurrappa, I.; Rao, S.A. Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surf. Coat. Technol. 2006, 201, 3016–3029. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, F.; Wu, W. Effect of a sputtered TiAlCr coating on the oxidation resistance of TiAl intermetallic compound. Oxid. Met. 1997, 48, 511–525. [Google Scholar] [CrossRef]
- Mengis, L.; Oskay, C.; Donchev, A.; Galetz, M. Critical assessment of the cyclic oxidation resistance of the aluminized Ti-48Al-2Cr-2Nb TiAl alloy at 700 °C and its impact on mechanical properties. Surf. Coat. Technol. 2021, 406, 126646. [Google Scholar] [CrossRef]
- Swadźba, R.; Swadźba, L.; Mendala, B.; Witala, B.; Tracz, J.; Marugi, K.; Pyclik, Ł. Characterization of Si-aluminide coating and oxide scale microstructure formed on γ-TiAl alloy during long-term oxidation at 950 °C. Intermetallics 2017, 87, 81–89. [Google Scholar] [CrossRef]
- Gao, J.; He, Y.; Gao, W. Oxidation behavior of γ-TiAl based alloy with Al2O3–Y2O3 composite coatings prepared by electrophoretic deposition. Surf. Coat. Technol. 2011, 205, 4453–4458. [Google Scholar] [CrossRef]
- Xiang, Z.D.; Datta, P.K. Relationship between pack chemistry and aluminide coating formation for low-temperature aluminisation of alloy steels. Acta Mater. 2006, 54, 4453–4463. [Google Scholar] [CrossRef]
- Alam, M.Z.; Durgarao, K.Y.; Kumawat, M.; Banumathy, S. Microstructure, oxidation and mechanical properties of a diffusion aluminide (Al3Ti) coated lamellar γ-TiAl alloy. Surf. Coat. Technol. 2019, 380, 125071. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Hu, H.; Meng, J.; Zhao, X. Effect of Y2O3 content in the pack mixtures on the cyclic-oxidation of Y2O3-modified low temperature aluminide coatings on 309 stainless steel. Vacuum 2018, 158, 101–112. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, Y.G.; Li, W.; Tian, B.; Hu, S.; Qin, Q. Oxidation behavior of the Y2O3-modified aluminide coating on Ti-6Al-4V alloy. Mater. Sci. Eng. A 2007, 458, 34–38. [Google Scholar] [CrossRef]
- Cho, D.W.; Kim, I. Formation of pegs during high temperature oxidation of Fe3Al containing yttrium. Metall. Mater. Trans. A 2000, 31, 1685–1687. [Google Scholar] [CrossRef]
- Doleker, K.M.; Yener, T.; Erdogan, A.; Yılmaz, F.; Efe, G.C. Effect of Si and Cr on formation of aluminide coatings on Ti6Al4V alloy by low temperature aluminizing: Wear and oxidation behavior. Surf. Coat. Technol. 2025, 509, 132207. [Google Scholar] [CrossRef]
- Mehrer, H. Diffusion in Intermetallics. Mater. Trans. JIM 1996, 37, 1259–1280. [Google Scholar] [CrossRef]
- Gaviría, J.P.; Navarro, L.G.; Bohé, A.E. Chlorination of lanthanum oxide. J. Phys. Chem. A 2012, 116, 2062–2070. [Google Scholar] [CrossRef]
- West, G.; Perkins, J.; Lewis, M. The effect of rare earth dopants on grain boundary cohesion in alumina. J. Eur. Ceram. Soc. 2006, 27, 1913–1918. [Google Scholar] [CrossRef]
- Varlese, F.A.; Tului, M.; Sabbadini, S.; Pellissero, F.; Sebastiani, M.; Bemporad, E. Optimized coating procedure for the protection of TiAl intermetallic alloy against high temperature oxidation. Intermetallics 2013, 37, 76–82. [Google Scholar] [CrossRef]
- Yoshihara, M.; Kim, Y. Oxidation behavior of gamma alloys designed for high temperature applications. Intermetallics 2004, 13, 952–958. [Google Scholar] [CrossRef]
- Das, D.K.; Alam, Z. Cyclic oxidation behaviour of aluminide coatings on Ti-base alloy IMI-834 at 750 °C. Surf. Coat. Technol. 2006, 201, 3406–3414. [Google Scholar] [CrossRef]
- Lutfullin, R.Y.; Imayev, R.M.; Kaibyshev, O.; Hismatullin, F.; Imayev, V. Superplasticity and solid-state bonding of the tial intermetallic compound with microcrystalline and submicrocrystalline structure. Scr. Metall. Et Mater. 1995, 33, 1445–1449. [Google Scholar] [CrossRef]
- Goral, M.; Swadzba, L.; Moskal, G.; Jarczyk, G.; Aguilar, J. Diffusion aluminide coatings for TiAl intermetallic turbine blades. Intermetallics 2011, 19, 744–747. [Google Scholar] [CrossRef]
Elements | Al | V | Cr | Nb | N | O | Mn | Ti |
---|---|---|---|---|---|---|---|---|
Nominal | 32.3 | ≤1.5 | ≤1.0 | ≤0.20 | ≤0.05 | ≤0.015 | 6.32 | Bal. |
EPMA detected | 33.0 | 0.53 | 0.97 | 0.17 | 0.01 | 0.01 | 6.01 | Bal. |
Raw Materials of Penetrant | Al | Al2O3 | NH4Cl | CeO2 | Al |
---|---|---|---|---|---|
Formula 1 (wt.%) | 30 | 66 | 3 | 1 | 30 |
Formula 2 (wt.%) | 30 | 67 | 3 | 0 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Long, Y.; He, Y.; Li, Y.; Huang, D.; Gu, Y.; Wang, X.; Wang, J.; Chen, M. Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound. Coatings 2025, 15, 914. https://doi.org/10.3390/coatings15080914
Song J, Long Y, He Y, Li Y, Huang D, Gu Y, Wang X, Wang J, Chen M. Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound. Coatings. 2025; 15(8):914. https://doi.org/10.3390/coatings15080914
Chicago/Turabian StyleSong, Jiahui, Yunmei Long, Yifan He, Yichen Li, Dianqi Huang, Yan Gu, Xingyao Wang, Jinlong Wang, and Minghui Chen. 2025. "Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound" Coatings 15, no. 8: 914. https://doi.org/10.3390/coatings15080914
APA StyleSong, J., Long, Y., He, Y., Li, Y., Huang, D., Gu, Y., Wang, X., Wang, J., & Chen, M. (2025). Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound. Coatings, 15(8), 914. https://doi.org/10.3390/coatings15080914